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Parameter Estimation of Diode Circuit Using
Extended Kalman Filter
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Abstract—This paper presents parameter estimation of a
single-phase rectifier using extended Kalman filter (EKF). The state
space model has been obtained using Kirchhoff’s current law (KCL)
and Kirchhoff’s voltage law (KVL). The capacitor voltage and diode
current of the circuit have been estimated using EKF. Simulation
results validate the better accuracy of the proposed method as
compared to the least mean square method (LMS). Further, EKF
has the advantage that it can be used for nonlinear systems.
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I. INTRODUCTION

S INGLE phase rectifier has been used in many applications

such as variable speed motor drive [1]-[3], split capacitor

full bridge rectifier [4], single phase full-bridge resonant circuit

[5] etc.

Parameter estimation of different diode circuits have been

proposed in literature. In [6], Yeh et al. proposed a method that

uses both the simplified swarm optimization and Nelder-Mead

simplex algorithm for parameter identification of photovoltaic

system. This method has the advantage of fast and accurate

parameter identification. It also performs well in terms of

run time and standard deviation of fitness value. In [7], Jadli

et al. presented mathematical model of solar photovoltaic

(PV) cell for estimation of electrical parameters such as

diode dark saturation current, diode ideality factor etc. which

vary with environmental conditions. Further, they used the

proposed model together with analytical method and simplified

annealing method to present a new estimation method. They

compared with other methods to reveal the better performance

of the proposed method. In [8], Zadeh et al. proposed

modelling of PV arrays and estimation of maximum power

point (MPP) by measuring the voltage and current at three

points near the MPP. The advantage of the method is that there

is no oscillation near the MPP. Also, it has the advantage of

less computational complexity, small run time and decrease

in the I-V characteristic estimation loss. Xu et al. [9] used

density of nonradiated recombination defects to estimate the

lifetime in light emitting diode (LED) chip.

Batzelis et al. [10] proposed a method for MPP estimation

by fitting a curve on voltage and current measurements.

This method has the advantage of good accuracy and noise

robustness during fast changing environmental conditions.

Attivissimo et al. [11] estimated the series and shunt

resistances of a PV cell using Levenberg Marquarclt algorithm
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based optimization method. They used seven parameter model

of a PV cell. In [12], Kim et al. proposed a method

for lifetime estimation of organic LED (OLED) that uses

bivariate acceleration model and a statistical method that

considers uncertainties. They also used likelihood ratio based

method to validate the proposed method. Dusmez et al.
[13] proposed method for lifetime estimation of power metal

oxide semiconductor field effect transistor (MOSFET) and

insulated gate bipolar transistors. The lifetime is estimated by

modelling the gate threshold voltage. The least square method

has been used for model parameter estimation. Chen et al.
[14] proposed electrical measurement procedure for estimation

of carrier concentration of LED. Savuskan et al. [15] used

semi empirical and analytical models to estimate the photon

detection efficiency nonuniformity of avalanche diode.

This paper is organized as follows. Section II presents LMS

algorithm. Section III introduces EKF algorithm. The state

space modelling of single phase full wave rectifier circuit has

been derived in Section IV. Section V presents simulation

results. Finally, Section VI presents conclusions.

II. LEAST MEAN SQUARE ALGORITHM

LMS is an adaptive filter which is used for system

identification. The LMS [16]-[22] minimizes the instantaneous

error squared. It requires minimum storage as it only requires

to store the filter weights.In this search algorithm, the gradient

vector computation is simplified by appropriate modification

of the objective function. It is broadly used for various

applications as it has the advantage of low computational cost

and implementation simplicity.

Let x(n) is the input signal to the filter, y(n) is the output

signal and d(n) is the desired signal. y(n) depends on ū(n)
such as:

y(n) = ū(n)
T
w̄(n) (1)

where w̄(n) is the weighted coefficient such as

w̄(n) = [w1(n), w2(n)...wN (n)]T and ū(n) =
[x1(n), x2(n)...xN (n)]T .

The LMS algorithm find the filter coefficients by

minimizing the cost function. The cost function is

J(n) =
1

2
E{e(n)}2 (2)

The adaptive filter coefficient is updated using the following

operations:
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1) Calculation of adaptive filter output signal y(n).
2) Calculation of the error signal

e(n) = d(n)− y(n) (3)

3) Update the filter coefficient by using following expression:

w̄(n+ 1) = w̄(n) + μe(n)ū(n) (4)

where μ is the step size of the adaptive filter, w̄(n) is the filter

coefficient vector. ū(n) is the filter input vector.

III. EKF ALGORITHM

EKF is broadly used for estimation purpose in various

applications [23]-[25]. It uses linearized model of the nonlinear

system to implement Kalman filtering. The linearization

process uses the partial derivative or Jacobian matrices of

nonlinear function of the model. Using a priori and posteriori

error covariance, the estimation process is defined in terms

of the linearized observation model. The algorithm starts with

initialization of mean value of the state vector and covariance

matrix.
A nonlinear discrete time system can be expressed by its

difference equations as:

xk = f(xk−1, uk−1) + wk−1 (5)

yk = h(xk, uk) + vk (6)

Equations (5) and (6) are represented in terms of nonlinear

state model and measurement model respectively. where f(.)
and h(.) are nonlinear functions of process and measurement

model. wk and vk are the Gaussian noise disturbance with

zero mean with covariance matrix Qk and Rk respectively.

Consider all assumptions as below:

E[wk] = 0, E[wk, w
T
k ] = Qk, E[wk, w

T
j ] = 0∀k �= j,

E[wk, x
T
0 ] = 0∀K, E[vk] = 0, E[vk, v

T
k ] = Rk, E[vk, v

T
j ] =

0∀k �= j, E[vk, x
T
0 ] = 0∀k, E[wk, v

T
j ] = 0∀k&j.

The steps involved for EKF algorithm are as follows:

Step 1. State initialization: Assume the mean μ0 and

covariance P0 of the states as below:

x̂0 = μ0 = E[x0] (7)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (8)

State estimation at time k − 1

x̂k−1|k−1 = E[(xk−1|yk−1)] (9)

Step 2. State prediction: The predicted value of xk is given

as

x̂k|k−1 = E[(xk|yk−1)] (10)

Taylor’s series expansions are applied to linearized the

nonlinear model of (5).

xk = fk−1(x̂k−1|k−1, 0) + Fk−1(x̃k−1) + Δf(x̃2
k−1) (11)

where Δf(x̃2
k−1) is the higher order terms of Taylor’s series

expansion. Fk is the Jacobian matrix and can be expressed as

Fk =

⎡⎢⎢⎣
df1
dx1

df1
dx2

df1
dx3

. . . df1
dxn

...
...

...
. . .

...
dfp
dx1

dfp
dx2

dfp
dx3

. . .
dfp
dxn

⎤⎥⎥⎦

where f(x) = (f1(x), f2(x), ...fp(x))
T and xk =

(x1, x2, ...xp)
T . substituting the value of xk from (11) into

(10), we get

x̂k|k−1 = f(x̂k−1|k−1, uk) (12)

Covariance error is defined as

Pk|k−1 = E[eke
T
k ] (13)

where ek = xk − x̂k. Solving (13), we obtain the predicted

covariance error as:

Pk|k−1 = FkPk−1|k−1Fk
T +Qk (14)

Step 3. Measurement prediction: We have predicted value

x̂k|k−1 with covariance Pk|k−1 and measurement yk with

covariance Rk. The objective is to find best estimation x̂k|k
in terms of least square sense. Putting the value of from (11)

into (6), we calculate the predicted measurement ŷk|k−1 as

ŷk|k−1 = h(x̂k|k−1) (15)

Observation error can be defined as

Zk|k−1 = yk − ŷk|k−1 (16)

By using (14), observation error covariance can be calculated

as

Sk = E[Zk|k−1(Zk|k−1)
T ] = HkPk|k−1Hk

T +Rk (17)

where

Hk =

⎡⎢⎣
dh1

dx1

dh1

dx2

dh1

dx3
. . . dh1

dxn

...
...

...
. . .

...
dhp

dx1

dhp

dx2

dhp

dx3
. . .

dhp

dxn

⎤⎥⎦
where h(x) = (h1(x), h2(x), ...hp(x))

T and x =
(x1, x2, ...xp)

T .

Step 4. Measurement update: The state estimation is

calculated as

x̂k|k = x̂k|k−1 +KK(yk − h(x̂k|k−1)) (18)

The predicted covariance is

Pk|k = E[ek|keTk|k|yk]
= Pk|k−1 −KK(HkPk|k−1H

−1
k +Rk)KK

T (19)

where Kalman gain is

KK = Pk|k−1H
T
k (HkPk|k−1H

−1
k +Rk)

−1 (20)

Table I summarizes the EKF steps.

IV. STATE SPACE MODEL FOR SINGLE PHASE RECTIFIER

CIRCUIT

Fig. 1 shows single-phase full wave rectifier circuit. The

input voltage is vi(t). The circuit consists of inductor Ls and

resistor Rs. The capacitor C is used at the output, which is

in parallel with the load resistance RL. We assumed that D1

to D4 are identical diodes with voltage drop equal to vD.

iD(t) and vc(t) are the diode current and capacitor voltage

respectively.
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TABLE I
ALGORITHM OF EKF

Algorithm 1: Extended Kalman Filter
1. Initialization step:

Initialize x̂k−1|k−1, Pk−1|k−1, Qk−1 and Rk

2. State prediction:
Compute matrices Fk as:

Fk =
∂fi(x,uk)

∂x
|x=x̂i

Compute state x̂k|k−1 as:

x̂k|k−1 = fk−1(x̂k−1|k−1, 0)
Compute predicted covariance of error:

Pk|k−1 = FkPk−1|k−1F
T
k +Qk−1

3.Measurement update:
Compute matrices Hk as:

Hk =
∂hi(x,uk)

∂x
|x=x̂i

Compute the Kalman gain as:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1

Update the state estimation:
x̂k|k = x̂k|k−1 +Kk(yk − hk(x̂k|k−1))

Compute covariance error matrix:
Pk|k = (I −KkHk)Pk|k−1

Fig. 1 Circuit diagram of single-phase full wave rectifier

The circuit equations of rectifier have been obtained using

Kirchhoff’s voltage and current laws. They are:

C
d

dt
vc(t) +

vc(t)

RL
= iD(t) (21)

vi(t) = RSiD(t) + LS
d

dt
iD(t) + 2vD + vc(t) (22)

where iD(t) = I0(e
vD/vT − 1).

Representing (21) and (22) in terms of state equations, we

have

d

dt
vc(t) = − 1

RLC
vc(t) +

1

C
iD(t) (23)

d

dt
iD(t) = − 1

LS
vc(t)− (RS + 2VT /I0)

LS
iD(t) +

1

LS
vi(t)

(24)

Here, VT and I0 denote the thermal voltage and reverse

saturation current of diode respectively. Similarly, representing

the dynamic equations (23) and (24) as state space equations,

we have

d

dt
x(t) = Fx(t) +Bvi(t) (25)

where x(t) is the state vector consisting of two states vc(t)
and iD(t) respectively. The state transition matrix F and input

vector B are:

F =

[
− 1

RLC
1
C

− 1
LS

− (RS+2VT /I0)
LS

]
and

B =
[
0 1

LS

]T
(26)

The state space model is given as:

d

dt

[
vc(t)
iD(t)

]
=

[
− 1

RLC
1
C

− 1
LS

− (RS+2VT /I0)
LS

] [
vc(t)
iD(t)

]
+

[
0
1
LS

]
vi(t) (27)

The measurement model is:

y(t) = Cx(t) (28)

where

C =
[
1 0

]
The discrete form of (27) can be obtained using

Euler-Maruyama method. Substituting t = kTs, where k is

a positive integer value and Ts is sampling time. In general,

the discrete time state space equations can be written as:

xk+1 = Fdxk +Bdvik + wk (29)

yk = Cdxk + vk (30)

The matrices Fd, Bd and Cd are

Fd =

[
1− Ts

RLC
Ts

C

− Ts

LS
1− Ts(RS+2VT /I0)

LS

]

Bd =

[
0
Ts

LS

]
and

Cd =

[
1
0

]T
(31)

wk and vk are the process noise and measurement noise

respectively which are zero mean Gaussian noise.

V. SIMULATION RESULTS

The parameters of rectifier circuit have been estimated in

MATLAB using EKF and compared with LMS estimation

method. Sinusoidal input of 10 volts and 50 KHz frequency

has been used as shown in Fig. 2. The system noise and

measurement noise used are white Gaussian noise of zero

mean with 0.5 and 0.1 variance respectively. The PSPICE

simulated values have been considered as the actual value.

Simulations have been performed using noiseless input signal

and noisy input signal. Figs. 3-12 show the comparison of

estimated capacitor voltage and diode current using EKF and

LMS with PSPICE simulations. Table II and Table III compare

the root mean square error (RMSE) and signal to noise ratio

(SNR) of EKF and LMS method for capacitor voltage and

diode current respectively.
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TABLE II
COMPARISON OF CAPACITOR VOLTAGE (vC) ESTIMATION USING

DIFFERENT METHODS

Input signal Parameter LMS
method

EKF
method

Noiseless
input

SNR(dB)
RMSE

0.42
1.24

1.07
0.86

Noisy input signal with
mean 0 and variance 0.1

SNR(dB)
RMSE

0.40
1.50

1.01
0.96

Noisy input signal with
mean 0 and variance 0.5

SNR(dB)
RMSE

0.35
2.10

1.00
1.01

Noisy input signal with
mean 0 and variance 1.0

SNR(dB)
RMSE

0.26
2.15

0.90
1.02

Noisy input signal with
mean 0 and variance 2.0

SNR(dB)
RMSE

0.10
3.17

0.76
2.42

TABLE III
COMPARISON OF DIODE CURRENT (iD) ESTIMATION USING DIFFERENT

METHODS

Input signal Parameter LMS
method

EKF
method

Noiseless
input

SNR(dB)
RMSE

0.258
0.69

1.290
0.3359

Noisy input signal with
mean 0 and variance 0.1

SNR(dB)
RMSE

0.20
1.40

1.05
0.66

Noisy input signal with
mean 0 and variance 0.5

SNR(dB)
RMSE

0.16
2.45

1.01
1.56

Noisy input signal with
mean 0 and variance 1.0

SNR(dB)
RMSE

0.10
2.55

1.0
1.82

Noisy input signal with
mean 0 and variance 2.0

SNR(dB)
RMSE

0.054
2.95

0.87
2.56

RMSE =

√√√√ n∑
i=1

(ŷi − yi)
2

n
(32)

SNR =

√√√√√√√
n∑

i=1

(ŷi)
2

n∑
i=1

(ŷi − yi)
2

(33)

where ŷ is the estimated value, y is the actual value and n is

the number of samples.

VI. CONCLUSIONS

The parameter estimation of a single-phase rectifier using

EKF is presented in this paper. The voltage across the capacitor

and diode current have been estimated using EKF method and

compared with LMS estimation method. Simulation results

show the better SNR value for EKF as compared to LMS

method. Also, EKF has smaller value of RMSE as compared

to LMS estimation method. Further, EKF has the advantage

that it can be used for nonlinear systems.
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Fig. 3 Estimated voltage using EKF and LMS method for noiseless input
signal
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Fig. 4 Estimated voltage using EKF and LMS method for noisy input signal
with zero mean and variance 0.1
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Fig. 5 Estimated voltage using EKF and LMS method for noisy input signal
with zero mean and variance 0.5
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Fig. 6 Estimated voltage using EKF and LMS method for noisy input signal
with zero mean and variance 1.0
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Fig. 7 Estimated voltage using EKF and LMS method for noisy input signal
with zero mean and variance 2.0
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Fig. 8 Estimated current using EKF and LMS method for noiseless input
signal
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Fig. 9 Estimated current using EKF and LMS method for noisy input signal
with zero mean and variance 0.1
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Fig. 10 Estimated current using EKF and LMS method for noisy input
signal with zero mean and variance 0.5
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Fig. 11 Estimated current using EKF and LMS method for noisy input
signal with zero mean and variance 1.0
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Fig. 12 Estimated current using EKF and LMS method for noisy input
signal with zero mean and variance 2.0
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