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An Efficient Motion Recognition System Based on
LMA Technique and a Discrete Hidden Markov

Model
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Abstract—Human motion recognition has been extensively
increased in recent years due to its importance in a wide range
of applications, such as human-computer interaction, intelligent
surveillance, augmented reality, content-based video compression
and retrieval, etc. However, it is still regarded as a challenging
task especially in realistic scenarios. It can be seen as a general
machine learning problem which requires an effective human motion
representation and an efficient learning method. In this work, we
introduce a descriptor based on Laban Movement Analysis
technique, a formal and universal language for human movement,
to capture both quantitative and qualitative aspects of movement.
We use Discrete Hidden Markov Model (DHMM) for training
and classification motions. We improve the classification algorithm
by proposing two DHMMs for each motion class to process the
motion sequence in two different directions, forward and backward.
Such modification allows avoiding the misclassification that can
happen when recognizing similar motions. Two experiments are
conducted. In the first one, we evaluate our method on a public
dataset, the Microsoft Research Cambridge-12 Kinect gesture data
set (MSRC-12) which is a widely used dataset for evaluating
action/gesture recognition methods. In the second experiment, we
build a dataset composed of 10 gestures (Introduce yourself, waving,
Dance, move, turn left, turn right, stop, sit down, increase velocity,
decrease velocity) performed by 20 persons. The evaluation of
the system includes testing the efficiency of our descriptor vector
based on LMA with basic DHMM method and comparing the
recognition results of the modified DHMM with the original one.
Experiment results demonstrate that our method outperforms most of
existing methods that used the MSRC-12 dataset, and a near perfect
classification rate in our dataset.

Keywords—Human Motion Recognition, Motion representation,
Laban Movement Analysis, Discrete Hidden Markov Model.

I. INTRODUCTION

HUMAN motion recognition is an active area of research

due to its importance in many applications: video

surveillance, indexing videos, interaction Human-machine,

security, and health-care. The purpose of a human motion

recognition system is to recognize simple actions of everyday

life such as running, knocking, eating, walking, etc.)

from videos. The problem of human motions recognition

has attracted the attention of several researchers and

the advantages and limitations of the different proposed

approaches have been discussed over the last years. Two

crucial aspects of motion recognition are to extract relevant

M. Mallem and J. Didier are with IBISC, Univ Evry, Université
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France (e-mail: insafajili@gmail.com).

features by representing the contents to be classified by a

descriptor vector and to develop a robust learning algorithm

in order to associate with this representation a label. Many

descriptors have been chosen in the computer vision literature.

First methods based on interest points have been proposed

to describe human movements by Laptev and Lindberg [6].

They have used the Harris 3D point-of-interest detector, which

is an extension of the Harris detector, adding to it the

temporal dimension. Dollar et al. [3] have also proposed a

similar detection algorithm, the cuboid detector, based on

interests points calculated from Gabor’s filter responses in the

space and time domain. Other approaches have illustrated the

relevance of tracking point trajectories for recognizing actions

in videos. For instance, Messing et al. [10] have extracted

features trajectories by tracking Harris3D interest points with

the help of the KLT tracker. Also Matikainen et al. [9] have

extracted trajectories of tracked feature points in a bag of

words paradigm for action recognition. Wang et al. [15], have

extracted features aligned with the trajectories to characterize

appearance and motion. To reduce the influence of camera

motion on action recognition, they introduced a descriptor

based on motion boundary histograms (MBH) which rely

on differential optical flow. When trying to identify human

motions, it is sometimes wise to know where the actor of

the action is in order to isolate him from the rest of the

scene. This allows focussing on his movements, regardless

of what happened in the background. To do this, two paths

have been widely studied, the first one was the analysis of

the shape of the character, through his silhouette, here we can

cite the work of Shao and Chen [12] who have employed

body poses sampled from silhouettes that were fed into a

bag-of-words model. Also, Ahmad and Lee [1] have proposed

a spatiotemporal silhouette representation, called Silhouette

Energy Image (SEI) to differentiate the properties of form and

motion for the human action recognition. The second path

was the analysis of the movement of the actor through the

identification of his limbs (hands, head, legs, etc.). Zanfir et

al. [17] have proposed a moving pose descriptor defined by

both pose information and differential information (velocity

and acceleration). Hussein et al. [5] have introduced the

covariance matrix of skeleton joint locations over time as a

descriptor vector. In order to code the temporal dependence

of the joints positions, multiple covariance matrices have

been deployed over sub-sequences in a hierarchical way.

Yang et al. [16] have introduced both spatial and temporal

aspects. Their descriptor vector included three pieces of
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information, the static pose posture information (fcc), the

temporal movement of a pose defined by the difference

between the current and the previous pose (fcp) and the offset

from an initial pose (fci).

In our work, we tried to propose more suitable features

and advanced learning algorithm to improve human motion

recognition performance. Our descriptor based on a Laban

Movement Analysis method (LMA) introduced by Rudolf

Laban (1879 to 1958) to analyze, describe, visualize and

annotate all varieties of human motion using a specific

notation. LMA is a descriptive language widely used in the

field of dance, physical therapy, athletics, and behavioral

science. It is generally used to analyze the movement

of dancers and athletes. It captures both quantitative and

qualitative aspects of the movement by encoding Laban

components. To model human motion data we used DHMM

method for motions recognition. Classification step is based on

Forward algorithm [11] where each motion is presented with

two DHMMs to encode motion sequence in the forward and

backward directions. By applying Forward algorithm in the

two cases we avoid the conflict that can happen between some

gestures which share a same part of the motion. For example,

extend your arm straight forward and knocking the door are

two actions having the same motion in the first frames, which

can lead to a misclassification between them. So, the idea here

is to classify both motions with taking into consideration the

two motion sequence directions which can help to make a

distinction between them.

The remainder of the paper is organized as follows. In

Section II, we describe our proposed approach starting with

preprocessing data step, feature extraction and finally gesture

recognition step. Experimental results are reported in Section

III. We first evaluate our descriptor vector with a public dataset

MSRC-12 and with our dataset dedicated to control gestures.

We compare between recognition results obtained by the basic

DHMM method and our proposed DHMM method. Finally,

conclusion and future work are presented in Section IV.

II. HUMAN MOTION RECOGNITION SYSTEM

In general, a human motion recognition system is composed

of three important steps: preprocessing data, feature extraction,

and motion recognition (Fig. 1). In the first step, we introduce

an invariant approach to make our system independent of the

initial position and orientation of the user. In the following

step, to represent human motion, we used three LMA

components, Body, Space, and Shape. We didn’t use Effort

component because it describes the qualitative use of energy

and the inner attitude. Effort qualities depend on the rhythm,

weight and the intention of the motion and are often used

to describe emotions. However, our application consists in

recognizing human gestures regardless their rhythm. So, if we

make the same gesture at different speeds our system should

give the same result. In the recognition step, we used DHMM

model which accepts discrete values as input. A discretization

approach was implemented following a quantization algorithm

(kmeans) in order to generate a set of discrete values which

will be implemented into Baum Welch algorithm for training

data. In the classification step, we presented each gesture

with two DHMM models to process the gesture sequence in

two opposite directions and apply the forward algorithm to

conclude the action label for a testing gesture.

A. Data Collection and Preprocessing

Prior to the extraction of features, a preprocessing data

step is applied to each gesture sequence captured by kinect

sensor. So, first we define a local skeleton coordinate system

(X ′, Y ′, Z ′) which origin is the hip center joint. X ′ − axis is

the vector starting from the right hip center and going to the

left hip center. Y ′ − axis is the vector connecting between

the midpoint of hips (Jc) and the torso joint (Pt). And finally

Z ′ − axis is orthogonal to both vectors.

i′ =
Jlhi − Jrhi

‖Jlhi − Jrhi‖ ; j
′ =

Js − Jc
‖Js − Jc‖ ; k

′ = i′ ∧ j′ (1)

Let [Jj ](X,Y,Z) be the 3D position of joint j presented in the

camera coordinate system (X,Y, Z). We translate the skeleton

coordinate system to the center of kinect:

[Jj ]X
′ = [Jj ]X − cx; [Jj ]Y

′ = [Jj ]Y − cy; [Jj ]Z
′ = [Jj ]Z − cz

(2)

where Jc(cx, cy, cz) is the 3D position of the hip center joint

in the kinect coordinate system. After we apply a rotation to

align both coordinate systems, we have:

[Jj ](X,Y,Z) = R(X,Y,Z)←(X′,Y ′,Z′)[Jj ](X′,Y ′,Z′) (3)

= [r1 r2 r3][Jj ](X′,Y ′,Z′) (4)

where r1, r2 and r3 are the rotation vectors around the X −
Axis, Y −Axis and Z −Axis respectively.

By applying (4), we have:

r1 =
[Jlhi](X,Y,Z)

a ; r2 =
[Js](X,Y,Z)

c and r3 = r1 ∧ r2 where

a is the distance between C and Jlhi, and Jc is the distance

between Jc and Js. Since r1, r2 and r3 are orthogonal unit

vectors, hence RT = R−1. Then:

[Jj ](X′,Y ′,Z′) = RT
(X,Y,Z)←(X′,Y ′,Z′)[Jj ](X,Y,Z) (5)

B. Feature Extraction

Feature extraction can be defined as the extraction

of significant features from raw data, which maximizes

the difference between class patterns while enhancing the

variability between class patterns. Our descriptor vector

is derived from LMA approach which can describe and

interpret all varieties of human movements. For human motion

representation we quantify three LMA components: Body
component, expresses which body parts are moving and how

their movement are related to each other. It also addresses

issues concerning locomotion and kinematics by describing

structural and physical characteristics of the human body.

Body organization is related to the connection between body

parts. In the upper body part, we describe the extension
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Fig. 1 Human motion recognition steps

of elbows (θl1, θ
r
1,) and shoulders (θl2, θ

r
2). And we describe

outstretched arms by computing the distance between two

hands (dHs). To know more about hands pathway, we add

three others features, the distances between the shoulder center

and left (dshc,lh) and right hand (dshc,rh), and the angle

between two hands with respect to shoulder center joint(θHs).

In the lower part we describe legs extension (θl3, θ
r
3)) and legs

spread (θLs).

dHs

dshc,lhdshc,rh
θl1θr1

θl2θr2

θl3θr3

θLs

θHs

Fig. 2 Body characteristics

Space component defines where in space the motion is

happening, the directions and spatial patterns. We define the

torso direction by computing the normal vector �N of the

triangle formed by left hip (hil), right hip (hir) and neck

(n) joints.

−→
N =

−−→
nhil ∧ −−→

nhir

||−−→nhil ∧ −−→
nhir||

(6)

Shape component describes the way the body changes

shape during movement. It focuses on two main qualities,

”What forms does the body make”?, ”Is the shape changing

in a self-to-self relationship or in relation to a goal in space”?

”. Shape category is composed of three subcategories: Shape

Flow, Carving, and Directional Movement.

Shape flow represents the relationship of the body to itself. It

is related to the shape deformation, expanding or condensing,

during movement. We compute the volume of the smallest

convex envelope of the human body based on Quickhull

algorithm [2]. Directional movement, represents the pathway

through space of the movement, either curving or straight. We

quantified how curved are the trajectories made by the upper

extremities (head and hands) by computing the gradual angular

change φ occurring by each joint between two successive

frames.

φJt
= arccos(

−−−−→
Jt−1Jt∥

∥
∥
−−−−→
Jt−1Jt

∥
∥
∥

·
−−−−→
JtJt+1∥

∥
∥
−−−−→
JtJt+1

∥
∥
∥

) (7)

where Jt/t+1 is the position of joints (head and hands)

at frame t and t + 1, respectively. This equation describes

the local curvature of the upper body parts’pathway. So in

direct movement with straight-line trajectories, local curvature

feature will be closest to 0. But in curved trajectories, it will

be higher.

Carving describes the qualitative changes in the shape

according to three planes horizontal, frontal, and sagittal,

and relating them to bipolar descriptors like spreading and

enclosing, rising and sinking, and retreating and advancing,

respectively. We quantify Carving factor by computing the

projected distances between head, upper and lower extremity

joints (hands, elbows, knees, and feet) relating to spine joint

pose at the initial frame. These projections provide the frontal,

sagittal and horizontal displacements of the head, arms, and

legs.

d =

√∑
d

(pje − pse)2 (8)

where j represents each joint considered at each frame, s is

the spine joint at the initial frame and e belongs to one of the

following sets {x, y}, {y, z} and {z, x} for each considered

projection.

C. Recognition Phase

The problem of human motions recognition can be reduced

to a problem of supervised classification. In order to make a
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decision on a given motion, the system performs two steps:

training and testing. The purpose of the training phase is to

build a set of rules that will be used for the recognition of

future actions. Indeed, based on the labeled data (the truth

ground), the system is capable of building decision rules to be

able to distinguish between the different categories of human

motions. By applying these decision rules to a given action,

the system is able to predict its class. In this paper, we use

the Hidden Markov Model for both training and classifying

motions.

1) Discrete Hidden Markov Model: Hidden Markov

Models [11] is one of the most well-known methods in

machine learning. An HMM is a statistical model for time

series, used to represent the evolution of observable sequences

(O) that depend on unobserved, or discrete state variables (S).

We modeled each gesture with a left-right HMM. In such

model, only transitions from one state to itself or to a unique

successor are allowed.

A set of trained HMMs for the C classes of gestures can

be represented as σ{1,...,C} = {σ1, σ2, . . . , σC}.

The HMMs we use are discrete HMMs and discrete HMMs.

They accept only discrete values as inputs. Thus, given

our descriptor vector, before implementing it into an HMM,

we use discretization and quantization algorithms during

training and classification steps. In discretization approach, we

implemented a C++ algorithm presented in Algorithm 1 which

consists in sampling gesture sequences with different sizes into

a fixed-size T . A gesture sequence sin = {f1, f2, . . . , fN} is

defined as a N×d matrix composed of N feature vectors with

d features, fk is a feature vector recording at frame k with size

d (d=number of features). The output of our discretization

algorithm is a T × d matrix presented a gesture sequence

composed of T feature vectors sout = {h1, h2, . . . , hT }.

Algorithm 1: Discretization algorithm

Input : sin = {f1, f2, . . . , fN}, T
Output: sout = {h1, h2, . . . , hT }

1 g1 = f1
2 j ← 2
3 k ← 1
4 for i ← 2 to N do

5 Compute D =
√∑d

l=1(fi,l − fk,l)2 � D is the
distance between two feature vectors fi and
fk. if D ≥ ε then

6 gj = fi
7 j ← j + 1
8 k = i
9 end

10 end
11 Compute the average distance: D′= N ′

T � g is the
matrix of N ′ feature vectors obtained after
removing noise.

12 for i ← 0 to T − 1 do
13 hi+1 = g1+i∗D′ .

14 end

After the discretization step, we apply k-means

algorithm [8] to cluster the feature vectors of all gesture

sequences into K clusters {c1, c2, . . . , cK} in which each

feature vector belongs to the closest cluster, so as to satisfy

the condition expressed by:

argmin
c

K∑
j=1

∑
hi∈cj

‖hi − μj‖2 (9)

where μj is the mean of the elements in the cluster cj . At the

end of the quantization algorithm, a gesture sequence will be

presented as an observation sequence O = {o1, o2, . . . , oT },

where oi is a discrete symbol ∈ {c1, c2, . . . , ck}. So each

symbol oi corresponds to the cluster of the feature vector fi,
and the output sequence length is T , which acts as the discrete

observation sequence to be the input observation sequences to

learn the HMM model and use this model to predict for the

unknown sequence.

The parameters of the model HMM can be represented

in the compact way σ = (π,A,B), where π is the

initial probability distribution over states, A is the transition

probability matrix, and B is the matrix that represents the

emission probability of a symbol observed from a specific

state.

For the training step, we use the Baum-Welch algorithm

to find optimal parameters to the HMM given an initial

model σi = (πi, Ai, Bi) and the observations sequences

{O1, O2, . . . , Os} corresponding to the learning gesture

sequences.

σ∗ = argmax
σ

(
s∑

i=1

logP (Oi|σ)) (10)

For classification step, we use the Forward algorithm to

classify a sequence test Ot = {o1, o2, . . . , oT }. The class

label is assigned via Maximum Likelihood after evaluating

the sequence in every HMM.

C = argmax
allσ

(log(P (Ot|σ)) (11)

2) Modified DHMM: In the classification step, sometimes

we have very similar motions, in such case our recognition

algorithm can make a misclassification gesture. An example

is provided in Fig. 3 which shows two similar gestures (G1
and G2). Gesture 2 shares a part with Gesture 1 in the first

three initial frames. In such case, initial state probabilities and

transition probability matrices of the two models are very close

which can lead to an error classification.

The idea here is to process the gesture sequence in two

directions the forward (from the first frame to the last frame)

and backward (from the last frame to the first frame). We

define two models for each gesture σd
G and σi

G are the DHMM

models when considering the gesture sequence (G) in the

forward direction and in the backward direction, respectively.

If we take a test sequence (Od
t ) of the second gesture (G2),

we have:

P (Od
t |σd

G1
) ≈ P (Od

t |σd
G2

) (12)
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Now if we consider the observation sequence in the backward

direction (Oi
t) we have:

P (Od
t |σd

G2
) ≈ P (Oi

t|σi
G2

) (13)

P (Oi
t|σi

G2
) > P (Oi

t|σi
G1

) (14)

According to (12) (14), we obtain the following Equation:

min(P (Od
t |σd

G2
), P (Oi

t|σi
G2

)) > min(P (Od
t |σd

G1
), P (Oi

t|σi
G1

))
(15)

According to (15), we can declare the class label of the test

sequence (Ot) as:

C = argmax
allσ

min(log(P (Od
t |σd

G)), log(P (Oi
t|σi

G))) (16)

Fig. 3 Processing gestures sequences in two opposite directions for two
similar gestures

III. EXPERIMENTAL RESULTS

We evaluated the robustness of our descriptor and our

classification method for action recognition. We performed this

evaluation on two datasets: The first one is a public dataset

(MSRC-12) acquired using a Kinect sensor and the second

dataset is our dataset dedicated to control gestures built under

Robot Operating System (ROS). We applied our descriptor

vector and modified DHMM method for action recognition

step. Details of the experiments are presented in the following

subsections.

A. MSRC-12 Dataset [4]

To evaluate our approach, we tested our method on a

relatively large dataset captured by a Kinect sensor, the

MSRC-12. The dataset is composed of 12 gestures performed

by 30 subjects. Each subject repeats the same gesture several

times. In total, there are 6244 gesture instances. The motion

files contain 3D coordinates of 20 joints captured at a sample

rate of 30Hz with an accuracy of about 10 centimeters in joint

positions.

The dataset is divided into two groups: iconic (hide, shoot

pistol, throw object, change weapon, kick, put goggles) and

metaphoric (raise volume, navigate to next menu, wind up

music, take a bow, protest music, low down song) gestures.

We converted the raw data into a descriptor vector based

on the three LMA components. After, we discretized gesture

sequences into a fixed length by applying discretization

method presented in Algorithm 1 with T = 70 frames. A

grid search on DHMM parameters (number of states S, and

number of symbols O) ranging from 5 to 40 has been done.

Best results are achieved with S = 20 states and O = 40
symbols.

In order to compare our approach with state of the art

methods, we used the more challenging validation method,

the cross-subject test where one-half of the subjects are used

for training and the remaining for testing.

Fig. 4 demonstrates that our method achieves an average

accuracy of 94.03% and 80.48% on iconic and metaphoric

gestures respectively when applying basic DHMM method.

With our modified DHMM we improved the recognition

results with an average accuracy of 96.33% for iconic gestures

and 90.66% for metaphoric gestures.

The results in Table I show the comparison between our

result and state of art results. For a faithful comparison,

we take the result of Truong et al. [14] where they used

the same learning method DHMM. Our method outperforms

their method by 7.73% on iconic gestures and 15.46% on

metaphoric gestures. In general, we can say that our method

performs better than the state-of-the-art result.

Fig. 4 Recognition rates results of MSRC-12 iconic gestures when applying
basic DHMM and modified DHMM

Fig. 5 Recognition rates results of MSRC-12 metaphoric gestures when
applying basic DHMM and modified DHMM

B. Control Gestures Dataset

After evaluating our system with a public dataset, we built

our dataset composed of ten control gestures (move, introduce,
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TABLE I
COMPARISONS WITH STATE-OF-THE-ART APPROACHES ON THE

MSRC-12 DATASET

Methods Iconic Metaphoric
Lehrmann et al. [7] 90.90 -
Song et al. [13] 79,77 81
Truong et al. [14] 88.6 75.2
Ours (DHMM) 96.33 90.66

turn left, stop, turn right, increase velocity, decrease velocity,

waving, dance, introduce yourself) as shown in Fig. 9.

Fig. 6 Discretization of dHs feature in ”Stop” gesture with T = 30 frames

Fig. 7 Discretization of θl1 feature in ”Waving” gesture with T = 30 frames

Twenty subjects (10 men and 10 women) from the

University of Evry Val d'Essonne, ranged in age from 27 to

45 years old (M=28.5 years, SD=5.5) took part in this study.

Each subject is asked to make gesture ten times. Our dataset

has in total 2000 sequences (20 subjects× 10 gestures× 10
times). Our system was implemented under ROS, a Robot

Operating System which consists in running a great number

of executables to exchange data synchronously (via topics)

or asynchronously (via services). For data acquisition, the

OpenNI driver provided a high-level skeleton tracking module.

This module requires initial calibration to record the 3D

position of skeleton joints at 640 × 480 resolution at 30 fps.

For each gesture, we computed the descriptor vectors from

raw data. After, we sampled descriptor vectors with 30 frames.

Two examples of the discretization of two extracted features

from our descriptor vector are shown in Figs. 6 and 7. The

first feature (dHs) is the distance between hands in ”stop”

gesture. As we can see in Fig. 6, when performing stop gesture

this feature tends to zero at the end of the gesture. When

applying our discretization algorithm with T= 30 frames, we

convert the gesture sequence from a vector with 84 frames to

a vector with 30 frames. For the ”waving” gesture we take as

feature example the angle between left hand and left shoulder.

As shown in Fig. 7, at initial frame the angle θl2 ≈ 180 deg
after it drops to ≈ 20 deg and finally it returns to its initial

value (≈ 180 deg). We sampled the feature sequence of θl2 in

”waving” gesture from 118 frames to 30 frames. We set the

number of clusters in K-means algorithm to 20 and the number

of hidden states to 5. As shown in Fig. 8, our results were

very satisfying with an average accuracy result of 95% when

applying simple DHMM and a significant result of 96.2% with

our modified DHMM.

Fig. 8 Recognition rates results of our dataset when applying basic DHMM
and modified DHMM

IV. CONCLUSION

In this paper we presented an effective approach for human

motion recognition based on specific feature vectors inspired

from LMA technique. A series of steps have been implemented

starting with preprocessing data step based on view-invariant

human motion, folowing by a suitable feature extraction

method, ending with a robust recognition method based on

Discrete Hidden Markov Model in order to improve the

recognition accuracy of our approach. Experimental results on

MSRC-12 dataset show that our method proves to be superior

to some state of the art methods for skeleton-based recognition.

A perfect classification performance was achieved in our

dataset composed of ten control gestures. The future work

will focus on enhancing our dataset by introducing expressive

gestures, means gestures performed with different emotions.

The main purpose of this idea is to perform expressive

communicative gestures for a Human-Robot interaction.
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Fig. 9 Control gestures dataset
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