
International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:12, No:9, 2018

572

 

 

 
Abstract—Ambient air pollution with fine particulate matter 

(PM10) is a systematic permanent problem in many countries around 
the world. The accumulation of a large number of measurements of 
both the PM10 concentrations and the accompanying atmospheric 
factors allow for their statistical modeling to detect dependencies and 
forecast future pollution. This study applies the classification and 
regression trees (CART) method for building and analyzing PM10 
models. In the empirical study, average daily air data for the city of 
Pleven, Bulgaria for a period of 5 years are used. Predictors in the 
models are seven meteorological variables, time variables, as well as 
lagged PM10 variables and some lagged meteorological variables, 
delayed by 1 or 2 days with respect to the initial time series, 
respectively. The degree of influence of the predictors in the models 
is determined. The selected best CART models are used to forecast 
future PM10 concentrations for two days ahead after the last date in 
the modeling procedure and show very accurate results.  

 
Keywords—Cross-validation, decision tree, lagged variables, 

short-term forecasting.  

I. INTRODUCTION 

N many cities around the world, the most harmful pollutants 
of atmospheric air are particulate matter of size up to 10 

microns (PM10). They penetrate into the human body through 
the respiratory system, with larger particles being retained in 
the upper respiratory tract, and those with smaller dimensions 
enter directly into the lungs and damage them. The harmful 
effect of particulate matter pollution is most pronounced in 
young children and adults with chronic lung problems, 
pregnant and neonates [1], [2]. 

PM10 is the main air pollutant in some eastern European 
countries, including Poland, Bulgaria, Ukraine and others [3]. 
In particular, air pollution in Bulgaria is a major 
environmental problem over the last decade. In order to 
preserve the cleanness of the atmospheric air and to comply 
with the requirements of the existing environmental 
legislation, a National Monitoring System is established by the 
Executive Environmental Agency [4]. The major sources of 
the PM10 pollution are mainly domestic heating, especially 
during winter periods, exhaust gases from gasoline-powered 
motor vehicles, pollution due to different industrial processes, 
sanding during the winter periods. 

For the control of PM10 concentrations, EU standards and 
directives apply, according to which the maximum limit 
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values for PM10 in air include an annual average of 40 g/m3 
and 24 hour average of 50g/m3. The daily limit should not 
be exceeded more than 35 times per calendar year [5], [6]. 

The air pollution problems are the subject of a large number 
of scientific studies for modeling and forecasting. Multiple 
linear and non-linear regression, factor analysis, principal 
component analysis (PCA), cluster analysis, etc. are widely 
used multidimensional statistical methods [7]-[10]. 

Stochastic modeling is another type of preferred approach. 
With the Box-Jenkins methodology in [11], effective models 
were developed to study the influence of meteorological 
factors on PM2.5 particulate matter ultrafine and particulate 
matter PM10. In [12], factor analysis and ARIMA are 
combined for modeling average daily concentrations of PM10 
over a 10-year period. Also, hybrid ARIMA combined with 
artificial neural networks, multivariate regression, and other 
techniques are also used (see [8], [13], [14]). An overview of 
standard statistical methods and general issues of their 
application in environmental sciences is addressed in e.g. [15]. 

Data mining techniques are intelligent data-driven methods 
to retrieve environmental data and extract patterns and 
dependences using state-of-the-art high-performance 
computational algorithms [16]-[18]. Among these methods 
are: Neural networks, fuzzy logic, support vector machines, 
CARTs, random forests, etc. Authors of [19] examine the 
concentration of PM10 in Thessaloniki, Greece over a period 
of 7 years, depending on meteorological and other variables 
using multiple linear regression, PCA, neural networks and 
CART method. Other applications of CART and boosted 
regression trees to study air pollutants depending on weather 
conditions, road traffic, and more are presented in [20]. 
Reference [18] predicts the AQI air quality index in Houston 
and Los Angeles by modeling data with artificial neural 
networks, multiple linear regression and vector regression. 

In this paper we investigate the capabilities of the highly 
efficient CART method [21] for modeling and predicting time 
series of air pollutants. The empirical study is conducted for 
measured concentrations of PM10 in the city of Pleven, 
Bulgaria. The particular aims of the study are: 1) obtaining 
and analyzing mathematical models for the levels of PM10 
pollution using CART; 2) exploring and analyzing the impact 
of meteorological and other factors on pollution; 3) 
application of models for short-term forecast of PM10.  

The modeling was conducted with the Salford Predictive 
Modeler 8.0 and SPSS software packages. 
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II. METHODOLOGY 

A. Study Area and Data 

The town of Pleven is located in the central part of the 
Danubian Plain in the Northwestern Bulgaria (Coordinates: 
43°25′N 24°37′E). It is 170 km away from the capital Sofia, 
320 km west of the Bulgarian Black Sea Coast and 50 km 
south of the Danube. Pleven is an administrative center of the 
Pleven municipality, with about 98 thousand inhabitants. The 
climate of Pleven is moderately continental, with cold and 
snowy winters, hot and dry summer months. The average 
annual temperature is about 13 ° C (55.4 ° F). 

B. Data 

The study is based on the measured average daily 
concentrations of air pollutant PM10 in Pleven collected over 
a period of 6 years, from 1 January 2011 to 31 December 
2016. Meteorological time series for minimum and maximum 
temperatures, wind speed, air pressure, relative air humidity, 
precipitation, and cloud cover status are also used. The 
variables and their groups are given in Table I. The first 
variable PM10 is considered as dependent (response) and 
other 14 variables are predictors. For further analysis the 
dependent variable and some predictors are lagged with one or 
two days back to the current day. There were 10.9% missing 
data only for PM10, which were replaced by linear 
interpolation in all analyses. The final data count is N = 2190 
cases (observations). 

 
TABLE I 

VARIABLES USED FOR THE CONSTRUCTION OF CART MODELS  

Variable Unit Description 

PM10 3μg/m  PM10 daily average concentration  

PM10<1> 3μg/m  One day lagged PM10 

PM10<2> 3μg/m  Two days lagged PM10 

t  Time, Ordinal  

MONTH  Number of month, categorical 

min_temp oC  Minimum daily temperature 

max_temp oC  Maximum daily temperature 

wind_speed m/s Wind speed 

precipitation % Precipitation 

humidity % Relative humidity 

pressure mb Air pressure 

cloud-cover % Cloud-cover 

min_temp<1> oC  One day lagged min_temp 

min_temp<2> oC  Two days lagged min_temp 

wind_speed<1> m/s One day lagged wind_speed 

 
Fig. 1 presents graphically the initial data for average daily 

PM10 concentrations (upper part) and the respective minimum 
and maximum daily temperatures (lower part). For PM10, 
multiple exceedances of the permissible daily average limit of 
50 3μg/m  (marked with a horizontal line) are observed, mainly 

during winter periods. Generally, the behavior of the PM10 
time series corresponds in an inverse proportional way to the 
minimum and maximum daily temperatures.  

For the six-year period, the measured mean value of PM10 

pollution is 49 3μg/m . From 2011, this indicator varies as: 52.3, 

45.4, 41.7, 51.1, 53.9, 48.4 3μg/m , which is systematically 

exceeding the permissible annual average of 40 3μg/m . A 

maximum daily concentration of PM10 of 363 3μg/m  has been 

reached. In total, there are 705 (over 32%) exceedances of the 
prescribed limit value for the average daily values for PM10 
of 50 3μg/m . We can conclude that PM10 is a very problematic 

pollutant for the town of Pleven. 
 

 

Fig. 1 Daily concentrations of PM10, maximum and minimum daily 
temperatures in the town of Pleven from 2011 to 2016 

C. Short Description of CART Method 

CART method, also known as Decision Trees is introduced 
in [21] for solving classification or regression predictive 
modeling problems in the class of machine learning data 
mining methods. The idea of the method is to divide the 
selected initial learning sample of cases into non-overlapping 
sub-sets by classifying similar cases. A recursive tree of nodes 
is grown, for example, binary. At each step of the algorithm, 
the current node is divided into two child nodes. For pre-
defined splitting criteria, the algorithm stops. These criteria 
could be for example, a minimum number of cases in a 
parental and in a child node, fixed maximum depth of the tree, 
reaching a certain accuracy, etc. As a result, the initial set of 
cases will be distributed to the terminal nodes of the decision 
tree. The predicted value for each case is equal to the mean 
value of the dependent variable for the cases classified in its 
respective terminal node. To obtain an optimal tree, the 
splitting at each step is performed according to a rule of the 
type: “predictor value j  ?”, where j is some value of this 

predictor. The model error at each step K is equal to the 
current sum of the squared residuals, e.g.   

 

 2,
1

( )
N

t K t
t

S K O P


  , (1) 

 

where tO  is observed value of the dependent variable (PM10 

in our case) at time t and ,K tP  is its corresponding predicted 

value. The optimal CART model gives a minimum of (1). For 
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comparison between models with the same predictors in the 
CART method, a relative error is used, defined by 
 

( )
. .

(0)

S K
Rel Err

S
 , (2) 

 
where the number K of the terminal nodes varies and the 
denominator is the sum (1) for the entire sample.  

Usually, CART models could be validated by the standard 
machine learning V-fold cross-validation (CV) [22]. In the 
procedure of V-fold CV, the sample is randomly divided into 
V equal sub-samples. Each of the sub-samples is used to test 
the model, and the rest of the data is used as a learning sample, 
the process being repeated V times. 

Main advantages of the CART method are: 
- Capable to handle equally well numerical and categorical 

data and combinations of these 
- Independent of the type of distribution  
- Able to detect complex non-linear dependencies 
- Simple to understand and interpret 
- Easy to predict new response values  

Some shortcomings of the method are: 
- Applicable with at least of 50 observations 
- In some cases, does not give enough accurate models, 

comparing to other methods. 

III. RESULTS AND DISCUSSION 

A. Modeling Settings  

To obtain the best models for PM10 concentrations we 
applied CART algorithm with 10-fold cross-validation and 
different combinations of predictors, including lagged 
variables (see Table I). From all obtained models, constructed 
with a given set of predictors, the models within 1 standard 
error (1SE) of accuracy are considered [21]. Other settings for 
pre-defined criteria are minimum number of cases in a parent 
node 10 and in a child node 5, which are considered as usual 
[22].  

B. Model Selection Criteria 

To estimate the accuracy and adequacy of the CART 
models we use the relative CART error defined in (2), and the 
standard indicators of the Root Mean Square Error (RMSE) 
and the coefficient of regression (R) given by the expressions  

 

 2
1

1 N

t t
t

RMSE O P
N 

   (3) 

 
( , )

( ) . ( )

Cov O P
R

Std O Std P
  (4) 

 
The criteria used for selecting the best model are: the 

smallest relative CART error and RMSE, and the highest 
value of R. When model indicators are close, the simpler 
model is chosen. 

C. Model Construction  

A number of models were built and analyzed, by varying 
and excluding some of the predictors from Table I with the 
least influence on the models. Seven best models have been 
selected to meet the requirements for the best model. The 
results are shown in Table II. The first model M1 has the 
smallest relative error of 0.387 but its remaining indicators are 
of lower quality (relatively bigger RMSE and smaller R). 
Among the selected seven models with smaller RMSE and 
higher R are the M5 and M7 models. Since M7 is more 
complex (with the most terminal nodes), we can choose the 
simpler model, M5. Here, we also have to note that the 
selected best M5 model has an optimized number of the most 
important predictors (only 8, see Table III). 

The predictor sets used and their relative importance in the 
seven selected models are given in Table III. From this table, 
it is immediately observed that with the highest importance on 
the models with 100% is the pollution from the previous day 
(lagged variable PM10 <1>) and also from the previous two 
days (PM10 <2>). This influence is of stochastic nature.  

The time variable t and the current month also have a stable 
participation in all models about 16-18% and 43-44%, 
respectively (except model M7). Of the meteorological 
variables as expected the most significant influence on PM10 
pollution shows the minimum daily average temperature and 
wind speed. The rest of meteorological factors are less 
influential.  

 
TABLE II 

STATISTICAL INDICATORS OF THE SELECTED CART MODELS  

Model
Terminal 

nodes 
R  

Learn 
Rel.Err. 
Learn 

Rel.Err. 
Test 

RMSE 

M1 74 0.901 0.187 0.387 12.702 

M2 107 0.909 0.175 0.417 12.261 

M3 131 0.912 0.168 0.417 12.035 

M4 116 0.910 0.173 0.418 12.217 

M5 158 0.915 0.163 0.414 11.853 

M6 123 0.910 0.171 0.414 12.149 

M7 218 0.917 0.177 0.420 11.694 

 
TABLE III 

VARIABLE IMPORTANCE FOR SELECTED CART MODELS1) 

Predictor M1 M2 M3 M4 M5 M6 M7 

PM10<1> 100 100 100 100 100 100 100

PM10<2> - 45.7 47.1 46.6 47.2 46.8 46.6 

t 15.9 15.8 18.0 15.3 19.0 18.0 - 

MONTH 43.9 44.1 43.6 44.3 44.0 43.7 14.1 

min_temp - 32.3 31.1 32.2 34.9 34.5 15.3 

max_temp - 10.9 - - - 12.1 10.8 

wind_speed 42.6 19.2 20.1 19.7 20.2 19.6 19.3 

precipitation 10.6 9.1 10.0 9.7 10.6 9.9 8.4 

humidity - 10.8 14.1 11.3 16.5 14.8 10.7 

pressure - 13.6 14.6 14.0 - - 14.0 

cloud-cover 6.4 6.2 - 6.5 - - - 

min_temp<1> 48.2 - - - - - 47.7 

min_temp<2> 53.1 - - - - - - 

wind_speed<1> - - - - - - 26.6 

Аll values are percentages of maximum importance, which is assumed to 
be 100%. Missing values denote excluded predictors in the analyses. 
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Fig. 2 Relative error curve for models built with M5 predictor set 
from Table III 

 
Fig. 2 shows the plot of the relative error curve of the 

models built using M5 predictor set (see variables in the 
respective column of Table III). In green color (middle part) 
are marked all models with relative errors within 1SE. The 
optimal model has a relative error of 0.391 and 50 terminal 

nodes, and the maximum model (M5) has 158 terminal nodes 
and R=0.915. 

The regression tree topology of the best selected model M5 
is shown in Fig. 3. The largest predicted value is indicated by 
the arrow. Its value is 244 3μg/m . The series of rules that 

classify the cases in this terminal node are as follows: 
 

 
 

10 1   61.30  & & _   2.45  & & 

10 1   165.26  & &  10 2   118.

( )

( ),68  

PM wind speed

PM PM

   

     
 

 
where & &  denotes conjuncture. 

 

 

Fig. 3 Regression tree topology of model M5 
 

D. Model Diagnosis and Evaluation  

All obtained models were checked for consistency by 
analyzing their model errors. For time series, usually the 
autocorrelation function (ACF) of the residuals could be 
examined. For model M5 this is illustrated in Fig. 4. It is 
observed that ACF coefficients of residuals are small enough 
in the due confidence limits.  

 

 

Fig. 4 ACF of residuals for model M5 
 

An intuitive way to assess model quality is to graphically 
compare the observed with the predicted values ones. Fig. 5 
presents the predictions obtained by the selected best CART 
model M5 compared with the measured PM10 values. The 

goodness-of-fit measure 2R (coefficient of determination) is 
equal to 0.837. It can be assumed that the model describes 
about 84% of the data.  

 

 

Fig. 5 Comparison of the measured values of PM10 with their 
predictions from model M5 

 
For practical application of the models they can be 

evaluated depending on the number of matches with respect to 
the prescribed upper daily limit for PM10 pollution of 50 

3μg/m . Table IV presents the number of correctly and 

incorrectly classified cases by model M5.  
In our case the observed PM10 values above the limit are 

704 out of 2190. The selected model M5 correctly classified 

Largest PM10 prediction 
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566 or 80.4% exceedances over 50 3μg/m , as well as of 1412 or 

95% of the data below the threshold. The total number of 
correctly predicted PM10 values represents 90.3%. Improperly 
predicted below the average daily limit are 138 and over 50

3μg/m  are 74. From these results it is found that the selected 

model M5 demonstrates very good accuracy in the prediction 
of the measured PM10 values with respect to the threshold 
value. 

 
TABLE IV 

CONTINGENCY TABLE FOR SELECTED CART MODEL M5 AND PM10  

Predicted 

  <50 3μg/m  >=50 3μg/m  Total %Obs 

Obs 

<50 1412   74 1486 95.0% 

>=50   138 566   704 80.4% 

Total 1550 640 2190 90.3% 

%Predicted 91.1% 88.4%   

E. Application of the Model for Two Days Forecasting  

We also checked the quality of the models by comparing 
their forecasts with known PM10 values for two days ahead in 
the time series (for January 1 and 2, 2017) that are not 
involved in the construction of the models. The comparison 
results for models M2, M3, and M4 are shown in Fig. 6, and 
for models M5, M6, and M7 are shown in Fig. 7, respectively.   

The first five values in Figs. 6 and 7 are for the last days in 
the initial data sample used in modeling procedure - from 
December 27 to December 31, 2016, and the last two days 
values are the real PM10, compared to the models predictions 
and forecasts for January 1 and 2, 2017. These values are 
separated by a vertical line. Horizontal lines indicate 
requirements from the air quality standard with a threshold 
value of 50 3μg/m . 

 

 

Fig. 6 Comparison of the measured values of PМ10 with the 
predictions and forecasts of models M2, M3, and M4 

 
It is observed that all models give very good predictive and 

forecasted results. This also applies to the correct prognosis of 
lower and higher values compared to the threshold value. It 
can be inferred that the CART approach is very suitable for 
properly classifying pollution and can be successfully applied 
to alert the population. The resulting tree is easily interpreted 

and applied for forecasting for a short period of time in the 
future for which fairly accurate weather forecasts are known. 

 

 

Fig. 7 Comparison of the measured values of PМ10 with the 
predictions and forecasts of models M5, M6, and M7 
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