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Abstract—The effect of linear stability analysis of triple diffusive 

convection in a vertically oscillating viscoelastic liquid of Oldroyd-B 
type is studied. The correction Rayleigh number is obtained by using 
perturbation method which gives prospect to control the convection. 
The eigenvalue is obtained by using perturbation method by adopting 
Venezian approach. From the study, it is observed that gravity 
modulation advances the onset of triple diffusive convection. 

 
Keywords—Gravity modulation, Oldroyd-B liquid, triple 

diffusive convection, Venezian approach. 

I. INTRODUCTION 

N the classical Bénard problem, the instability is determined 
by the difference in density caused by the variation in 

temperature between the upper and lower surfaces bounding 
the liquid. This is referred as single component convection. 
When the instability in a liquid is caused by two opposing 
density components, then it is termed as two-component 
convection or double diffusive convection. When the 
instability in a liquid is caused by three different diffusivities 
then the mathematical and physical situation becomes 
increasingly richer and such problems are termed as three-
component convection or triple diffusive convection.  

The minimum necessities for the occurrence of triple 
diffusive convection are the following: 
(i) The liquid must contain three components with different 

molecular diffusivities. It is the differential diffusion that 
produces the density differences required to drive the 
motion. 

(ii) The components must make opposing contributions to the 
vertical density gradient. 

Pearlstein et al. [1] obtained very fascinating results in 
triply diffusive convection. The outcomes of Pearlstein et al. 
are noteworthy. They determined that, for triple diffusive 
convection, linear uncertainty can arise in discrete units of 
Rayleigh number since for few parameters the neutral curve 
has its oscillatory curve lying lower than that of the standard 
boundless stationary convection. The problems of triple 
diffusive convection have also been studied by Lopez et al. 
[2], Poulikakos [3], Sumithra [4] and Rionero [5] and recently 
by Sameena [6]. 

A significant class of natural convection is concerned with 
the effort in eluding the convection in the earth’s gravitational 
field despite having the basic temperature gradient constant 
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and ignoring the interfacial instabilities. The gravity field in an 
orbiting laboratory is not constant in a microgravity condition; 
however, it is randomly fluctuating, and this kind of 
fluctuating gravity is called as g-jitter or gravity modulation. 
In literature it is observed that the vibrations can either 
significantly advance or delay the heat and mass transfer and 
therefore thoroughly disturbs the convection. The problems 
with gravity modulation have been studied by Gresho and Sani 
[7], Siddheshwar and Pranesh [8], Rees and Pop [9] and 
Sameena and Pranesh [10].  

In the classification of non-Newtonian liquids – viscoelastic 
liquid reveals both liquid and solid properties. Viscoelastic 
liquids with rheological equation include relaxation and 
retardation times. It possesses both viscosity (linked with 
liquids) and elasticity (linked with solids) leading to distinct 
instability forms which is not seen in Newtonian liquids. It has 
wide-ranging applications in numerous fields such as material 
processing, geothermal energy modeling, cooling of electronic 
devices, thermal insulation material, crystal growth, transport 
of chemical substances, solar receivers, petroleum industry, 
injection moulding, chemical industries, nuclear industries, 
bioengineering, geophysics, and so on. Many authors have 
considered viscoelastic liquid like Siddeshwar et al. [11], 
Malashetty and Swamy [12], Narayana et al. [13], Bhadauria 
and Kiran [14] and recently Sameena and Pranesh [15]. 

The problem under investigation has wide range of 
applications like in material processing, solidification of 
alloys, underground spreading of chemical pollutants, 
petroleum reservoirs, cooling of electronic devices, thermal 
insulation material, crystal growth, transport of chemical 
substances, solar receivers, injection moulding, chemical 
industries, nuclear industries, bioengineering, oceanography, 
meteorology, astrophysics, geophysics and so on. Therefore, 
the main objective of this paper is to study the effect of gravity 
modulation on triple diffusive convection in Oldroyd-B liquid.  

II. MATHEMATICAL FORMULATION 

Consider a layer of Oldroyd-B liquid confined between two 
infinite horizontal surfaces separated by a distance ‘d’ and is 
subject to the time dependent gravity acting in negative 
direction of z-axis. Let 1T , S  and 2S  be the differences 

in temperature and solute concentrations, respectively of the 
liquid between the lower and the upper plates. Appropriate 
single-phase heat and two-phase solute transport equations are 
chosen with effective heat capacity ratios and effective 
thermal diffusivity (as shown in Fig. 1). 

Sameena Tarannum, S. Pranesh 

Triple Diffusive Convection in a Vertically 
Oscillating Oldroyd-B Liquid  

I 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:9, 2018

864

 

 

 

Fig. 1 Physical configuration of triple diffusive convection in 
Oldroyd-B liquid under gravity modulation where 
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The basic governing equations are: 
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where q


 is velocity, p is pressure, 0 is constant density,  is 

density,  g t


 is gravitational force, 0g  is mean gravity,   is 

amplitude of modulation,   is frequency of modulation,    is 

stress tensor, 1  is stress relaxation time, 2  is strain 

retardation time,   is viscosity, T is temperature, 1S  is 

solute1, 2S  is solute2, t  is thermal diffusivity, 1S  is the 

solute1 diffusivity, 2S  is the solute2 diffusivity, t  is 

coefficient of thermal expansion, 1S  is coefficient of  solute1 

expansion, and 2S  is coefficient of  solute2 expansion. 

Operating divergence on (3) and using (2), we get, 
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The boundary conditions for temperature and mass transfer 

are given by: 
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The basic state of liquid is quiescent and is described by: 
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where the subscript ‘b’ denotes the basic state. 

The stability of the basic state is analyzed by introducing 
the following perturbation: 
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where, the prime indicates that the quantities are infinitesimal 
perturbations. 

Substituting (11) into (1)-(7), eliminating pressure by 

operating curl twice, introducing the stream functions u
z

 


and w
x

  


 and non-dimensionalizing the resulting 

equations, we get the following linearized dimensionless 
equations: 
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Here, nondimensionalizing parameters in (12)-(15) are 
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Rayleigh number2), S1
1

t



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  (ratio of diffusivity of solute1 

and heat diffusivity), S 2
2
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and heat diffusivity), 
2

t
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  (Non-dimensional modulation 

frequency). 
Eliminating  , S1  and S 2  from (12)-(15), we get the 

equation for   in the form of: 
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In dimensionless form, the velocity boundary conditions for 

solving (16) are obtained in the form: 
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III. METHOD OF SOLUTION 

We now seek the eigen function   and eigenvalue Ra of 

(16). Thus, the eigenvalues of the present problem differ from 
those of the ordinary Bénard convection by quantities of order 
 . We seek the solution of (16) in the form: 
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The expansion (18) is substituted in (16) and equating the 

coefficients of various powers of   on either side of the 
equation, we get: 
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A. Solution to the Zeroth Order Problem 

The stability of the system in the absence of gravity 
modulation is examined by introducing vertical velocity 
perturbation 0  corresponding to lowest mode of convection 

as:  
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Substituting (23) in (19), we obtain the expression for 

Rayleigh number in the form: 
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For stationary convection,  in (24) must be real and the 

corresponding Rayleigh number st
0Ra  for stationary 

convection is obtained by putting 0   in (24) in the form: 
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To study oscillatory motions, we put i  , where  , 
in (24), we obtain the expression of Rayleigh number for 
oscillatory convection as 
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and frequency, 
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B. Solution to the First Order Problem 

Equation (20) for 1  now takes the form: 
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 
4

1 1 2

2 2
0

Ra k

a

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



   (28) 

 
If (28) has a solution then the right-hand side must be 

orthogonal to the null-space of the operator L. This implies 
that the time independent part of the RHS of (28) must be 
orthogonal to  sin z . Since f varies sinusoidal with time, 

the only steady term on the RHS of (28) is 4 2 2
1 2 1k a Ra   , 

so that 1Ra 0 . It follows that all the odd coefficients i.e. 

1 3Ra Ra ......... 0   . 

Using (22), we find that  
 

   
   

i t

i t

L[sin z sin ax e ]

L( ) sin z sin ax e





 

  








 

,              (29)   

 
where 
 

1 2L( ) Y iY   ,                         (30) 
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 

 
 
 
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8 4 2
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4 2 4
2 1 1

k R R Ra
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R 1
1

Y k R 1Pr
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k Pr Z
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
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  
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  
      
  

     
                     
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 
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 
 
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, 
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





 

1 1 2Z 1     , 

2 1 2 1 2Z       . 
 
The particular solution of (28) is 
 

 
 

2 2
i t

1 9 10 02

a
Re M iM e

L

 


     ,     (31) 

 
where 
 

  2
1 1 1 2M 1 k     ,   2 4

2 1 2 1 1 2M k k       ,  
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  2
3 1 2M 1 1 k    ,   2 4

4 2 1 2M 1 k k     ,  

  2
5 1 1M 1 1 k    ,   2 4

6 1 1 1M 1 k k     , 
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   
   
   

, 

9 1 7 2 8M Y M Y M  , 10 1 8 2 7M Y M Y M  . 
 

The equation for 2 , then becomes 
 

  2 2
3 4 5 6 1

2
4 2 2

1 2 2 0

Z f Z f Z f Z f a
L

k a Ra

 


   

       
 
  

,          (32) 

 
where 
 

 3 0 S1 S 2 1Z Ra R R    , 4 0 1 S1 3 S2 5Z Ra M R M R M   , 

5 0 2 S1 4 S 2 6Z Ra M R M R M   , 
4 4 4

6 0 1 2 S1 2 S 2 1Z Ra k R k R k      . 
 

Equation (32) is not solved but is used to determine 2Ra  

(denoted by 2CR ). For the existence of a solution of (32), it is 

necessary that the steady part of its right-hand side is 
orthogonal to  sin z . This gives, 

 

 

   
1 3 4 5 6

2 2 4 2 2
0 1 1 2 2 0

Z f Z f Z f Z f
sin z dz 0

a k a Ra


     

     
     
 

, 

 
Taking time average and from Reynold’s time average, we 

get, 
 

 

2 2
6 9

2C 2 4
1 2

a Z M
R

2 L k



  
  .             (33) 

IV. RESULTS AND DISCUSSIONS 

In this paper, the effect of gravity modulation on triple 
diffusive convection in viscoelastic liquid using Oldroyd-B 
model, heated and solute from below is made. The behavior of 
various parameters like stress relaxation parameter 1 , strain 

retardation parameter 2 , solute Rayleigh number1 RS1, solute 

Rayleigh number2 RS2, ratio of diffusivity of solute1 and heat 
diffusivity 1 , ratio of diffusivity of solute2 and heat 

diffusivity 2  and Prandtl number Pr on the onset of 

convection are analyzed. The expression for the correction 
Rayleigh number 2CR  is computed as function of the 

frequency of the modulation  . 
The validity of the results obtained here depends on the 

value of the modulating frequency  . When 1 , the 
period of modulation is large and hence the disturbance grows 
to such an extent that it makes finite amplitude effects 

important. When , 2CR 0 , thus the effect of 

modulation becomes small.  In view of this, we have chosen 
only moderate values of   in our study.  
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Fig. 2 Plot of correction Rayleigh number 2CR versus frequency 

of modulation   for different values of stress relaxation parameter 

1  

 
Fig. 2 is the plot of correction Rayleigh number 2CR  versus 

frequency of modulation   for different values of stress 
relaxation parameter 1 . From Fig. 2, we observe that the 

effect of increase in stress relaxation parameter, decreases the 
magnitude of correction Rayleigh number. 1  is an elastic 

parameter and represents the relaxation of stress while having 

its influence on liquid, indicating when * (around 50), 

the gravity modulation destabilizes and for *  gravity 
modulation stabilizes the system.  

Fig. 3 is the plot of 2CR  versus   for different values of 

strain retardation parameter 2 . From Fig. 3, we observe that 

the effect of increase in strain retardation parameter, increases 
the magnitude of correction Rayleigh number. 2  is also an 

elastic parameter and it represents the relaxation in liquid in 

responding to the stress. It is also observed that when *  
(around 50), the gravity modulation destabilizes and for 

*  gravity modulation stabilizes the system.  
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Fig. 3 Plot of 2CR versus   for different values of strain 

retardation parameter 2  
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Fig. 4 Plot of 2CR versus   for different values of solute Rayleigh 

number1 RS1 
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Fig. 5 Plot of 2CR versus   for different values of solute Rayleigh 

number2 RS2 

Figs. 4 and 5 are the plots of 2CR versus    for different 

values of solute Rayleigh number1 RS1 and solute Rayleigh 
number2 RS2, respectively. Here we observe that, the effect of 
increase in RS1 and RS2 increases the magnitude of correction 
Rayleigh number. This is due to the fact that when we add 
solutes from below, the solutes concentration stays at the 
lower wall and do not disturb the system. It is also observed 

that when *  (around 50), the gravity modulation 

destabilizes and for *  gravity modulation stabilizes the 
system.  
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Fig. 6 Plot of 2CR  versus   for different values of ratio of 

diffusivity of solute1 and heat diffusivity 1  
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Fig. 7 Plot of 2CR  versus   for different values of ratio of 

diffusivity of solute2 and heat diffusivity 2  

 

Figs. 6 and 7 are the plots of 2CR  versus   for different 

values of ratio of diffusivity of solute1 and heat diffusivity 1  

and ratio of diffusivity of solute2 and heat diffusivity 2 , 

respectively. It is observed that increasing the values of 1  
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and 2 , decreases the magnitude of correction Rayleigh 

number. This is because, the diffusivity of heat is more than 
the diffusivity of solutes.  It is also observed that when 

*  (around 50), the gravity modulation stabilizes and for 
*  gravity modulation destabilizes the system.  
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Fig. 8 Plot of 2CR  versus   for different values of Prandtl 

number Pr 
 

Fig. 8 is the plot of 2CR  versus   for different values of 

Prandtl number Pr. It is observed that increase in the values of 
Prandtl number, decreases the magnitude of correction 
Rayleigh number. This means that the liquids with suspended 
particles are more susceptible to stabilization by modulation 
than clean liquid. It is also appropriate to note that Pr does not 
affect the 0Ra – part of Ra, it effects only 2CR . It is also 

observed that when *  (around 100), the gravity 

modulation stabilizes and for *  gravity modulation 
destabilizes the system.  

V. CONCLUSION 

It is observed that since correction Rayleigh number is always 
negative for all frequencies, gravity modulation destabilizes 
the onset of triple diffusive convection. 
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