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 
Abstract—The reinforcement and repair of concrete structures by 

bonding composite materials have become relatively common 
operations. Different types of composite materials can be used: 
carbon fiber reinforced polymer (CFRP), glass fiber reinforced 
polymer (GFRP) as well as functionally graded material (FGM). The 
development of analytical and numerical models describing the 
mechanical behavior of structures in civil engineering reinforced by 
composite materials is necessary. These models will enable engineers 
to select, design, and size adequate reinforcements for the various 
types of damaged structures. This study focuses on the free vibration 
behavior of orthotropic laminated composite plates using a refined 
shear deformation theory. In these models, the distribution of 
transverse shear stresses is considered as parabolic satisfying the 
zero-shear stress condition on the top and bottom surfaces of the 
plates without using shear correction factors. In this analysis, the 
equation of motion for simply supported thick laminated rectangular 
plates is obtained by using the Hamilton’s principle. The accuracy of 
the developed model is demonstrated by comparing our results with 
solutions derived from other higher order models and with data found 
in the literature. Besides, a finite-element analysis is used to calculate 
the natural frequencies of laminated composite plates and is 
compared with those obtained by the analytical approach. 
 

Keywords—Composites materials, laminated composite plate, 
shear deformation theory of plates, finite element analysis, free 
vibration.  

I. INTRODUCTION 

AMINATED composite plates are widely used in 
different engineering and industrial domains, thanks to 

their lightweight and sustainability. Many researchers studied 
the behavior of composite structures in civil and mechanical 
engineering applications.  

The classical laminated plate theory (CLPT) is the first 
theory that was used to determine the stresses and 
deformations in thin plates. In this theory, transverse shear 
effects are neglected which limits its use to thin plates only. 
The first-order shear deformation theory proposed by Mindlin 
[1] is the first theory that takes into account for transverse 
shear effects in the determination of deformations and stresses 
for relatively thick plates. To overcome the limitations of the 
first order shear deformation theory, higher-order shear 
deformation theories were proposed [2]-[6]. These theories 
involve higher-order terms in Taylor’s expansions of the 
displacements in the thickness coordinate. A review of these 
theories applied to the analysis of laminated composite plates 
is available in the works of Mantari et al. [6] and Daouadji et 
al. [7]. High-order shear deformation theories were also used 
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to determine the natural frequencies of laminated composite 
plates [8]-[10].  

In this paper, the free vibration behavior of antisymmetric 
cross-ply laminated composite plates is studied using a refined 
shear deformation theory. The obtained results are compared 
to those obtained using the commercial finite element code 
ABAQUS. 

II. THEORETICAL FORMULATION 

A. Main Assumptions 

A rectangular n layered orthotropic plate of total thickness h 
is considered with the coordinate system defined in Fig. 1. The 
main assumptions of the present plate’s theory are: 
 The infinitesimal strains are considered since the 

displacements are small in comparison with the plate 
thickness. 

 The transverse displacement w is decomposed in bending 
wb and shear ws components. These components are 
functions of coordinates x, y and time t only. 
 

 

Fig. 1 Cross-ply laminated composite plate 

B. Kinematics  

The displacements of a material point at (x, y, z) of the plate 
can be written as: 
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where u0 and v0 represents the plate mid-plane displacements 
in the x and y directions respectively; and f(z) represents a 
shape function determining the transverse shear strains and 
stresses distribution through the thickness of the plate. 

The proposed function verifies the zero transverse shear 
stresses at the top and the bottom of the plate. In the present 
model, the through thickness distribution of the transverse 
shear stresses is taken into account by means of the hyperbolic 
and exponential function of the assumed displacement field: 
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The constitutive equations for an orthotropic rectangular 

plate can be expressed in its axis of symmetry as: 
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The generalized Hooke’s law represents the stress state in 

each layer as: 
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where Qij are the stiffnesses defined in terms of engineering 
constants in the material axes of the layer by: 
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As each layer of the laminate is oriented arbitrarily with 

respect to its local coordinates, its constitutive equation must 
be transformed to the global laminate coordinates (x, y, z). The 
constitutive law in the laminate coordinates of the kth layer is: 

 
( ) ( )( )

11 12 16

12 22 26

16 26 66

44 45

45 55

0 0

0 0

0 0

0 0 0

0 0 0

k kk
x x

y y

xy xy

yz yz

xz xz

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

 
 

 

 

 

    
    
           

    
    
        

 (9) 

 

where ijQ  are the transformed material constants: 
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(10) 

C. Governing Equations of Motion of the Composite Plate 

The equation of motion of the laminated composite plate is 
derived using Hamilton’s energy principle: 
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where U and T are the strain and the kinetic energies the plate, 
and V is the work of external forces.  

Using the principle of minimum total energy leads to the 
general equation of motion and boundary conditions. Taking 
the variation of (11) and integrating by parts, we obtain: 
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Rectangular laminated composites plates are generally 

classified in accordance with the type of support used. We are 
concerned in this study by simply supported composite plate 
with the following boundary conditions: 

 

0 0,  0
:

2
0,  0

b s
b s

b s

x x x

w w
v w wa

y yx

N M M

 
    

  

  






           (13) 

 

0 0,  0
:

2
0,  0

b s
b s

b s

y y y

w w
u w wb

x xy

N M M

 
    

  
  






         (14) 

 
The displacement functions that satisfy the previous 

boundary conditions are taken in the form of Fourier series:  
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where Umn, Vmn, Wbmn and Wsmn are arbitrary parameters to be 
determined,  is the eigen frequency associated with a mn 
eigen mode =m/a and =n/b. Using (15) with (13) and 
(14) in (12), we obtain the following eigenvalue equations for 
the free vibration problem for each fixed value of m and n: 
 

       2 0K M     (16) 

 
where    smnbmnmnmn WWVU ,,,  is the column vector 

and [K] and [M] are the stiffness and mass matrices, 
respectively. The terms of these matrices can be found in [10].  

III. RESULTS 

In this study, free vibration analysis of anti-symmetric 
cross-ply laminate composite plates by using the present shear 
deformation theory for laminated plates is proposed. The 
fundamental frequencies are obtained by solving the 

eigenvalue system (16). For validation purposes, the results 
obtained by the present model are compared with those 
obtained by Reddy [2], Adim et al. [10] and our finite element 
simulations. The following non-dimensional fundamental 
frequency is used in presenting our results: 
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The lamina properties used in this study are given in Table 

I.  
 

TABLE I 
LAMINA PROPERTIES 

Material Properties 

1 

1 2(3 40)E E  , 

12 13 20.6G G E  , 

23 20.5G G  12 0.25   

2 

1 2(3 40)E E  , 

12 13 20.5G G E  , 

23 20.6G G  12 0.25   

A. Validation of the Proposed Theory 

The fundamental frequencies of a simply supported 
antisymmetric cross-ply (0/90)n plates were calculated by 
varying the number of plies n and E1/E2 ratio. 

Table II shows the comparison between our results and the 
solutions given by Reddy [2] for different values of 
orthotropic ratio. The non-dimensional fundamental 
frequencies obtained by using the proposed shear deformation 
theory are comparable to those obtained by Reddy [2]. 

 
TABLE II 

NON-DIMENSIONAL FUNDAMENTAL FREQUENCIES OF ANTISYMMETRIC 

SQUARE PLATES AT VARIOUS VALUES OF ORTHOTROPIC RATIO WITH a/h = 5 

# layers Model 
E1/E2 

3             10             20             30            40 

(00/900)1 
Reddy [2] 

Present 
6.2169 
6.2181 

6.9887 
6.9939 

7.8210 
7.8327 

8.5050 
8.5234 

9.0871 
9.1124 

(00/900)2 
Reddy [2] 

Present 
6.5008 
6.5009 

8.1954 
8.1932 

9.6265 
9.6215 

10.5348 
10.5282

11.1716 
11.1642

(00/900)3 
Reddy [2] 

Present 
6.5558 
6.5562 

8.4052 
8.4057 

9.9181 
9.9195 

10.8547 
10.8577

11.5012 
11.5064

(00/900)5 
Reddy [2] 

Present 
6.5842 
6.5848 

8.5126 
8.5143 

10.0674 
10.0713 

11.0197 
11.0266

11.6730 
11.6833

B. Parametric Study and Finite Element Simulations 

To assess the validity of the proposed theory, we carried out 
a parametric study to compute the fundamental frequencies of 
a simply supported antisymmetric cross-ply (0/90)n plates by 
varying the number of plies n, the E1/E2, a/h and a/b ratios. 
The obtained results are compared with the numerical results 
obtained by the finite element code ABAQUS. 

A four-node linear (doubly curved thin or thick shell) S4R 
type element was used. A preliminary study was conducted to 
define the optimal finite element mesh (Fig. 2). The relevant 
geometrical and mechanical properties used in the finite 
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element analysis were the same as that used in the analytical 
method to simulate correctly the free vibration behavior of the 
plate. 

Fig. 3 shows the fundamental frequencies of a simply 
supported antisymmetric cross-ply (0/90)n plates with a/h=20. 
The frequencies increase with increasing number of plies and 
E1/E2 ratio, which is coherent with the increasing stiffness of 
the plate. We can also notice the very good agreement 
between the proposed analytical model and the numerical 
finite element model. 

 

 

Fig. 2 Finite element mesh for the square plate 
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Fig. 3 Non-dimensional fundamental frequencies of antisymmetric 
square plates at different values of orthotropic ratio E1/E2 

 
Fig. 4 shows the effect of the thickness ratio a/h on the 

natural frequencies of a simply supported antisymmetric cross-
ply (0/90)n and orthotropic ratio E1/E2=40. The natural 
frequencies increase with increasing thickness ratio. The 
numerical results compare very well with the analytical ones 
for high thickness ratios (i.e. thin plates). However, we notice 
slight difference when the thickness ratio decreases (i.e. thick 
plates). For thick plates, the transverse shear is more important 
and the finite element S4R uses a first-order shear deformation 
theory. 

Fig. 5 shows the effect of the geometry ratio a/b on the 
natural frequencies of a simply supported antisymmetric cross-
ply (0/90)2 and orthotropic ratio E1/E2=40. The natural 
frequencies increase with increasing geometry ratio. The 
numerical results compare very well with the analytical ones 
for thin plates (a/h>30) and slightly deviates for thicker plates 
due to the first-order shear deformation theory used in the 
finite element solution. 
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Fig. 4 Non-dimensional fundamental frequencies of antisymmetric 
square plates at various values of a/h 
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Fig. 5 Non-dimensional fundamental frequencies of antisymmetric 
square plates at various values of a/b 

IV. CONCLUSION 

In this study, the FEM and a refined shear deformation 
theory have been successfully used to analyze the free 
vibration of simply supported antisymmetric cross-ply 
laminated composite plates. A parametric study shows that the 
natural frequencies obtained by the FEM are very close to 
those obtained by the analytical proposed theory for thin 
plates; and slightly deviates for thicker plates. The present 
analytical theory allows for parabolic variation in terms of the 
transverse shear strains across the plate thickness and satisfies 

 

a/b 
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the zero-shear stress on the top and bottom surfaces of the 
plate without needing shear correction factors. However, the 
finite elements available in the commercial codes usually use a 
first-order shear deformation theory. The proposed analytical 
model is more suitable to capture the transverse shear leading 
to accurate natural frequencies results in free vibration of 
antisymmetric cross-ply laminated composite plates. 
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