
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

670

A Comparative Study of GTC and PSP Algorithms
for Mining Sequential Patterns Embedded in

Database with Time Constraints
Safa Adi

Abstract—This paper will consider the problem of sequential
mining patterns embedded in a database by handling the time
constraints as defined in the GSP algorithm (level wise algorithms).
We will compare two previous approaches GTC and PSP, that
resumes the general principles of GSP. Furthermore this paper will
discuss PG-hybrid algorithm, that using PSP and GTC. The results
show that PSP and GTC are more efficient than GSP. On the other
hand, the GTC algorithm performs better than PSP. The PG-hybrid
algorithm use PSP algorithm for the two first passes on the database,
and GTC approach for the following scans. Experiments show that
the hybrid approach is very efficient for short, frequent sequences.

Keywords—Database, GTC algorithm, PSP algorithm, sequential
patterns, time constraints.

I. INTRODUCTION

THE stored data has become very large; for this reason

the researchers give more attention to convert this huge

volume of stored data into helpful information for different

using [5]. Based on this the problem of miming patterns has

large interest these days [4]. Pattern recognition has many

important applications like analyzing the DNA sequences and

the customer behavior [14].

Many algorithms are proposed for mining. ”Broadly

data mining algorithms are classified into two categories

as Pattern-Growth approach or candidate generation and

a Prior-Based” [1]. By introducing constraints such as

user-defined threshold, user-specified data, minimum gap or

time, algorithms outperforms better [1], [11].

Sequential Pattern is a special case of structured data

mining, that is concerned with finding statistically relevant

patterns between data examples, where the values are delivered

in a sequence. It is usually discrete values; thus time series

miming is closely related. ”Sequential Pattern Mining is an

efficient technique for discovering recurring structures or

patterns from very large dataset” [13], [18].

The concept of sequential patterns is introduced to capture

typical behaviours over time. For example, from a customer

purchase database, a sequential pattern can be used to

develop marketing and product strategies. For effectiveness

considerations, constraints become more and more essential in

many applications. Nevertheless, handling time constraints are

far away for trivial; since handling such these constraints have

a lot of expensive operations; to examine if these constraints

are verified on sequences [1], [2], [12].

Safa Adi is with the Department of Computer and IT, Palestine Polytechnic
University, Palestine, Hebron (e-mail: safa adi@ppu.edu).

So we can address two main problems when the handling

time constraints in mining sequential patterns in the database.

The first problem: is it possible to enhance traditional level

wise algorithms to handle time constraints? The second

problem: is it possible to consider time constraints directly

in the mining process rather than a post-processing step? [1],

[10].

This paper will compare two algorithms which are for

mining generalized sequential patterns with time constraints

in large databases. The first algorithm is GTC (Graph for

Time Constraints), the main new feature of this algorithm is

it handled the time constraints during the mining process and

separately from the counting step of sequence of data [1]. The

second algorithm is PSP (Prefix-tree for Sequential Patterns),

it used different data structure as intermediate step [2].

II. SEQUENTIAL PATTERNS AND TIME CONSTRAINTS

In this section, we first formulate the concept of sequences

and then look at the time constraints. Let DB be a database

of customer transactions where each transaction T consists of

[15], [16]: The customer number, has the symbol by Cid, the

transaction time has the symbol time and the set of items or

itemset involved in the transaction, its symbol is it.

The required definitions are [1], [2]:-

• Sequence: Let I = {i1, i2,, im} be a finite set of

items. The itemset is a non-empty set of items. The

sequence S is a set of itemsets ordered according to their

time-stamp. It has the symbol as (it1, it2,, itn) where

itj , j ∈ 1...n , is an itemset. A k-sequence is a sequence

of k-items. Performing this task requires providing any

data sub-sequence S in DB with a support value giving

its number of occurrences in DB [1].

• Support: A sequence transaction database is a set of

sequences The support of a sequence S in a transaction

database DB [1], denoted Support(S, DB), is defined as

Support(S, DB) =
∣
∣{C ∈ DB|S1C

}∣∣. The frequency of

S in DB is Support (S,DB)/ |DB|.
• Frequent Sequential Pattern Problem: Given a

user-defined minimal support threshold, denoted σ,

the problem of mining sequential patterns is to find

sequences S in DB such that Support (S,DB) ≥ σ.

Such sequences are called frequent [1].

• Generalized Sequences: Given a user-specified minimum

time gap (minGap), a maximum time gap (maxGap)

and a time window size (windowSize), a data sequence

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

671

d = (d1, d2,, dm) is said to support a sequence

S = (s1, s2,, sn) if there exist integers l1 ≤ u1 <
l2 ≤ u2 < < ln ≤ un, such that [1]:

– si is contained in
⋃

uik = li, 1 ≤ i ≤ n.

– transaction-time (dui) - transaction-time dli ≤
ws, 1 ≤ i ≤ n.

– transaction-time (dli) - transaction-time (dui − 1) >
minGap, 2 ≤ i ≤ n.

– transaction-time (dui) - transaction-time (dli − 1) >
maxGap, 2 ≤ i ≤ n.

• Frequent Generalized Sequential Pattern Problem: Given

a user-defined minimal support threshold, denoted σ,

user-specified minGap and maxGap constraints, and

a user-specified sliding windowSize, the problem of

generalized sequential pattern mining is the extraction of

sequences S in DB such that Support (S,DB) ≥ σ [1].

III. ALGORITHMS FOR MINING SEQUENTIAL PATTERNS

WITH TIME CONSTRAINTS

The step of finding all frequent sequences is a challenge

because the search domain is huge: let (s1, s2,, sm) be a

provided sequence and ni = |sj | cardinality of an itemset.

Then the search domain, i.e. the set of all possible frequent

sequences is 2n1 + n2 ++ nm [1]-[4].

Many novel approaches for sequential pattern mining were

proposed, such as Apriori, ApriorALL, GSP, SPADE, SPAM,

and PrefixSpam [3]. In this section considers the (GSP, GTC,

PSP) algorithms for mining sequential patterns with time

constraints in large databases. Section III.D in will explain

the hybrid approach that analyzes the performance of PSP

with GTC.

A. GSP (Generalized Sequential Pattern) Algorithm

GSP was the first Apriori-based approach (or levelwise

approach), which is an alternative family of data mining

algorithms; that used breath first manner [17]. To build up

candidates and many sequences, the GSP algorithm makes

multiple passes over the database [6], [9].

The first step aims at computing the support of each item in

the database. When this step has been completed, the various

items (i.e. those that satisfy the minimum support) have

been discovered. They are considered as normal 1-sequences

(sequences having a single itemset, itself a singleton). The

set of candidate 2-sequences is determined according to the

following assumption: candidate 2-sequences could be any two

different items, whether embedded in the same transaction or

not. Frequent 2-sequences are built by counting the support.

Based on this point, candidate k-sequences are generated from

frequent (k-1)-sequences obtained in pass-(k-1).

The main idea of candidate generation is to retrieve, from

among (k-1) sequences, pairs of sequences (S, S′) such that

discarding the first element of the former and the last element

of the latter results in two fully matching sequences. When

such a condition holds for a pair (S, S′), a new candidate

sequence is built by appending the last item of S′ to S.

Then they computed the support for all possible sequences,

the sequence with minimum value become various. This

process is repeated until all candidate sequences are finished.

After this step, all candidate sequences are arranged by using

a hash-tree data-structure [1], [2].

The leaves of the tree has all possible sequences, on

the other hand the intermediate nodes will have the hash

tables. Then each sequence is hashed to find the candidates

in data. When browsing a data sequence, time constraints

must be managed. This is performed by navigating downward

or upward through the tree, resulting in a set of possible

candidates. For each candidate, GSP checks whether it is

contained in the data sequence. GSP causes bottlenecks

because it: scans the database multiple times, and generates a

huge set of candidate sequences; furthermore, it is inefficient

for mining long sequential patterns. So there is a need for

more efficient mining methods [1], [2].

B. PSP (Prefix-Tree for Sequential Patterns) Algorithm

This approach resumes the general principals of GSP but,

it makes use of a different intermediary data structure for

organizing candidate sequences, to improve the efficiency of

retrievals.

In PSP algorithm, at each step k, the DB is browsed

for counting the support of the current candidate. Then the

common sequence set Lk can be built. From this placed

new candidates are exhibited for being dealt at the next

step. The algorithm stops when the most extended frequent

sequences, embedded in the DB are discovered thus the

candidate generation yields an empty set of new candidates.

Support is a function giving for each candidate its counting

value stored in the tree structure.

The tree structure is managed by an algorithm as follow:

at the kth step, the tree has a depth of k. It captures all

the candidate k-sequences in the following way. Any branch,

from the root to the leaf stands for a candidate sequence

and considering a single branch, each node at depth l(k¿=l)

captures lth item of the sequence. Furthermore, along with an

item, a terminal node provides the support of the sequence

from the root to the considered leaf (included). Transaction

cutting is captured by using labeled edges [2].

The algorithm is as follow:-

Fig. 1 PSP algorithm for candidate verification [2]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

672

During the candidate verification phase in PSP prefix-tree,

all terminal nodes (at depth k) which are brothers stand for

continuations of a typical (k-1) sequence. Thus it is costly

and not necessary to examine this common sequence for all

k-sequences extending it. Retrieving candidates means poor

navigation through the tree. Once a leaf is reached, the single

operation to be performed is incremented the support value

[1], [2].

The possible sequences will be examined, then the are

deleted to prune the tree and minimize the used memory space.

All leaves not satisfying a threshold support are removed.

When such deletion complete, the tree no longer captures

candidate sequences but instead frequent sequences [2], [7].

C. GTC (Graph for Time Constraints) Algorithm

This algorithm solved the following problem: how to reduce

the time required for comparing a data sequence with the

candidate sequences? This problem can be explained by

recalculating a relevant set of sequences to be tested for a

data sequence. By recalculating this set, the algorithm will be

more efficient in analyzing the data sequences in the following

two ways:

• The navigation through the candidate sequence tree does

not depend on the time constraints defined by the user.

• This navigation is only performed on the most extended

sequences, that is to say on sequences not included in

other sequences.

This approach takes up all the fundamental principles

of level wise algorithms. It contains many iterations. The

iterations start at the size-one sequences and, at each iteration,

all the frequent sequences of the same size are found.

Moreover, at each iteration, the candidate sets are generated

from the frequent sequences found at the previous iteration

[1].

The main new feature of GTC algorithm which

distinguishes it from traditional level wise algorithms is

that handling of time constraint is done before and separate

from the counting step of a data sequence. So, Upon reading

a customer transaction d in the counting phase of pass k,

GTC has to determine all the maximal combinations of d

respecting time constraints. This means; that GTC algorithm

has to identify all the k-candidates supported by the maximal

sequences issued from GTC iterations on d and increment

the support counters associated with these candidates without

considering time constraints any more.

In [1] they defined the GTC algorithm as follow:-

Fig. 2 GTC algorithm for minGap, windowSize and maxGap [1]

D. Hybrid Approach (PG-Hybrid)

We designed some experiments to illustrate that, for the

sake of efficiency, the time required for building the sequence

graph must be less than the difference between the time for

candidate verification in PSP and candidate verification in

GTC. First, to find the time for building the sequence graph,

we carried out some experiments to analyze the performance

of PSP with GTC when mining sequential patterns without

time constraints, even if GTC is less efficient than PSP, the

performance gap between the two algorithms is still constant

[8], [20].

It is noticeable that even when considering low values for

time constraints (for example if windowSize or minGap was

set to 1), in the second step for the testing candidate [1], PSP

was more efficient. Nevertheless, despite this efficiency, GTC

was faster for the whole process. To take advantage of this

behaviour, we defined a new algorithm, called PG-Hybrid,

using the PSP approach for the two first passes on the database

and GTC for the following passes [1], [2].

IV. COMPARING SPS ALGORITHM WITH GTC

ALGORITHM

In GSP, because of the defined tree structure, all candidates

sequences are preserved and entirely stored in the leaves,

so a massive set of candidates will be generated. But in

PSP algorithm, the organization of candidates sequences

according to their common elements, this means that the

initial sub-sequences common to several candidates are stored

only once. The prefix-tree structure that used in PSP is more

efficient than the hash-tree structure used in GSP algorithm

[19]. So PSP is less costly from a memory viewpoint. GTC

algorithm is faster than GSP; because the time constraint is

carried out before and separately from the counting step of the

data sequence.

PSP algorithm, use the prefix-tree structure for sequences.

This algorithm takes advantages of its semantics for avoiding

useless and costly operations when verifying candidates. On

the other hand GTC algorithm, considered the problem of

discovering sequential patterns by handling time constraints

[15], [18]. Instead of mining these constraints on the fly during

the data sequence analysis, it attempted to use time constraint

preprocessing for efficiently identifying various generalized

sequences. In which time constraints are handled in the earlier

stage of the algorithm to provide significant benefits. GTC use

to build a sequence graph biased on time constraints.

As illustrated in Table I, we can see that GTC algorithm is

better than PSP in execution time and the number of recursive

calls; so it is faster in mining sequential patterns with time

constraints from large databases.

V. CONCLUSION

We considered the problem of discovering sequential

patterns by handling time constraints and comparing two

algorithms (GTC and PSP). PSP and GTC algorithms adopted

the general principles defined by GSP algorithm. But they are

proposing a different data structure for storing candidates and

frequent sequences. These differences make these algorithms

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

673

TABLE I
THE MAIN DIFFERENCES BETWEEN GTC AND PSP ALGORITHMS

GTC algorithm PSP algorithm
Structure graph prefix-tree
Execution time
(Based on
windowSize)

(1-40) sec (1-120) sec

Number of recursive
calls (Based
on windowSize)

(1-9) million (1-30) million

Candidate generation No Yes
Space-search Backtracking Backtracking

faster in mining sequential patterns with time constraints.

Because they are avoiding useless and costly operations when

verifying candidates. In PSP and GTC, time constraints are

handled in the earlier stage of the algorithm to provide

significant benefits.

After comparing the results of GTC and PSP algorithms;

based on their experiments it is clear that the GTC algorithm

is more efficient than PSP algorithm. To take the advantage of

the behavior of the algorithm in the first scans on the database,

we designed a new algorithm called PG-Hybrid using the PSP

approach for the two first passes on the database and GTC

for the following scans. The experiments showed that this

approach is very efficient even for short, frequent sequences.

REFERENCES

[1] F. Masseglia, P. Poncelet, M. Teisseire. ”Efficient mining of sequential
patterns with time constraints: Reducing the combinations”. Expert
Systems with Applications, Volume 36, pages 2677-2690, 2009.

[2] F. Cathala, F. Masseglia, P. Poncelet. ”The PSP Approach for Mining
Sequential Patterns”. ACM, pagesv176-184, 1998.

[3] Th. Rincy.N, Y. Pandey. ”Performance evaluation on state of the art
sequential pattern mining algorithms”. International Journal of Computer
Applications (0975-8887), Volume 65, N0. 14, March 2013.

[4] M. Lin, S. Hseueh, C. Chang. ”Mining closed sequential patterns with
time constraints”. International Journal Of Information Science And
Engineering Volume 24, pages 33-46, 2008.

[5] M. Morzy, T. Zakrzewicz, ”Efficient constraint-based sequential pattern
mining using dataset filtering techniques”. In Proceedings of the Baltic
conference, BalticDB IS, pages 213-224, 2002.

[6] M. J. Zaki, ”SPADE: An efficient algorithm for mining frequent
sequences”. Machine Learning Journal, Volume 42, NO. 1, pages 31-60,
2001.

[7] R. Srikant and R. Agrawal. ”Mining Sequential Patterns: Generalizations
and Performance Improvements”. In Proc. of the EDBT’96, Avignon,
France, Sept 1996.

[8] U. M. Fayad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors.
”Advances in Knowledge Discovery and Data Mining”. AAAI Press,
1996.

[9] J. Wijsen. ”Condensed Representation of Database Repairs for Consistent
Query Answering”. In International Conference on Database Theory
(ICDT), Springer-Verlag, LNCS 2572, pages 378-393, 2003.

[10] P. C. Kanellakis. ”Elements of Relational Database Theory”. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,
chapter 17, Elsevier/MIT Press, pages 1073-1158, 1990.

[11] J. Fry, G. Xian, S. Jin, J. Dewitz, C. Homer, L. Yang, C. Barnes,
N. Herold, J. Wickham. ”Completion of the 2006 National Land
Cover Database for the conterminous United States”, Photogrammetric
Engineering Remote Sensing, Volume 77, NO. 9, pages 858-863, 2011.

[12] B. C. Ooi, C. Yu, K. L. Tan, and H. V. Jagadish. ”Indexing the distance:
an efficient method to knn processing”. In Procdf the Int. Conf. on Very
Large Data Bases, 2001.

[13] K. V. Ravi Kanth, D. Agrawal, Amr El Abbadi, and Ambuj K. Singh.
”Dimensionality reduction for similarity searching in dynamic databases”.
In Proc. A CM SIGMOD Int. Conf. on Management of Data, 1998.

[14] J. Griss, Y. Perez-Riverol, H. Hermjakob, J. A. Vizcaino. ”Identifying
novel biomarkers through data mining-A realistic scenario”. Proteomics
Clin. Appl., Volume 9, pages 437-443, 2015.

[15] N. Roussopoulos, S. Kelley, and F. Vincent. ”Nearest neighbor queries”.
In Proc. A CM SIGMOD Int. Conf. on Management of Data, pages 71-79,
May 1995.

[16] H. Samet. ”Recent developments in linear quadtree-based geographic
information systems”. Image and Vision Computing, Volume 5, NO. 3,
pages 187-197, Aug. 1987.

[17] T. Sellis, N. Roussopoulos, and C. Faloutsos. ”The r+-tree: A dynamic
index for multi-dimensional objects”. Procdf the Int. Conf. on Very Large
Data Bases, Volume 13, pages 507-518, 1988.

[18] Y. Theodoridis and T. K. Sellis. ”Optimization issues in r-tree
construction”. In Geographic Information Systems (IGIS), pages 270-273,
1994.

[19] F. Wang. ”Relational-linear quadtree approach for two-dimensional
spatial representation and manipulation”. IEEE Trans. on Knowledge and
Data Engineering, Volume 3, NO. 1, pages 118-122, Mar. 1991.

[20] J. Chomicki, J. Marcinkowski, and S. Staworko, ”Computing consistent
query answers using conflict hypergraphs,” in CIKM, D. Grossman,
L. Gravano, C. Zhai, O. Herzog, and D. A. Evans, Eds. ACM, pages
417-426, 2004.

