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Oscillatory Electroosmotic Flow of Power-Law
Fluids in a Microchannel

Rubén Baños, José Arcos, Oscar Bautista, Federico Méndez

Abstract—The Oscillatory electroosmotic flow (OEOF) in power
law fluids through a microchannel is studied numerically. A
time-dependent external electric field (AC) is suddenly imposed
at the ends of the microchannel which induces the fluid motion.
The continuity and momentum equations in the x and y direction
for the flow field were simplified in the limit of the lubrication
approximation theory (LAT), and then solved using a numerical
scheme. The solution of the electric potential is based on the
Debye-Hückel approximation which suggest that the surface potential
is small,say, smaller than 0.025V and for a symmetric (z : z)
electrolyte. Our results suggest that the velocity profiles across
the channel-width are controlled by the following dimensionless
parameters: the angular Reynolds number, Reω , the electrokinetic
parameter, κ̄, defined as the ratio of the characteristic length scale
to the Debye length, the parameter λ which represents the ratio
of the Helmholtz-Smoluchowski velocity to the characteristic length
scale and the flow behavior index, n. Also, the results reveal that
the velocity profiles become more and more non-uniform across the
channel-width as the Reω and κ̄ are increased, so oscillatory OEOF
can be really useful in micro-fluidic devices such as micro-mixers.

Keywords—Oscillatory electroosmotic flow, Non-Newtonian
fluids, power-law model, low zeta potentials.

I. INTRODUCTION

M ICRO-FLUIDIC components such as micro-channels,

micro-mixers and micro-pumps are commonly

implemented in the design of biochips, for example

electroosmosis has been well established as a micropumping

technique used in many of these devices. Extensive studies

about electroosmotic flow in microcapillaries have been

reported in the literature, most of them considering the

Debye-Hückel approximation [6], [7], some others regarding

the time-dependent external electric field in Newtonian

fluids [6], [8]. The rheology of the fluids is very important

due to the immense application of microfluidic to analyze

biofluids, in which may not be treated as Newtonian fluids.

In this context, the rheology in electroosmotic flow with

constant electric field (DC) has been extensivelly studied

[9], [11], [12]. Lately, there are few studies considering both

the rheology of the fluid and a time-dependent electrical

field. Each effect has been studied in a separately manner,

that is why our study consider an oscillatory electrical

field which causes an oscillatory electroosmotic flow in the

microchannel and the power-law model [10] to obtain the
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velocity profiles across the microchannel-width as a function

of the principal dimensionless parameters involved in the

present investigation.

II. PROBLEM FORMULATION

In Fig. 1 the schematic representation of the OEOF is

shown. Consider a two-dimensio-nal microchannel of height

2h and length L, where L � h. The microchannel is filled

with a symmetric electrolyte (z : z) solution whose rheological

behaviour follows the well-known Ostwald de Waele model.

The anode and cathode at the ends of the microchannel provide

a time-dependent electrical field which generates a periodically

oscillatory flow via the electroosmotic effect.

A. Electrical Field

The electrical potential in the location (x, y) in the

microchannel, given by Φ(x, y) arises by the superposition

of the externally electric potential, φ(x, y), and the potential

ψ(y) into the electrical double layer (with surface potential ζ).

It is reasonable to assume that the electric potential is given by

the linear superposition of the electrical double layer potential

and the externally applied potential, which is valid for long

microchannels [1]. Therefore, the Poisson-Boltzmann equation

for a slit microchannel becomes,

d2ψ

dy2
= −ρe

ε
. (1)

From the above equation and the boundary conditions

dψ/dy = 0 at y = 0 and ψ = ζ at y = h, the well-known

solution for the distribution of the potential, ψ, with a free

charge density defined as ρe = −εκ2ψ is given by:

ψ̄ =
cosh κ̄ȳ

cosh κ̄
(2)

where ψ̄ = ψ/ζ, κ̄ = κh and ȳ = y/h.

B. Velocity Field

To determine the flow field, we consider that α = h/L � 1,

therefore, the motion can be approximated as unidirectional

[2]. The velocity components in the x and y directions are

u = u(y, t) and v = 0, for t ≥ 0. Also, neglecting external

pressure gradient and gravity effects, the one-dimensional

momentum equation is represented by,

ρ
∂u

∂t
=

dτ

dy
+ ρeEx(t). (3)

Equation (3) is subjected to the following boundary

conditions. The symmetry boundary condition (du/dy=0) was
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Fig. 1 Schematic model for an oscillatory electroosmotic flow moved by an externally electrical field defined by Ex(t) = E0 sinωt. E0 and ω are the
steady electric field and the angular frequency, respectively

established at the center of the microchannel, and both walls

are subjected to the no-slip condition (u=0), on the other hand

due to the fluid starts from the rest an initial condition was

requiered (u=0 at t=0). In (3), the externally electrical field is

defined by Ex(t) = E0 sinωt.
The shear stress is defined as τ = μ( du/ dy), and the

dynamic viscosity μ for non-Newtonian fluids is related to the

magnitude of shear rate via the power-law model [10],

μ = m

[(
du

dy

)2
](n−1

2 )

. (4)

In (4) the parameters m and n are the consistency index

and the behavior index of the flow. For values of n < 1 and

n > 1 the shear-tinning and shear-thickening behavior are

present, respectively; and for n = 1 the Newtonian case was

recovered. Using the definition of ρe given in Section II-A,

(4) and the definition of the electrical field (3) rewritten as:

ρ
∂u

∂t
=

∂

∂y

⎧⎨
⎩m

[(
∂u

∂y

)2
]n−1

2
∂u

∂y

⎫⎬
⎭

−εκ2ζE0
cosh(κy)

cosh(κh)
sin(ωt) (5)

Introducing the following dimensionless variables

ū =
u

UHS
v̄ =

v

(αUHS)

x̄ =
x

L
τ =

ωt

2π

where UHS = −εζE0/m is the Helmholtz-Smoluchowski

velocity, the dimensionaless momentum equation adquires the

following form,
ρfωUHS

2π

∂ū

∂τ
=

mUHS

h2

(
U2
HS

h2

)(n−1
2 )

∂

∂ȳ

⎧⎨
⎩
[(

∂ū

∂ȳ

)2
](n−1

2 )
∂ū

∂ȳ

⎫⎬
⎭

−κ̄2 cosh(κ̄ȳ)

cosh(κ̄)
sin(2πτ), (6)

Manipulating algebraically is easy to show that

∂

∂ȳ

⎧⎨
⎩
[(

∂ū

∂ȳ

)2
](n−1

2 )
∂ū

∂ȳ

⎫⎬
⎭ = n

⎧⎨
⎩
[(

∂ū

∂ȳ

)2
](n−1

2 )
∂2ū

∂ȳ2

⎫⎬
⎭

From the above mentioned and rearranging (6), is obtained:

Re2ω
2π

∂ū

∂τ
= n(λ2)(

n−1
2 )

⎧⎨
⎩
[(

∂ū

∂ȳ

)2
](n−1

2 )
∂2ū

∂ȳ2

⎫⎬
⎭

+κ̄2 cosh(κ̄ȳ)

cosh(κ̄)
sin(2πτ), (7)

in (7), Reω = h(ω/ν)1/2 is the angular Reynolds number, and

the parameter λ = UHS/h. With the follow dimensionless

boundary and initial conditions:

ū = 0 at ȳ = 1

∂ū

∂ȳ
= 0 at ȳ = 0

ū = 0 at τ = 0

III. SOLUTION METHODOLOGY

Equation (7) was solved numerically using the

Crank-Nicolson method [3], [5], applying a central difference

scheme in the following form [4],

−θ1ū
n+1
i+1 + θ2ū

n+1
i − θ1ū

n+1
i−1 = θ3 (8)

where, θ1, θ2 and θ3 are defined as,

θ1 =
Agγ

2�ȳ2
(9)

θ2 = 2θ1 +
1

�τ
(10)

θ3 =
ūn
i

�τ
+ θ1(ū

n
i+1 − 2ūn

i + ūn
i−1) + η. (11)

In order to solve the non-linear equation (7)

Ag =

[(
∂ū

∂ȳ

)2
](n−1

2 )

(12)
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is considered as a constant value leading to a second order

differential equation. �τ and �ȳ are the time step and the

size step in the ȳ direction, respectively; and the parameters

γ and η that appear in (8) and (11), are given as follows,

γ =
2πn(λ2)

n−1
2

Re2ω
(13)

η =
2πκ̄2

Re2ω

cosh(κ̄ȳ)

cosh(κ̄)
sin(2πτ) (14)

The solution procedure starts providing initial guess values

for Ag , a tridiagonal matrix algorithm is used to solve the

system of equations. With the discrete values obtained, Ag was

recalculated again and again until the required relative error of

10−8 was achieved, this approximation is really useful because

for values of ∂ū/∂ȳ = 0 and a behavior index n smaller than

1, the value of Ag is undetermined; so, in this way this value

is very close to zero but never equal zero.

From (12) is clear that this value is varying in the ȳ direction

so then it had to be recalculated for each node in the space

and all this procedure was done for each node in the time.

IV. RESULTS AND DISCUSSION

In order to obtain numerical results, the values of the

physical parameters that appear in (9)-(14), were considered as

in follows: ρ ∼ 103kg/m3, m ∼ 10−3Pa.sn, ε0 ∼ 10−10F/m,

εr ∼ 102, ζ � 0.025V, and E0 ∼ 103V/m, h = (100− 5)μm.

For the oscillation frequencies we consider values from 400Hz

to 360kHz and Debye lengths from 15 to 300nm. Some

of the estimated values used in the numerical calculations

were, Reω = 5, 15, 50, this the ratio of the viscous diffusion

time-scale to the oscillation time-scale, the dimensionless

Debye length κ̄ = 10, 50, 100 and λ = 0.5, 1.5, 3 which

is the ratio of the Helmholtz-Smoluchowski velocity to the

characteristic length scale.

Fig. 2 shows the velovity profile ū(ȳ, τ) through the

microchannel width, it can be seen how the velocity reverses

its direction and is oscillating due the imposed electric field.

This behavior is repeated in each period when a completely

periodical flow is reached.

Fig. 2 Dimensionless velocity distribution ū(ȳ, τ) vs ȳ, for various values
of τ at n = 0.8, Reω = 5, κ̄ = 15 and λ = 2

Fig. 3 Dimensionless velocity distribution ū(ȳ, τ) vs ȳ, for various values
of angular Reynolds number Reω , dimensionless debye length κ̄ and the

flow behavior index n at λ = 2 and τ = 1.(a) Reω = 5 and κ̄ = 15 . (b)
κ̄ = 15 and n = 0.8. c) n = 0.8 and Reω = 5

Fig. 3 (a) shows the dimensionless velocity profile ū(ȳ, τ)
vs ȳ for various values of fluid behavior index at a fixed Reω =
5 and κ̄ = 15, it can be seen that the velocity magnitude is

higher as n decreases, it is known that shear-tinning (n < 1)
have a lower viscosity than shear-thickening(n > 1) fluids, so

to less viscous fluids take a shorter time to attain a periodically

behavior, the fluids motion begins near the surface of the

microchannel, where the electroosmotic force is acting, there

the profile has a parabolic shape with higher velocities and

as it approaches to the center the velocity becomes negative

close to zero.

Fig. 3 (b) shows ū(ȳ, τ) for various values of Reω at κ̄ = 15
and n = 0.8, as the Reω increases (higher frequencies of

oscillation) the velocity profile is more non uniform and in

opposite for smaller values it has a parabolic shape. Opposite

to Fig. 2 (a), the velocity profile reach higher values near the

center of the microchannel.
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Fig. 3 (c) shows the effect of the electric double layer in

the velocity, as κ̄ increases (which indicates shorter Debye

lengths) the velocity becomes higher near to the wall of the

microchannel and decrease as it approaches the center.

V. CONCLUSIONS

Oscillatory electroosmotic flow for non-Newtonian fluids

was analyzed. The analysis revealed four main parameters

that describe the dynamic behavior of the OEOF: the angular

Reynolds number, Reω , the electrokinetic parameter, κ̄,

defined as the ratio of the characteristic length scale to the

Debye length, the parameter λ which represents the ratio of

the Helmholtz-Smoluchowski velocity to the characteristic

length scale and the flow behavior index, n.the principal

conclusion are listed below:

• Using the Ostwald de Waele or Power-law model the

results showed the different behaviors in the velocity

distribution for shear-tinning and shear-thickening fluids,

which is really important due to the extensive applications

of microfluidic devices in biochemistry.

• For some processes in which is desired the mass

transport it can be enhancement using lower frequencies

of oscillation, which produce velocity profiles with a

parabolic shape and this affects directly those processes.

• With proper choices of the Debye length and oscillation

frequency the separation of species using oscillatory

electroosmotic flow is achievable.
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Instituto Politécnico Nacional at Mexico.

REFERENCES

[1] Masliyah, J. H., & Bhattacharjee, S. Electrokinetic and colloid transport
phenomena. John Wiley & Sons.(2006)

[2] Leal L. G. Advanced transport phenomena. Cambridge University
Press. (2007)

[3] Hoffman, J. D., & Frankel, S. Numerical methods for engineers and
scientists. CRC press.(2001)

[4] Pantakar, S. V. Numerical Heat Transfer and Fluid Flow. Hemisphere
Publ., Washington.(1980)

[5] Anderson, J. D., & Wendt, J. Computational fluid dynamics (Vol. 206).
New York: McGraw-Hill.(1995)

[6] Huang, H. F., & Lai, C. L. Enhancement of mass transport
and separation of species by oscillatory electroosmotic flows. In
Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences (Vol. 462, No. 2071, pp. 2017-2038). The
Royal Society.(2006)

[7] Zhao, C., Zholkovskij, E., Masliyah, J. H., & Yang, C. Analysis of
electroosmotic flow of power-law fluids in a slit microchannel. Journal
of colloid and interface science, 326(2), 503-510.(2008)

[8] Rojas, G., Arcos, J., Peralta, M., Méndez, F., & Bautista, O. Pulsatile
electroosmotic flow in a microcapillary with the slip boundary
condition. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 513, 57-65.(2017)

[9] Babaie, A., Sadeghi, A., & Saidi, M. H. Combined electroosmotically
and pressure driven flow of power-law fluids in a slit microchannel.
Journal of Non-Newtonian Fluid Mechanics, 166(14-15),
792-798.(2011)

[10] Oswald, &. A., Hernández-Ortı́z J. P. Polymer Processing. Modeling
and Simulation. Carl Hanser Verlag, Munich 2006

[11] Zhao, C., & Yang, C. An exact solution for electroosmosis of
non-Newtonian fluids in microchannels. Journal of Non-Newtonian
Fluid Mechanics, 166(17-18), 1076-1079.(2011)

[12] Qi, C., & Ng, C. O. Electroosmotic flow of a power-law fluid in a slit
microchannel with gradually varying channel height and wall potential.
European Journal of Mechanics-B/Fluids, 52, 160-168.(2015)


