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A Robust Optimization Model for the Single-Depot
Capacitated Location-Routing Problem

Abdolsalam Ghaderi

Abstract—In this paper, the single-depot capacitated
location-routing problem under uncertainty is presented. The
problem aims to find the optimal location of a single depot and
the routing of vehicles to serve the customers when the parameters
may change under different circumstances. This problem has many
applications, especially in the area of supply chain management and
distribution systems. To get closer to real-world situations, travel time
of vehicles, the fixed cost of vehicles usage and customers’ demand
are considered as a source of uncertainty. A combined approach
including robust optimization and stochastic programming was
presented to deal with the uncertainty in the problem at hand. For
this purpose, a mixed integer programming model is developed and
a heuristic algorithm based on Variable Neighborhood Search(VNS)
is presented to solve the model. Finally, the computational results
are presented and future research directions are discussed.

Keywords—Location-routing problem, robust optimization,
Stochastic Programming, variable neighborhood search.

I. INTRODUCTION

THIS Location-routing problem (LRP) is a combination of

two well-known problems, facility location and vehicle

routing problems(VRP). In recent decades, this problem has

attracted the attention of many researchers because of its

wide applications in supply chain management and distribution

systems. In these problems, the decisions relating to the

location of depots simultaneously are made with the routing

decisions. In fact, in many supply chain cases, location and

routing decisions are closely interrelated. This dependency

comes from the fact that in some applications, the trip of

vehicles from depot to the customers or vice versa is not

necessarily directly and usually involved a tour. Salhi and

Rand [23] showed that the ignoring the routing decisions when

locating depots might lead to the suboptimal results.

On the other hand, modeling real-world problems is usually

affected by several factors which are often impossible to find

the exact amounts of them. Hence, considering the uncertainty

is an important issue in the optimization problems. Two

different criteria are widely used to deal with the uncertainty

in the literature of this area: the minimization of the expected

cost and the minimization of the worst-case cost or regret.

For this purpose, normally one of two approaches, stochastic

programming or robust optimization is employed for modeling

these problems. Clearly, both of these approaches have some

disadvantages and using of them might lead to a solution

that, under some circumstances, be very inappropriate. In one

hand, the stochastic models try to solve the problem with

the expected value among all scenarios. Thus, the optimal

solution obtained from this approach may be appropriate for
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some scenarios, but for others it is significantly weak. On the

other hand, the robust approach try to find the min-max cost

or min-max regret solution that is close or almost optimal

for any realization of the uncertainty in a given set and no

matter which scenario is likely to happen. The investigated

robustness measure incorporates the advantages of both the

min-expected-cost and min-max regret measures by seeking

the least-cost solution (in the expected value) that bounds the

regret by a pre-specified limit. Therefore, in this study, the

single depot LRP is investigated when the problem parameters,

(i.e. vehicles travel time, customers demand, and vehicles cost)

are uncertain and given by a set of scenarios with known

probability. A combined stochastic robust optimization is also

used to formulate the problem.

The stochastic p-robust approach were defined as follow by

Snyder and Daskin [25]. For a given set of scenarios S, let x
be a feasible solution of the deterministic LRP under scenario

s, Zs(x) be the objective value of this solution and Z∗
s be the

optimal objective value of scenario s. Therefore, by defining a

non-negative constant (p ≥ 0), x is called a p-robust solution

if for all s ∈ S:

Zs(x)− Z∗
s

Z∗
s

≤ ρ (1)

In addition, if scenario s will occur with a certain

probability qs. Hence, in the general form, stochastic

p-robustness measure that combining p-robustness measure

with a min-expected-cost objective function was introduced

as follow. χ gives the feasible solution space of the problem.

min =
∑

s∈S

qsZs(x) (2)

s.t.

Zs(x) ≤ (1 + ρ)Z∗
s ∀s ∈ S (3)

x ∈ χ (4)

The problem studied in this research is a network with

nodes consisting of customers site and potential locations

for the construction of a distribution warehouse. Among the

candidate sites, one location is chosen to open the depot and

the serving tours of vehicles from the depot to the costumers

are determined.

In the following, a concise review of the literature related

to LRP is presented. A mixed-integer linear programming

formulation for the studied problem is given in Section II.

In the next section, a solution algorithm based on variable

neighborhood search (VNS) is proposed and the computational

results are given. Finally, concluding remarks are discussed in

Section IV.
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The studies in the area of LRP date back to the late

1970s and early 1980s, where researchers developed the first

models to implement on some real world applications like

distribution systems [7], rubber industry [18], regional blood

banking [19], newspaper delivery system [10] or proposed

solution algorithms to solve the problem [15], [9], [16]. After

these, many studies have been devoted to the LRP in the

literature. Recently, three survey papers have reviewed the

various aspects of this problem including modeling strategies,

optimization algorithms and its applications [21], [3], [24].

Decision-making under uncertainty is one of the principal

research themes of the field of LRP that has been only rarely

addressed in the literature. Laporte et al. [14] presented a

stochastic LRP with random supplies as the first research that

has been conducted in this area. A stochastic multi-period

LRP was investigated by Klibi et al. [13] that characterized

by multiple transportation options, multiple demand periods,

and stochastic demands. Ghaffari-Nasab et al. [6] studied

some stochastic programming approaches to model the

capacitated LRP with probabilistic travel times as bi-objective

mathematical programming formulations.

In addition, to the best our knowledge there is no published

work on using robustness approach to cope with uncertainty

in the LRP. However, robust optimization has been studied in

both facility location and vehicle routing problems, separately.

Sungur et al. [26] introduced a robust optimization approach

to solve the capacitated VRP with demand uncertainty.

Adulyasak and Jaillet [1] investigated both stochastic and

robust optimization approaches for the VRP with deadlines

under travel time uncertainty and developed an exact algorithm

based on a branch-and-cut framework to solve the problems.

In another paper, an efficient heuristic based on adaptive large

neighborhood search was proposed to solve the VRP with

uncertain travel times and time windows [2].

The combined stochastic robust optimization approach has

been already used to investigate uncertainty in some problems

related to facility location and network design problems (i.e.,

classical facility location problems [25], single allocation

p-hub median problem [5], closed-loop supply chain network

design [12]).

II. MATHEMATICAL MODELLING

The LRP can be considered under different circumstances.

In this study, the following assumptions are made to model

the stochastic p-robust single depot LRP: (1) the travel

times, customers demand, and vehicles usage cost parameters

are given by a set of scenarios; (2) the probability of the

occurrence of each scenario is already known; (3) the demand

of each customer is satisfied only by one vehicle; (4) each

tour starts at the opened depot and finishes at the same depot.

According to these assumptions, the aim of the problem is to

minimize the total summation of the depot fixed cost, vehicles

usage cost and the transportation cost.

The used notation of the problem at hand is introduced in

bellow.

A. Notation and Assumptions

The index sets, input parameters and decision variables are

described as follows:

Index sets:

I: Set of potential nodes to open the single depot, i ∈ I
J : Set of demand nodes(customers), j ∈ J
K: Set of vehicles, k ∈ K
V : Set of depots and customers, v ∈ V , V = {I ∪ J}
S: Set of scenarios, s ∈ S.

Input parameters:

n: The number of customers, i.e. n = |J |
tsij : Travel time between nodes i and j in scenario s
oi: Fixed cost of opening the depot in node i
fs: Fixed cost of the vehicle usage in scenario s
ps: Occurrence probability of scenario s
dsj : Demand of customer j in scenario s
q: Vehicle capacity.

Decision variables:
Three sets of variables are used to made decisions in two

stages. The location variables are independent of the possible

scenarios, whereas the routing decisions are not. In the first

stage, the location decisions related to the depot location are

determined. In the second stage, the routing decisions are

taken for each possible scenario subject to the obtained depot

location of the first stage.

Xs
ijk = 1 if vehicle k travels directly between node i

and node j in scenario s, 0 otherwise

Yi = 1 if candidate location i is opened as depot, 0

otherwise

Rs
ij = 1 if node j assigned to depot i in scenario s

Ujk : auxiliary variable to eliminate the subtour

in route k

minZ =
∑

i∈I

oiYi +
∑

s∈S

ps(
∑

i∈V

∑

j∈V

∑

k∈K

tsijX
s
ijk

+
∑

i∈I

∑

j∈J

∑

k∈K

fsX
s
ijk) (5)

s.t. ∑

i∈I

Yi = 1 (6)

∑

i∈V

∑

k∈K

Xs
ijk = 1 ∀j ∈ J, s ∈ S (7)

∑

i∈V

∑

j∈J

dsjX
s
ijk ≤ q ∀k ∈ K, s ∈ S (8)

Urk − Ujk + nXs
rjk ≤ n− 1

∀r, j ∈ J, k ∈ K, s ∈ S (9)∑

j∈V

Xs
ijk −

∑

j∈V

Xs
jik = 0

∀i ∈ V, k ∈ K, s ∈ S (10)∑

i∈I

∑

j∈J

Xs
ijk ≤ 1 ∀k ∈ K, s ∈ S (11)
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−Rs
ij +

∑

m∈J

Xs
imk +

∑

m∈V \{J}
Xs

mjk ≤ 1

∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (12)∑

i∈I

oiYi +
∑

i∈V

∑

j∈V

∑

k∈K

tsijX
s
ijk +

∑

i∈I

∑

j∈J

∑

k∈K

fsX
s
ijk ≤ (1 + α)Z∗

s∀s ∈ S (13)

Yi ∈ {0, 1}∀i ∈ I (14)

Xs
ijk ∈ {0, 1}∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (15)

F s
ij ∈ {0, 1} ∀i ∈ I, j ∈ J, s ∈ S (16)

Ujk ≥ 0 ∀j ∈ J, k ∈ K (17)

In this formulation, the objective function of the problem is

given by (5) that minimizes the problem costs. The first term

is used to define the fixed facility cost which is not dependent

to the scenarios. Furthermore, the second and third terms

are related to the scenarios and calculate the transportation

and the vehicle usage costs, respectively. Equation (6) states

that only one depot should open in this problem. The single

assignment of each customer to the tours for each scenario is

defined in (7). Each vehicle can only handle a limited number

of shipments and this capacity is reflected in (8). Equation

(9) is the subtour elimination constraint and do not let to

constitute the tours without the depot. Equations (10) and (10)

are to ensure the flow conservation of vehicles when visit a

network node. These equations, for each scenario, ensure the

continuity of each route and a return to the depot of origin.

Constraints (10) determine that a customer can be assigned to

the depot only if a route linking them is activated. The p-robust

constraint is given by (13). According to this constraint, the

cost of each scenario will not higher than (1 + α) percent of

its optimal value. Finally, (14)-(17)are integrality constraints.

III. COMPUTATIONAL RESULTS

In the following, the solution algorithm with experiment

results are presented.

A. Solution Algorithm

Both facility location and vehicle routing problems are

belong to the combinatorial optimization problems. Hence,

the location routing problem is also NP-hard. Preliminary

experiments showed that the execution time of CPLEX solver

to solve the stochastic p-robust LRP is highly larger than

that the deterministic problem with a single scenario. Hence,

developing effective algorithms to deal with this problem is

a challenging work. In this paper, besides the CPLEX solver,

a heuristic based on the VNS was investigated to solve the

problem in the various dimensions.

Variable neighborhood search is a classical meta-heuristic

aimed to solve the optimization problems. This algorithm

systematically exploits the idea of neighborhood change, both

in descent to local minima and in escape from the valleys

which contain them. This algorithm was first introduced by

Mladenovic and Hansen [17] in solving the traveling salesman

problem as a special case of the vehicle routing problem. Since

then, this algorithm has been further developed both in its

methods and its applications. Several variants of this algorithm

efficiently were used for solving both location and routing

problems. Jabalameli and Ghaderi [8] used the VNS to solve

the multi-source Weber problem. A hybrid VNS was proposed

to solve the budget-constrained dynamic uncapacitated facility

location-network design problem by Ghaderi et al. [4]. In

addition, VNS is also applied on different contexts of routing

problems, e.g. ([22], [27]). On the other hand, Jarboui et al.

[11] proposed different versions of VNS to solve the location

routing problem with multiple capacitated depots and one

uncapacitated vehicle per depot. Therefore, VNS is shown to

be relevant to solve the location-routing problem and related

problems.
As mentioned earlier, two different decisions consisting

location and routing should be made in the problem. The

pseudocode of the VNS algorithm is presented at the end of

this subsection.
In order to represent a solution, a vector consisting

of the depot location, customers and vehicles number is

constructed. For instance, if we want to select a depot among

three candidate locations {1,2,3}, and service five customers

{1, . . . , 5} by three available vehicles {6, 7, 8}. Then, vector

[2, 3, 2, 7, 6, 1, 4, 5] denotes a solution such that the first

number shows the candidate location 2 is selected to open

the depot. In addition, the first serving tour is extracted by

selecting the numbers between the depot number and the first

vehicle number (i.e., 7). Hence, the first vehicle starts at the

depot and visits the customers 3 and 2, respectively, and finally

returns back to the depot. Similarly, the customers between

the vehicles number form the other routes. As a results, the

following tours are extracted from the given vector.

{[2, 3], [1, 4, 5]}
The VNS algorithm starts with an initial solution X and

then evokes the related serving tours. The feasibility of
the generated solution is checked and its objective function
is calculated. After that, the main phase of the algorithm
executes until a termination condition is met. In each iteration,
a new solution is generated from the current neighborhood by
using different neighborhood structures. Generally, the VNS
algorithm sets the neighborhood structure at 1 and increases
its value step-by-step after any nonimprovement. The process
continues until the neighborhood rank reaches to a predefined
threshold(i.e., kmax) and then restarts again from k = 1.
In this study, we let to the VNS, explore more the solution
space with the neighborhood of rank k = 1 when there is
no improvement in the solution(i.e., tmax). Whenever the
algorithm leads to improvement in the current solution, the
new solution is replaced and searching process continues with
k = 1. Note that a repairing strategy are used to repair the
infeasible solutions within the framework of the algorithm.

Main framework of the proposed VNS algorithm:

Input the data of problem and the VNS algorithm:
1) Select the set of neighborhood structures, Nk: k = 1, . . . , 5;
2) Generate initial solution X;
3) Extract the related serving tours;
4) Check the solution feasibility and repair it if necessary ;
5) Calculate the objective value of the solution;
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6) Set k ← 1 and t ← 1.

Until the stopping criteria are met repeat the following steps:
• Neighborhood searching: generate a new solution X́ from the

neighborhood of rank k,
• Tours extracting and solution feasibility checking: extract

the serving tours of X́ and check the solution feasibility and
repair it if necessary,

• Solution evaluation: calculate the objective value of X́ ,
• Move to the improved solution:

If the generated solution X́ is better than X , replace X ←
X́ ,k ← 1,t ← 1;
Else if t ≤ tmax, k ← 1,t ← t+ 1;
Otherwise, increase the neighborhood rank k ← k + 1:

• If k > kmax return to the neighborhood of rank 1, k ← 1,t ←
1.

Return the improved solution

B. Experimental Results

In this section, an experimental analysis to test the

performance of the proposed VNS algorithm is performed.

For this purpose, eight test problems were solved with the

standard mathematical programming software GAMS 24.7.1

and solver CPLEX 12.6.3.0, on a computer with Core i5

3.1GHz processor and 8 GB RAM. Python 2.7 was also used

to code the VNS.

Table I illustrates the characteristics of generated instances.

In order to generate the problem data, some parts of the

instances introduced by Prodhon [20] are used. For the

instances with the smaller dimensions, only some potential

depots and customers were used as the first scenario in our

model. Furthermore, for each test instance, we generated

additional scenarios by multiplying scenario-1 data to a

random number drawn uniformly from [0.5, 1.5]. For the sake

of tractability, we also assume each scenario has the same

probability to occur (i.e.,ps = 1
|S| , ∀s ∈ S) without losing

generality.

TABLE I
THE CHARACTERISTICS OF GENERATED TEST PROBLEMS

TestProblem #of customers #of candidate depot #of vehicles
TP1 3 2 4
TP2 6 2 4
TP3 7 3 4
TP4 9 3 4
TP5 11 4 4
TP6 15 5 4
TP7 20 5 4
TP8 25 5 4

Table II shows the experimental results of the CPLEX with

α = 0.5 consisting the optimal solution of each scenario, Z∗
s ,

the optimal or best found solution of the robust model, Zrobust

and the reported gap (or running time) of CPLEX. As we

can see, except for the two smallest instances, CPLEX could

not reach to the optimal solution in 5 hours as a time limit.

Whereas, finding the optimal solution of each scenario also

takes much time which not reported here.

The computational results of the proposed algorithm are also

given in Table III. Note that the algorithm was executed 4 time

and the best found solution, Zbest, average fitness in these

TABLE II
THE CPLEX RESULTS

TP Z∗
1 Z∗

2 Z∗
3 Z∗

4 Zrobust Gap(Cpu)
TP1 11627 11975 11458 11604 11627.5 (1.4)
TP2 14068 13249 13439 13946 13702.5 (17451)
TP3 9479 7620 8101 8661 8465.25 26.9
TP4 17548 16673 14616 19946 17214.25 17.8
TP5 11044 13522 10130 11370 11495.25 44.5
TP6 17294 17480 17663 18863 17882.5 41.7
TP7 15856 13504 17612 17586 16148.5 62.7
TP8 18150 20365 12935 16229 18123.25 68.13

runs, ZAv., average running time, CPUAv., the calculated

GAP of the best found solution with the CPLEX are reported.

The numerical experiments show the effectiveness of the

proposed algorithm in comparation with CPLEX. For the two

first instances, VNS converges to the optimal solution in a

shorter time compared to CPLEX. For the other instances, the

quality of the solutions is close or better than the CPLEX with

a very small proportion of the time.

TABLE III
THE SUMMARY RESULTS OF VNS SLGORITHM

TP Zbest ZAv. CPUAv. Gap
TP1 11627.5 11627.5 0.5 0
TP2 13702.5 13702.5 1.6 0
TP3 8701.25 8784.68 200 0.02
TP4 17034.5 17109.87 240 -0.01
TP5 11159.5 11334.81 300 -0.03
TP6 19251.5 19836.93 400 0.07
TP7 17156 20050.06 500 0.05
TP8 18301 18579.87 600 0.009

For one iteration, the improvement trend of the proposed

algorithm for the test problem TP5 is also given in Figure 1.

This shows that the VNS was able to improve the initial

solution from 12654 to 11188 in 20 times.

Fig. 1 The improvement trend of the algorithm in solving TP5

IV. CONCLUSION

In this paper, an optimization model for the single

depot location-routing problem under parameters uncertainty

was presented. In this model, a combined approach

consisting stochastic programming and robust optimization

was investigated. The p-robustness condition is incorporated

in constraints in order to make sure that our solution in each

scenario would not increase more than (1+ρ)% of the optimal
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solution of that scenario. The proposed model is a developed

version of classical LRP and is very difficult to solve. Hence, a

solution procedure based on variable neighborhood search was

also developed to solve the problem. To test this algorithm, we

generated 8 test instances and compared the algorithm’s result

with the obtained results by CPLEX. The results demonstrated

apparently that our algorithm outperforms CPLEX in some

instances in terms of CPU time and solution quality. Since

this research is the first to study the robust optimization in the

LRP and due to the breadth and importance of the problem

applications, further research is required both to model this

approach on the LRP with other assumptions and developing

efficient algorithms to solve the developed models.
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