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 
Abstract—The classification and the prediction of efficiencies in 

Data Envelopment Analysis (DEA) is an important issue, especially 
in large scale problems or when new units frequently enter the under-
assessment set. In this paper, we contribute to the subject by 
proposing a grid structure based on interval segmentations of the 
range of values for the inputs and outputs. Such intervals combined, 
define hyper-rectangles that partition the space of the problem. This 
structure, exploited by Interval DEA models and a dominance 
relation, acts as a DEA pre-processor, enabling the classification and 
prediction of efficiency scores, without applying any DEA models.  
 

Keywords—Data envelopment analysis, interval DEA, efficiency 
classification, efficiency prediction. 

I. INTRODUCTION 

ATA Envelopment Analysis (DEA) [1] is a non-
parametric linear programming method for measuring the 

relative efficiency of organizational units on the basis of 
multiple inputs and outputs. DEA achieves to classify the units 
in efficient and non-efficient and to estimate their efficiency 
score.  

For the detection of efficient and inefficient units, except 
the typical DEA LP formulation, several other techniques have 
been developed, falling to the category of DEA preprocessors 
[2]-[4]. These are simple and quick computational procedures 
that provide useful, initial information about the efficiency of 
the units, prior to solving any DEA problem. The efficiency 
information provided by DEA pre-processors, may result to 
substantial savings in running LP programs especially in the 
case of large scale DEA problems. Ali [5], based to the idea 
that the dominated units are evidently inefficient, developed 
the so called reduced basis entry (RBE) technique to speed up 
the computational effort for additive and multiplicative DEA 
models. 

For the problem of detecting inefficient units in DEA, in 
this paper we present a technique that partitions the 
hyperspace of a DEA problem using a grid. The areas that 
comprise the grid have the form of hyper-rectangles, defined 
as the Cartesian products of intervals that segmentize the 
inputs and outputs of the problem. The grid and the particular 
shape of the hyper-rectangles enable to extend the dominating 
relation from single units to areas of hyperspace so to identify 
whole groups of inefficient units. Additionally, it defines a 
data setting which is exploited by Interval DEA (IDEA) and 
classifies the hyper-rectangles into efficient, efficient in a 
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maximal sense, and inefficient. All the units belonging to 
inefficient hyper-rectangles are certainly inefficient units. The 
two techniques, act as a DEA preprocessor in the sense that 
can detect inefficient units in a DEA problem. This is 
particularly useful in the case of large-scale DEA problems for 
which the proposed technique can reduce their size, without 
solving it. The proposed partitioning grid of hyper-rectangles 
has the additional advantage to predict the efficiency class of 
any new unit that enters the problem using only comparisons.  

The rest of this paper is unfolded as follows: Section II 
describes the definition of the partitioning grid of hyper-
rectangles, Section III presents the IDEA modelling that 
assesses the hypr-rectangle efficiency, Section IV extends the 
domination issue to the groups of units, and Section V 
presents the exploitation of the methodology using an 
arithmetic example.   

II. DEFINITION OF A PARTITIONING GRID OF  
HYPER-RECTANGLES  

Assume a typical DEA problem consisted of a set of n units 

1 2{ , ,..., }nD d d d  evaluated by m inputs and s outputs. For a 

given unit j, let yrj be the level of the rth output (r =1,…, s) 

and ijx  the level of the ith input (i=1,…, m). Each unit j can be 

regarded as a data point represented by the vector

1 2 1 2( , ) ( , ,.., , , ,..., )j j j j mj j j sjX Y x x x y y y  that lies in an m+s 

multidimensional space (the m inputs and the s outputs are its 
dimensions). DEA theory underlies that such points that 
correspond to the under-evaluation units define a polyhedral 
set whose boundary is formed by the efficient units. The shape 
of the polyhedron is depended on the returns to scale 
assumption and can range from an unbounded polyhedron to a 
convex hull. Inefficient units are interior points in this 
structure. The problem of discriminating efficient and 
inefficient units is equivalent to determine the boundary set of 
this polyhedral set of points.  

To approach the efficiency classification problem, we first 
partition the range of values in inputs, outputs by using a 
number of breakpoints. The breakpoints form intervals that 
separate the area of the polyhedral set. The Cartesian product 
of these intervals, seen from geometrical viewpoint, defines a 
grid of hyper-rectangles (hyper-rectangle is the generalization 
in the multidimensional space of a typical two-dimensional 
rectangle) that partition the area of the polyhedral set.  

The so formed grid can be used for the efficiency 
classification analysis. The notation and formal definition of 
the grid is as follows.  

For a given input i, let [li, hi] be the range of values over the 
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entire set of DMUs (i.e. 𝑙௜ ൌ 𝑚𝑖𝑛௝ሼ𝑥௜௝ሽ and ℎ௜ ൌ 𝑚𝑎𝑥௝ሼ𝑥௜௝ሽ). 
We segmentize the interval [li, hi] by considering a number αi 

of breakpoints 1 2, ,..., ia
i i ix x x  with 

1
i ix l  and ia

i ix h  so the 

range [li, hi] to be covered by the intervals 
11 2 2 3[ ,.., ],[ ,.., ],..,[ ..., ]i ia a

i i i i i ix x x x x x . The breakpoints 
1 2, ,..., ia
i i ix x x are defined so every intermediate interval to 

contain at least one value 
ijx . As the intervals overlap at their 

upper bound point, in order to make them distinct (non-
overlapping), we introduce a discrimination factor   that is 
added to the upper bound of every interval. This arrangement 
makes the intervals take the form 

11 2 2 3[ ,.., ],[ ,.., ],..,[ ..., ]i ia a
i i i i i ix x x x x x   . Factor   takes 

small, non-significant values, e.g. 10-3, 10-6 depending on the 
unit of measurement of the particular input, output. The above 
interval segmentation is defined in all inputs and outputs of 
the problem. Similar is the arrangement for the outputs: the 
range [lr, hr] between the minimum and maximum value for 
any output r can be segmented by using br in number 
breakpoints 1 2, ,..., rb

i i iy y y so the associated intervals will take 

the form 11 2 2 3[ ,.., ],[ ,.., ],..,[ ,.., ]r rb b
r r r r r ry y y y y y   . 

The Cartesian product of segmenting intervals for all inputs 
and outputs (i.e. all possible combinations of intervals in 
inputs and outputs) defines non-overlapping, non-empty 
hyper-rectangles that cover the space of the polyhedral set. 
Note that the number p of all the covering hyper-rectangles is

1 2 1 2( 1)( 1)...( 1)( 1)( 1)...( 1)m sp a a a b b b       .  

Each different hyper-rectangle combination of intervals in 
Table I presents the whole set (grid) of such hyper-rectangles. 

 
TABLE I 

THE HYPER-RECTANGLES OF THE GRID DEFINED BY THE COMPOSING 

INTERVALS 

 INPUTS 
 1x 2x   mx

1G  
1 2
1 1[ , .., ]x x  

1 2
2 2[ ,.., ]x x … 1 2[ ,.., ]m mx x

2G  
2 3
1 1[ +δ, .., ]x x  

1 2
2 2[ ,.., ]x x … 1 2[ , .., ]m mx x

… … … … … 

1aG
 

1 11
1 1[ +δ, .., ]a ax x

 
1 2
2 2[ ,.., ]x x   1 2[ , .., ]m mx x  

1 1aG   
1 2
1 1[ ,.., ]x x  

2 21
2 2[ +δ,.., ]a ax x

 … 1 2[ , .., ]m mx x

… … … … … 

pG  
1 11

1 1[ +δ,.., ]a ax x

 
2 21

2 2[ +δ, .., ]a ax x

 … 1[ +δ,.., ]m ma a
m mx x

 OUTPUTS

 1x  
2x   mx

1G  1 2
1 1[ ,.., ]y y  1 2

2 2[ ,.., ]y y … 1 2[ ,.., ]s sy y

2G  1 2
1 1[ ,.., ]y y  1 2

2 2[ ,.., ]y y … 1 2[ ,.., ]s sy y

… … … … … 

1aG  1 2
1 1[ ,.., ]y y  1 2

2 2[ ,.., ]y y … 1 2[ ,.., ]s sy y

1 1aG 
 1 2

1 1[ ,.., ]y y  1 2
2 2[ ,.., ]y y … 1 2[ ,.., ]s sy y

… … … … … 

pG  1 11
1 1[ +δ, .., ]b by y  2 21

2 2[ +δ, .., ]b by y  … 1[ +δ, .., ]s sb b
s sy y

 
The dataset of Table I, viewed as a DEA input-output setup, 

is a typical Interval DEA dataset, having intervals in the place 
of crisp values. The interval units G1, G2 ,…, Gp are hyper-

rectangles assessed by m inputs and s outputs. It is important 
to notice that, by their definition, the hyper-rectangles G1, G2 

…, Gp form a partition of the space and any unit 
1 2, ,..., nd d d  of 

the initial problem belongs to only one hyper-rectangle G1, G2 

…, Gp . If by Jk we denote the set of indexes of the units 𝑑௝ that 
belong to the group Gk, the structure of groups Gk is described 
by the following relations:  

i) 1 2, ,.., {1,2,..., }pJ J J n   

ii) ,i jJ J i j       

iii) 1 2 .. {1,2,.., }pJ J J n    . 
Note that when the definition of breakpoints is not feasible 

or not implied by the specific application, a k-means 
clustering procedure [6] can be also applied to define the Gk 
hyper-rectangles. Such a procedure is based on the Euclidean 
distance and can separate the units into relative homogeneous 
groups (units regarded as points in the multidimensional space 
are arranged in relative small distances from the center of the 
group while the group centers are relatively apart). The 
interval definitions for any groups Gk can be obtained by the 
minimum in inputs and maximum in outputs values of the 
included member units ( , )k k kd X Y belonging to group Gk. 

For the compound units G1, G2 …, Gp , an efficiency 
analysis is possible both by applying IDEA models to obtain 
an efficiency classification and by identifying the dominated 
units.  

III. ESTIMATION OF HYPER-RECTANGLES EFFICIENCY SCORES 

USING IDEA  

Interval DEA (IDEA), based on a dataset consisted on 
intervals as in Table I, can discriminate all the groups into 
classes of efficiency. In this section, we briefly present the 
basic models of IDEA and we demonstrate their use in the 
case of the hyper-rectangle grid structure. The terms and 
formulations are as follows. 

Unlike the original DEA model, IDEA assumes that, in the 

place of the crisp input ijx  and output yrj values, there exist 

bounded intervals [ , ]L U
ij ijx x  and [ , ]L U

rj rjy y , with strictly positive 

constant bounds. In such a setting, any unit 
0j  is free to 

assign any value within the intervals, so its efficiency score 
lies between a minimum value 

0

L
jh  and a maximum value, 

0

U
jh . 

IDEA has been introduced by Cooper et al. [7]. Despotis and 
Smirlis [8] treated both interval and ordinal data using variable 
transformations and introduced a three-group efficiency 
classification of the units (E++, E+, E-) instead of efficient and 
non-efficient partitions that typical DEA arranges. Wang et al. 
[9] proposed new, simpler models to use common production 
frontiers for all units.  

Following the approach of [8], we note that the maximum 
possible efficiency score 

0

U
jh  is obtained when the evaluated 

unit 0j  is set to its most favourable position, that is, when it 

arranges its inputs to the lower bound and its outputs to the 
upper bound while all the rest units are set to their least 
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favourable position (inputs are set to the upper bound and 
outputs to the lower bound). Note that for any hyper-rectangle 
Gk , its most favorable position is the point with its lowest 

input and highest output i.e. ( , )U L U
k k kd X Y

 
where 

min
k

L
iX X  and max ,

k

U
i kY Y i J  .The point U

kd
 
may be a 

real unit in the initial problem or an artificial one. Similarly, 
the worst position of Gk is the point ( , )

k

L U L
k kd X Y defined as 

max  
k

U
iX X and min ,

k

L
i kY Y i J  . The equal operand in the 

previous relations holds when there is a real unit in Gk that has 
the group minimum or maximum values.  

Likewise the upper bound 
0

U
jh , a lower bound 

0

L
jh of the 

efficiency score can be obtained for the unit 
0j . For this lower 

bound, the evaluated unit sets its position to the worst artificial 

unit 
0

L
jd  while all other to their best artificial unit U

jd . 

Interval DEA can be formulated either as a CCR or a BCC 
model. In the paper, we use the BCC formulation but similar 
form can be given for the CCR. Models (1) and (2) estimate 

for a unit 0j  the values for the efficiency scores 
0

U
jh , 

0

L
jh , 

respectively.  
 

0 0

0

0 0

01

1

01 1

0 01 1

max

. .         

1

0

0, 1,.., ;

, ,

sU U
j r rjr

m L
i iji

s mU L
r rj i ijr i

s mL U
r rj i ijr i

r i

h u y w

s t

v x

u y v x w

u y v x w j n j j

u v r i





 

 

 



  

    

 




 
 



  (1) 

 

0 0

0

0

01

1

01 1

0 01 1

max

. .         

1

0,

0, 1,..., ,

, ,

sL L
j r rjr

m U
i iji

s mL U
r rj i ijr i

s mU L
r rj i ijr i

r i

h u y w

s t

v x

u y v x w

u y v x w j n j j

u v r i





 

 

 



  

    

 




 
 



     (2) 

 
Note that (1) and (2) are typical DEA BCC models with 

crisp data (the values for ,L U
ij ijx x , ,L U

rj rjy y  are known), under 

estimation variables of which are the weights ,i rv u . Based 

on the efficiency values 
0

U
jh , 

0

L
jh , a simple classification for 

the units into three classes is possible as follows (see [8]):  
 

{ {1,.., }/ 1},

{ {1,.., }/ 1 1},

{ {1,.., }/ 1}

L
j

U L
j j

U
j

E j n h

E j n h and h

E j n h







  

   

  

 

The set E consists of the units that are efficient in any 
combination of input/output levels. The set E  consists of 
units that are efficient in a maximal sense, but there are 
input/output adjustments under which they cannot maintain 
their efficiency. The set E  consists of the definitely 
inefficient units. For them, any combination of values within 
their input/output intervals results in inefficiency.  

IV. DOMINANCE RELATION BETWEEN GROUPS  

In this section, the notion of unit domination in DEA is 
extended to the case of the groups G1, G2 …, Gp. A DEA unit 
is dominated if another unit of the date set has lower input and 
higher output values. Any such dominated unit is inefficient. 
This relation is formally defined as follows: 
Definition. In the context of DEA, a unit ( , )q q qd X Y  is 

dominated by a unit ( , )p p pd X Y , (symbolically 
p qd d ), if 

 and p q p qX X Y Y  or equivalently ( , ) ( , )p p q qX Y X Y   . 

The inequality symbol   is applied to all the elements of the 
vectors.  

This dominance relation is now extended to the groups of 
units as follows: if the placement of a group (hyper-rectangle) 
is such that it is the best artificial unit, i.e. the one with lowest 
inputs and highest outputs (upper left corner in two 
dimensions) is worse, compared to any other group’s worst 
artificial unit i.e. the one with highest inputs and lowest 
outputs (lower right corner in two dimensions), then the first 
group is dominated by the second. As every unit in a 
dominated group is also dominated, the clear conclusion is 
that it is inefficient. This means that every real unit belonging 
to the hyper-rectangle is inefficient. The formal definitions 
and proofs of the group domination relation are as follows:  
Theorem 1. For two given groups {( , ), }p k k pG X Y k J   and 

{( , ), }q q q qG X Y k J  , if L U
p qd d

 
then Gp dominates Gq (

p qG G ).  

Proof. It is sufficient to prove that every unit of Gp dominates 
every unit of Gq. Let ( , )p p pd X Y  be a unit belonging to 

group Gp and ( , )q q qd X Y  a unit belonging to group Gq. By 

the definition of the worst artificial unit, it is L
p pd d . From 

the hypothesis, L U
p qd d , so it derives that L U

p p qd d d  . 

Again by the definition of the best artificial unit it is U
q qd d . 

From the last two relations follows that L U
p p q qd d d d   . 

Thus, 
p qG G

 
, i.e. Gp dominates Gq.  

The dominated groups can be detected by simple 
comparisons of the elements of the artificial units ,L U

k kd d .  

Note that the dominance relation is not sensitive to the 
returns to scale issue of DEA, so it cannot provide with 
efficiency classification information for the rest, undominated, 
units. 
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V. EXPLOITATION OF THE IDEA AND DOMINANCE  
RELATION-NUMERICAL EXAMPLE 

The hyper-rectangle grid defined in the previous sections 
can be exploited in different ways. First, the conclusion for 
groups classified as E- is that they contain inefficient units of 
the initial dataset. Such inefficient units can be excluded from 
the analysis as they do not affect the efficiency scores. In the 
case of large scale DEA problems, a sufficient reduction of the 
problem size is feasible when groups of E- (and consequently 
all the units they include), may not participate in the analysis. 
The same outcome can be obtained by applying the dominance 
relation prior to the DEA modelling. Second, the grid is 
capable of predicting an efficiency score range for any new 
unit that enters the problem, without running the DEA models 
from the beginning. Indeed, prior of the DEA computational 
stage, using the values in inputs-outputs of a new unit, one can 
determine the group that this unit belongs. Then, by the IDEA 
concept, it is obvious that the efficiency score of this unit will 

be bounded by the efficiency values 
0

U
jh , 

0

L
jh of the group that 

it belongs to. This means that if the group that the new unit 
belongs to is classified as E++, the conclusion is that this unit 
is definitely efficient and if it is in the E-, the unit will be 
definitely inefficient.  

To illustrate the above, we provide the following simple 
arithmetic example: 34 units are assessed in terms of one input 
X and one output Y, the value ranges of which are [130 194], 
[50 90]. The breakpoints that we define for the input X are 
130, 148, 170 and 200 and for the output Y 50, 72, 81, 90. 

Table II presents the nine groups (Groups G1, G2,..,G9) formed 
by this segmentation, their population (column 2) and the low 
and upper efficiency scores and class (columns 6-8) obtained 
by IDEA models (1), (2).  

 
TABLE II 

INTERVAL SEGMENTATION AND EFFICIENCY  

Group Pop
L
ijx  

U
ijx L

rjy  
U
rjy  

0

L
jh  

0

U
jh  Class 

G1 3 130 148 50 70 0.493 0.978 E- 

G2 5 148.1 169 50 70 0.432 0.858 E- 

G3 3 169.1 194 50 70 0.376 0.752 E- 

G4 4 130 148 70.1 81 0.691 1.000 E+ 

G5 4 148.1 169 70.1 81 0.603 0.993 E- 

G6 5 169.1 194 70.1 81 0.527 0.870 E- 

G7 3 130 148 81.1 89 0.884 1.000 E+ 

G8 3 148.1 169 81.1 89 0.702 1.000 E+ 

G9 9 169.1 194 81.1 89 0.614 0.956 E- 

 
Fig. 1 presents graphically the coverage of the problem 

space by the parallelograms G1,..,G9 and the BCC efficient 
frontier in the initial dataset. The arrows indicate the 
dominance relation between the groups. In this case, all such 
relations are G4G2, G7G5G3, G8G6 , so all the 
dominated groups are G2, G3, G5, G6. To explain the 
dominance relation, take that of between G4 and G2 as 
example. G2 is dominated by group G4 because the worst case 
of G4 (lower right corner point 𝑑ସ௅ ) is better than the best case 
of G2 (upper left corner 𝑑ଶ

௎).  

 

 

Fig. 1 The grid of the numerical example 
 

Based on the above presented segmentation grid, the 
efficiency classification and prediction is possible. From the 
last column of Table II derives that groups G1, G2, G3, G5, G6 
and G9 are classified as E, so they include inefficient units of 
the initial problem. Those groups contain 17 units of the initial 
DEA problem (50% of its size) and their exclusion from the 
analysis will result to a significant problem size reduction, 
without affecting the efficient units and their scores. The rest 
of the groups G4, G7 and G8 in E+, host parts the efficient 
frontier and may contain both efficient and inefficient units. 
Moreover, for any new unit that may enter the problem, the 

prediction of its efficiency status may be possible without 
solving the DEA problem from the beginning. For example, 
assume that a new unit (X,Y)=(158,75) will be assessed 
against all the existing in the initial dataset. From a direct 
comparison with the group breakpoints it is easy to detect that 
this unit belongs to group G5 so the verdict is that this unit is 
inefficient and its score is bounded in [0,603 0,993], that of 
the group G5 where it belongs to.  
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VI. CONCLUSION 

In this paper, we presented a technique, acting as DEA 
preprocessor, for classifying and predicting efficiency. The 
technique is based on the formation of an interval dataset and 
the application of known Interval DEA models to access 
properly selected groups of the units. The efficiency status of 
the groups may be used to draw information about the 
efficiency of the units of the initial DEA problem. Moreover, 
the group structure presented can be used as an efficiency 
prediction template for units not included in the data set, 
assuming that their values for inputs and outputs do not violate 
the previously set ranges. 

The presented technique is sensitive to the method which 
will be used to group the units of the problem. Its 
effectiveness depends on the number of groups and their 
population that will eventually be characterized as inefficient. 
A direction for the choice of the groups is to be such so to 
have relative large population and to be defined by interval 
values close to the maximum values for the inputs and to the 
minimum values for the outputs. Another indication for the 
inefficiency of the groups can be drawn by inspecting the 
interval dataset to find any existing dominance relations. An 
interesting outcome of the technique may also concern the 
class E  which will include all the definitely efficient units. If 
the arrangement of the intervals and the groups is such to 
result to one or more classes E , then the identification of the 
efficient units will be possible, likewise the other DEA pre-
processors.  
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