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 
Abstract—In this paper, mean-variance optimization of portfolios 

with the return of premium clauses in a defined contribution (DC) 
pension plan with multiple contributors under constant elasticity of 
variance (CEV) model is studied. The return clauses which permit 
death members to claim their accumulated wealth are considered, the 
remaining wealth is not equally distributed by the remaining 
members as in literature. We assume that before investment, the 
surplus which includes funds of members who died after retirement 
adds to the total wealth. Next, we consider investments in a risk-free 
asset and a risky asset to meet up the expected returns of the 
remaining members and obtain an optimized problem with the help of 
extended Hamilton Jacobi Bellman equation. We obtained the 
optimal investment strategies for the two assets and the efficient 
frontier of the members by using a stochastic optimal control 
technique. Furthermore, we studied the effect of the various 
parameters of the optimal investment strategies and the effect of the 
risk-averse level on the efficient frontier. We observed that the 
optimal investment strategy is the same as in literature, secondly, we 
observed that the surplus decreases the proportion of the wealth 
invested in the risky asset. 

 
Keywords—DC pension fund, Hamilton Jacobi Bellman 

equation, optimal investment strategies, stochastic optimal control 
technique, return of premiums clauses, mean-variance utility. 

I. INTRODUCTION 

PTIMAL portfolio selection is an interesting and 
important aspect of study in the field of mathematical 

finance and has grown over the years. It involves practical 
ways to determine how best investments can be done for 
optimal productivity with minimal risk. Recent publications 
have shown different methods of optimizing investment 
strategies and returns [1]-[7], [15]. A good number of 
researches have been published in this direction [7], [15], 
especially in DC Pension plan which requires members and 
their employers to contribute a certain proportion of their 
income to the pension scheme and the management of the 
pension scheme will in turn help to plan for the members’ 
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retirement.  
Some research work in association with optimal investment 

strategies in the DC pension plan includes [1], where they 
studied optimal investment strategy for DC pension funds with 
the stochastic interest rate. Reference [2] investigated optimal 
investment for the DC pension fund whose interest rate was a 
Vasicek model. The optimal investment strategy of the DC 
pension fund with affine interest rate, which includes the Cox–
Ingersoll–Ross model and Vasicek model, has been 
investigated (see for example [3]-[5]). Recently, CEV model 
has increasingly been used in the study of optimal investment 
strategies in a DC pension fund. Reference [6] studied CEV 
model and the Legendre transform-dual solution for annuity 
contracts. Since Geometric Brownian motion (GBM) can be 
considered as a special case of the CEV model, such work 
extended the research of [6] where they applied CEV model to 
derive a dual solution of a CRRA utility function via Legendre 
transform. Reference [7] extended [6] by obtaining solutions 
for investor with CRRA and CARA utility function. Reference 
[8] investigated an asset allocation problem under a loss-
averse preference. Reference [9] considered stochastic salary 
income of a pension beneficiary and found the investment 
strategy that maximizes the expected power utility of the 
relationship between the terminal fund and the final salary. 
Reference [10] investigated a utility optimization problem for 
a DC pension plan with a stochastic salary income and a 
stochastic contribution process in a regime-switching 
economy. Reference [11] studied optimal portfolios for DC 
pension plans under a CEV model, [12] modeled pension fund 
with multiple contributors and obtained the explicit solution of 
the optimal investment strategy for CRRA and CARA using 
power transformation method. Reference [13] obtained 
explicit solution of the optimal investment strategies in DC 
pension fund with multiple contributions using the Legendre 
transformation method for CRRA and CARA. In [14], 
stochastic strategies of optimal investment for DC pension 
fund with multiple contributors were considered. The constant 
relative risk aversion (CRRA) and the constant absolute risk 
aversion (CARA) are some of the commonly used utility 
functions (see for example [1]-[4], [7]). 

In recent times, there have been some publications on 
optimal investment strategy with return of premiums clauses. 
Reference [15] studied optimal investment strategy for a DC 
pension plan with the return of premiums clauses in a mean-
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variance framework, [16] extended the work of [15] by 
studying optimal time-consistent investment strategy for a DC 
pension with the return of premiums clauses and annuity 
contracts; in their work, they considered both the 
accumulation and distribution phases using Heston’s 
stochastic volatility model. Reference [17] considered 
equilibrium investment strategy for DC pension plan with a 
default risk and return of premiums clauses under CEV model. 

This paper focuses on optimizing the mean-variance of 
portfolios with the return of premium clauses in a DC pension 
plan with multiple contributors under CEV model. We 
consider a return clause which permits death members to 
withdraw their accumulated contributions. We assume that 
before investment, the surplus which includes funds of 
members who died after retirement adds to the total wealth. 
Next, we consider investments in a risk-free asset and a risky 
asset to meet up the expected returns of the remaining 
members and obtained an optimized problem with the help of 
Hamilton Jacobi Bellman equation. By using a stochastic 
optimal control technique, we obtain the optimal investment 
strategies for the two assets and the efficient frontier of the 
members. Also, the effect of the various parameters of the 
optimal investment strategies and the effect of the risk-averse 
level on the efficient frontier are studied as well.  

II. MATHEMATICAL MODEL OF THE FINANCIAL MARKET 

We assume that the market is made up of risk-free asset 
(cash) and risky asset (stock). Let ሺΩ, 𝐹, 𝑃ሻ be a complete 
probability space where Ω is a real space and 𝑃 is a probability 
measure, ሼ𝑊௦ሺ𝑡ሻ, 𝑊௧ሺ𝑡ሻሽ is a standard two dimensional 
motion, such that they are orthogonal to each other. 𝐹is the 
filtration and denotes the information generated by the 
Brownian motion ሼ𝑊௦ሺ𝑡ሻ, 𝑊௧ሺ𝑡ሻሽ.  

Let 𝐵௧ሺ𝑡ሻand 𝑆௧ሺ𝑡ሻdenote the prices of the risk-free asset 
and risky asset respectively and they are modelled as  

 
ௗ஻೟ሺ௧ሻ

஻೟ሺ௧ሻ
ൌ 𝑟𝑑𝑡,                 (1) 

 
ௗௌ೟ሺ௧ሻ

ௌ೟ሺ௧ሻ
ൌ 𝛼𝑑𝑡 ൅ 𝐾𝑆௧

ఉ𝑑𝑊௧.            (2) 

 
where𝑟 is the predetermined interest rate of the risk free asset, 
𝛼 is an expected instantaneous rate of return of the risky asset 
and satisfies the general condition 𝛼 ൐ 𝑟. 𝐾𝑆௧

ఉ is the 
instantaneous volatility, and 𝛽 is the elasticity parameter and 
satisfies the general condition 𝛽 ൏ 0. 

In DC pension fund system with multiple contributors, we 
assume: 
(1) Payment is made by only those who have retired. 
(2) Payment continues till the death of plan contributors. 
(3) Death contributors are automatically deleted from the 

system. 
From the above assumptions, the payment is a stochastic 

process. We assume the Brownian motion with drift as: 
 

𝑑𝐶ሺ𝑡ሻ ൌ 𝑎𝑑𝑡 െ 𝑏𝑑𝑊௦ሺ𝑡ሻ             (3) 

where 𝑎 and 𝑏 are positive constants and denote the amount 
given to the retired contributors and that which is due death 
contributors that are out of the system. 

In a DC fund system, members remit certain proportion of 
their earning to the pension account every month; we assume 
that the number of contributors is constant and the 
contribution rate is modeled as: 

 
𝑑𝑌 ൌ 𝑝𝑑𝑡                  (4) 

 
where 𝑝 ൌ ሺ1 ൅ 𝜃ሻ𝑎 with safety loading 𝜃 ൐ 0, 𝑝 ൌ ሺ1 ൅ 𝜃ሻ𝑎, 
with safetyloading 𝜃 ൐ 0. If there is no investment, the 
dynamics of the surplus is given by:  

                                              
𝑑𝑅ሺ𝑡ሻ ൌ 𝑑𝑌 െ 𝑑𝐶ሺ𝑡ሻ ൌ 𝜃𝑎𝑑𝑡 ൅ 𝑏𝑑𝑊௦ሺ𝑡ሻ ൌ ሺ𝑝 െ 𝑎ሻ𝑑𝑡 ൅ 𝑏𝑑𝑊௦ሺ𝑡ሻ 

(5) 
 
Let 𝑞 be the premium received at a given time, which is 

known, 𝜔଴ represent the initial age of accumulation phase, T 
is the time frame of the accumulation phase such that 𝜔଴ ൅ 𝑇 
is the end age. The actuarial symbol 𝛿

ቀ
భ
೔ቁ,ఠబା௧ is the mortality 

rate from time 𝑡to 𝑡 ൅
ଵ

௜
, 𝑡𝑝 is the premium accumulated at 

time t, 𝑡𝑝𝛿
ቀ

భ
೔ቁ,ఠబା௧ is the premium returned to the death 

members. Also, we assume that after return of premium to 
death members, the remaining accumulations are not shared 
equally unlike in [15].  

Let 𝜑 represent the proportion of the wealth to be invested 
in risky assets and 𝜑஻ ൌ 1 െ 𝜑, the proportion to be invested 
in the risk free asset. 

Considering the time interval [𝑡, 𝑡 ൅ ଵ

௜
ሿ, the differential form 

associated with the fund size is given as:  
 

𝑋 ቀ𝑡 ൅
ଵ

௜
ቁ ൌ 𝑋ሺ𝑡ሻ ቆ𝜑

ௌ
೟శ

భ
೔

ௌ೟
൅ ሺ1 െ 𝜑ሻ

஻
೟శ

భ
೔

஻೟
ቇ ൅ 𝑝 ቀ

ଵ

௜
ቁ െ 𝑡𝑝𝛿ቀభ

೔
ቁ,ఠబା௧

൅

𝑑𝑅ሺ𝑡ሻ               (6) 
 

𝑋 ቀ𝑡 ൅
ଵ

௜
ቁ ൌ 𝑋ሺ𝑡ሻ ቆ𝜑ሺ

ௌ
೟శ

భ
೔

ௌ೟
െ

ௌ೟

ௌ೟
൅

ௌ೟

ௌ೟
ሻ ൅ ሺ1 െ 𝜑ሻሺ

஻
೟శ

భ
೔

஻೟
െ

஻೟

஻೟
൅

஻೟

஻೟
ሻቇ ൅

𝑝 ቀଵ

௜
ቁ െ 𝑡𝑝𝛿

ቀ
భ
೔
ቁ,ఠబା௧

൅ 𝑑𝑅ሺ𝑡ሻ         (7) 

 

𝑋 ቀ𝑡 ൅
ଵ

௜
ቁ ൌ 𝑋ሺ𝑡ሻ ൭𝜑 ൅ 1 െ 𝜑 ൅ 𝜑 ቆ

ௌ
೟శ

భ
೔

ௌ೟
െ

ௌ೟

ௌ೟
ቇ ൅ ሺ1 െ 𝜑ሻ ቆ

஻
೟శ

భ
೔

஻೟
െ

஻೟

஻೟
ቇ൱ ൅ 𝑝 ቀ

ଵ

௜
ቁ െ 𝑡𝑝𝛿ቀభ

೔
ቁ,ఠబା௧

൅ 𝑑𝑅ሺ𝑡ሻ  (8) 

 

𝑋 ቀ𝑡 ൅
ଵ

௜
ቁ െ 𝑋ሺ𝑡ሻ ൌ 𝑋ሺ𝑡ሻ ൭𝜑 ቆ

ௌ
೟శ

భ
೔ షೄ೟

ௌ೟
ቇ ൅ ሺ1 െ 𝜑ሻ ቆ

஻
೟శ

భ
೔ షಳ೟

஻೟
ቇ൱ ൅

𝑝 ቀ
ଵ

௜
ቁ െ 𝑡𝑝𝛿ቀభ

೔
ቁ,ఠబା௧

൅ 𝑑𝑅ሺ𝑡ሻ     (9) 

 

𝛿ቀభ
೔
ቁ,ఠబା௧

ൌ 1 െ exp ሼെ ׬ 𝜇ሺ𝜔଴ ൅ 𝑡 ൅ 𝑠ሻ𝑑𝑠ሽ
భ
೔

଴ ൌ 𝜇ሺ𝜔଴ ൅ 𝑡ሻ ଵ

௜
൅ 𝑂ሺ

ଵ

௜
ሻ

                (10) 
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𝑖 → ∞, 𝛿ቀభ
೔
ቁ,ఠబା௧

ൌ 𝜇ሺ𝜔଴ ൅ 𝑡ሻ𝑑𝑡, 𝑝 ቀ
ଵ

௜
ቁ → 𝑝𝑑𝑡, 

ௌ
೟శ

భ
೔ షೄ೟

ௌ೟
→

ௗௌ೟ሺ௧ሻ

ௌ೟ሺ௧ሻ
, 

஻
೟శభ

೔షಳ೟

஻೟
→ ௗ஻೟ሺ௧ሻ

஻೟ሺ௧ሻ
              (11) 

 
Substituting (11) into (9) we have 
 

𝑑𝑋ሺ𝑡ሻ ൌ 𝑋ሺ𝑡ሻ ቆ𝜑 ቀ
ௗௌ೟ሺ௧ሻ

ௌ೟ሺ௧ሻ
ቁ ൅ ሺ1 െ 𝜑ሻ ቀ

ௗ஻೟ሺ௧ሻ

஻೟ሺ௧ሻ
ቁቇ ൅ 𝑝𝑑𝑡 െ

𝑡𝑝𝜇ሺ𝜔଴ ൅ 𝑡ሻ𝑑𝑡 ൅ 𝑑𝑅ሺ𝑡ሻ              (12) 
 

𝑑𝑋ሺ𝑡ሻ ൌ 𝑋ሺ𝑡ሻ ቀ𝜑൫𝛼𝑑𝑡 ൅ 𝐾𝑆௧
ఉ𝑑𝑊௧൯ ൅ ሺ1 െ 𝜑ሻሺ𝑟𝑑𝑡ሻቁ ൅ 𝑝𝑑𝑡 െ

𝑡𝑝𝜇ሺ𝜔଴ ൅ 𝑡ሻ𝑑𝑡 ൅ ሺ𝑝 െ 𝑎ሻ𝑑𝑡 ൅ 𝑏𝑑𝑊௦ሺ𝑡ሻ     (13) 
 

𝑑𝑋ሺ𝑡ሻ ൌ ቄ𝑋ሺ𝑡ሻሺ𝜑ሺ𝛼 െ 𝑟ሻ ൅ 𝑟ሻ െ 𝑎 ൅ 2𝑝 ൅ ቀ
௣௧

ఠିఠబି௧
ቁቅ ൅ 𝑏𝑑𝑊௦ሺ𝑡ሻ ൅

𝜑𝑋ሺ𝑡ሻ𝐾𝑆௧
ఉ𝑑𝑊௧  𝑋ሺ0ሻ ൌ 𝑥଴       (14) 

 

𝑑𝑋ሺ𝑡ሻ ൌ ቄ𝑋ሺ𝑡ሻሺ𝜑ሺ𝛼 െ 𝑟ሻ ൅ 𝑟ሻ ൅ 𝑝 ቀ
ଶఠିଶఠబି௧

ఠିఠబି௧
ቁ െ 𝑎ቅ ൅ 𝑏𝑑𝑊௦ሺ𝑡ሻ ൅

𝜑𝑋ሺ𝑡ሻ𝐾𝑆௧
ఉ𝑑𝑊௧ 𝑋ሺ0ሻ ൌ 𝑥଴        (15) 

 
where  
 

𝜇ሺ𝑡ሻ ൌ ଵ

ఠି௧
0 ൑ 𝑡 ൏ 𝜔              (16) 

 
𝜇ሺ𝑡ሻis the force function and 𝜔 is the maximal age of the 

life table. 

III. METHODOLOGY 

Now considering the pension wealth and the volatility of 
the accumulation, the surviving members will want to 
maximize the fund size and at the same time minimize the 
volatility of the accumulated wealth. Hence we formulate the 
optimal investment problem under the mean-variance criterion 
as: 

 
supఝ൛𝐸௧,௫,௦𝑋ఝሺ𝑇ሻ െ 𝑉𝑎𝑟௧,௫,௦𝑋ఝሺ𝑇ሻൟ        (17) 

 
Our interest here is to obtain the optimal investment 

strategies for both the risk-free and risky asset using the mean-
variance utility function. 

Applying variational inequality method in [15], [18]. The 
mean-variance control problem in (17) is equivalent to the 
following Markovian time inconsistent stochastic optimal 
control problem with value function 𝐽ሺ𝑡, 𝑥, 𝑠ሻ 

 

⎩
⎪
⎨

⎪
⎧

൞

𝑁ሺ𝑡, 𝑥, 𝜑ሻ ൌ 𝐸௧,௫ሾ𝑋ఝሺ𝑇ሻሿ െ ఊ

ଶ
𝑉𝑎𝑟௧,௫ሾ𝑋ఝሺ𝑇ሻሿ

 ൌ 𝐸௧,௫ሾ𝑋ఝሺ𝑇ሻሿ െ ఊ

ଶ
൫𝐸௧,௫ሾ𝑋ఝሺ𝑇ሻଶ൧ െ ሺ𝐸௧,௫ሾ𝑋ఝሺ𝑇ሻሿሻଶሻ

𝑀ሺ𝑡, 𝑥ሻ  ൌ supఝ 𝑁ሺ𝑡, 𝑥, 𝜑ሻ

 (18) 

 
Following [15] the optimal investment strategy 𝜑∗ satisfies: 
 
𝐽ሺ𝑡, 𝑥, 𝑠ሻ ൌ supఝ 𝐼ሺ𝑡, 𝑥, 𝑠, 𝜑∗ሻ           (19) 

 
where 𝛾 the risk-aversion coefficient of the members  

Let 𝑦ఝሺ𝑡, 𝑥, 𝑠ሻ ൌ 𝐸௧,௫,௦ሾ𝑋ఝሺ𝑇ሻሿ,𝑧ఝሺ𝑡, 𝑥, 𝑠ሻ ൌ 𝐸௧,௫,௦ሾ𝑋ఝሺ𝑇ሻଶሿ 
then 𝐽ሺ𝑡, 𝑥, 𝑠ሻ   ൌ supఝ 𝑓൫𝑡, 𝑥, 𝑦ఝሺ𝑡, 𝑥, 𝑠ሻ, 𝑧ఝሺ𝑡, 𝑥, 𝑠ሻ൯ where  

 

𝑓ሺ𝑡, 𝑥, 𝑠, 𝑦, 𝑧ሻ ൌ 𝑦 െ ఊ

ଶ
ሺ𝑧 െ 𝑦ଶሻ          (20) 

 
Theorem 1 (verification theorem). If there exists three real 
functions F, G, H: [0,T]ൈ 𝑅 → 𝑅 satisfying the following 
extended Hamilton Jacobi Bellman equation equations: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

sup
ఘ

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐹௧ െ 𝑓௧

൅ሺ𝐹௫ െ 𝑓௫ሻ ቂ𝑥ሺ𝜑ሺ𝛼 െ 𝑟ሻ ൅ 𝑟ሻ ൅ 𝑝 ቀ
ଶఠିଶఠబି௧

ఠିఠబି௧
ቁ െ 𝑎ቃ

൅ሺ𝐹௦ െ 𝑓௦ሻ𝛼𝑠 ൅
ଵ

ଶ
ሺ𝐹௫௫ െ 𝑈௫௫ሻሺ𝜑ଶ𝑥ଶ𝑘ଶ𝑠ଶఉ ൅ 𝑏ଶሻ

൅
ଵ

ଶ
ሺ𝐹௦௦ െ 𝑈௦௦ሻ𝑘ଶ𝑠ଶఉାଶ ൅ ሺ𝐹௫௦ െ 𝑈௫௦ሻ𝑥𝜑𝑘ଶ𝑠ଶఉାଵ

⎭
⎪⎪
⎬

⎪⎪
⎫

ൌ 0

𝐹ሺ𝑇, 𝑥, 𝑠ሻ ൌ  𝑓ሺ𝑇, 𝑥, 𝑠, 𝑥, 𝑥ଶሻ

 

(21) 
 
where: 
 

𝑈௫௫ ൌ 𝛾𝐺௫
ଶ, 𝑈௫௦ ൌ 𝛾𝐺௫𝐺௦, 𝑈௦௦ ൌ 𝛾𝐺௦

ଶ       (22) 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

sup
ఘ

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐺௧

൅𝐺௫ ቂ𝑥ሺ𝜑ሺ𝛼 െ 𝑟ሻ ൅ 𝑟ሻ ൅ 𝑝 ቀ
ଶఠିଶఠబି௧

ఠିఠబି௧
ቁ െ 𝑎ቃ

൅𝐺௦𝛼𝑠 ൅ ଵ

ଶ
𝐺௫௫ሺ𝜑ଶ𝑥ଶ𝑘ଶ𝑠ଶఉ ൅ 𝑏ଶሻ

൅
ଵ

ଶ
𝐺௦௦𝑘ଶ𝑠ଶఉାଶ ൅ 𝐺௫௦𝑥𝜑𝑘ଶ𝑠ଶఉାଵ

⎭
⎪⎪
⎬

⎪⎪
⎫

ൌ 0

𝐺ሺ𝑇, 𝑥, 𝑠ሻ ൌ  𝑥

 (23) 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

sup
ఘ

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐻௧

൅𝐻௫ ቂ𝑥ሺ𝜑ሺ𝛼 െ 𝑟ሻ ൅ 𝑟ሻ ൅ 𝑝 ቀଶఠିଶఠబି௧

ఠିఠబି௧
ቁ െ 𝑎ቃ

൅𝐻௦𝛼𝑠 ൅ ଵ

ଶ
𝐻௫௫ሺ𝜑ଶ𝑥ଶ𝑘ଶ𝑠ଶఉ ൅ 𝑏ଶሻ

൅ ଵ

ଶ
𝐻௦௦𝑘ଶ𝑠ଶఉାଶ ൅ 𝐻௫௦𝑥𝜑𝑘ଶ𝑠ଶఉାଵ

⎭
⎪⎪
⎬

⎪⎪
⎫

ൌ 0

𝐻ሺ𝑇, 𝑥, 𝑠ሻ ൌ  𝑥ଶ

 (24) 

 
Then 𝐽ሺ𝑡, 𝑥, 𝑠ሻ ൌ 𝐹ሺ𝑡, 𝑥, 𝑠ሻ, 𝑦ఝ∗

ൌ 𝐺ሺ𝑡, 𝑥, 𝑠ሻ, 𝑧ఝ∗
ൌ 𝐻ሺ𝑡, 𝑥, 𝑠ሻ for 

the optimal investment strategy 𝜑∗. 
Proof: The details of the proof can be found in [19]-[22]  

IV. MAIN RESULT 

A. Optimal Investment Strategy 

Our focus now is to obtain the optimal investment strategy 
by solving (21), (23), (24). 
Result 1. The optimal investment strategies for both assets is 
given as 

 
 𝜑஻

∗ ൌ 1 െ 𝜑∗ 
 

        𝜑∗ ൌ
ሺఈି௥ሻ

ఊ௫௞మ௦మഁ 𝑒௥ሺ௧ି்ሻ ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ 

  
Proof. Recall that from (20), 
 

 𝑓௧ ൌ 𝑓௫ ൌ 𝑓௫௫=𝑓௫௬ ൌ 𝑓௫௭ ൌ 𝑓௬௭ ൌ 𝑓௭௭ ൌ 0, 𝑓௬ ൌ 1 ൅ 𝛾𝑦, 
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𝑓௬௬ ൌ 𝛾, 𝑓௭ ൌ െ ఊ

ଶ
                (25) 

 
Substituting (25) into (21) and differentiating (21) with 

respect to 𝜑, we have 𝜑 as: 
 

𝜑∗ ൌ െ ൤
ሺఈି௥ሻிೣ ା௞మ௦మഁశభሺிೣ ೞିఊீೣீೞሻ

൫ிೣ ೣିఊீೣ
మ൯௫௞మ௦మഁ ൨        (26) 

 
Substituting (26) into (21) and (23) we have: 
 

𝐹௧ ൅ 𝐹௫ ቂ𝑟𝑥 ൅ 𝑝 ቀଶఠିଶఠబି௧

ఠିఠబି௧
ቁ െ 𝑎ቃ ൅ 𝛼𝑠𝐹௦ ൅ ଵ

ଶ
ሺ𝐹௫௫ െ

𝛾𝐺௫
ଶሻ𝑏ଶ ൅

ሾఈି௥ሿమிೣమ

ଶ൫ிೣ ೣିఊீೣ
మ൯௞మ௦మഁ െ ଵ

ଶ
ቀ

ிೣ ೞିఊீೣಸೞ

ிೣ ೣିఊீೣ
మ െ ሺ𝐹௦௦ െ

𝛾𝐺௦
ଶሻቁ 𝑘ଶ𝑠ଶఉାଶ െ

௦ሺఈି௥ሻிೣ ሺிೣ ೞିఊீೣಸೞሻ

ிೣ ೣିఊீೣ
మ ൌ 0       (27) 

 

𝐺௧ ൅ 𝐺௫ ቂ𝑟𝑥 ൅ 𝑝 ቀ
ଶఠିଶఠబି௧

ఠିఠబି௧
ቁ െ 𝑎ቃ ൅ 𝛼𝑠𝐺௦ ൅

ଵ

ଶ
ሺ𝐺௫௫ሻ𝑏ଶ െ

ሾఈି௥ሿమிೣ ீೣ

൫ிೣ ೣିఊீೣ
మ൯௞మ௦మഁ െ ሺ𝐹௫௦ െ 𝛾𝐺௫𝐺௦ሻ𝐺௫௦𝑘ଶ𝑠ଶఉାଶ െ

௦ሺఈି௥ሻሺீೣሺிೣ ೞିఊீೣீೞሻାீೣೞிೣ ሻ

ிೣ ೣିఊீೣ
మ ൌ 0           (28) 

 
Assuming a solution for 𝐹ሺ𝑡, 𝑥, 𝑠ሻand 𝐺ሺ𝑡, 𝑥, 𝑠ሻ as follows: 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝐹ሺ𝑡, 𝑥, 𝑠ሻ ൌ 𝐴ሺ𝑡ሻ𝑥 ൅ ஻ሺ௧ሻ௦షమഁ

ఊ
൅ ஼ሺ௧ሻ

ఊ

𝐴ሺ𝑇ሻ ൌ 1, 𝐵ሺ𝑇ሻ ൌ 0, 𝐶ሺ𝑇ሻ ൌ 0

𝐺ሺ𝑡, 𝑥, 𝑠ሻ ൌ 𝑃ሺ𝑡ሻ𝑥 ൅ ொሺ௧ሻ௦షమഁ

ఊ
൅ ோሺ௧ሻ

ఊ

 𝑃ሺ𝑇ሻ ൌ 1, 𝑄ሺ𝑇ሻ ൌ 0, 𝑅ሺ𝑇ሻ ൌ 0

𝐹௧ ൌ 𝐴௧𝑥 ൅ ஻೟௦షమഁ

ఊ
൅ ஼೟ሺ௧ሻ

ఊ
, 𝐹௫ ൌ 𝐴, 𝐹௫௫ ൌ 0,

𝐹௦ ൌ ିଶఉ஻ሺ௧ሻ௦షమഁషభ

ఊ
, 𝐹௦௦ ൌ ଶఉሺଶఉାଵሻ஻ሺ௧ሻ௦షమഁషమ

ఊ

𝐺௧ ൌ 𝑃௧𝑥 ൅ ொ೟௦షమഁ

ఊ
൅ ோ೟ሺ௧ሻ

ఊ
, 𝐺௫ ൌ 𝑃, 𝐺௫௫ ൌ 0,

𝐺௦ ൌ
ିଶఉொሺ௧ሻ௦షమഁషభ

ఊ
, 𝐹௦ ൌ

ଶఉሺଶఉାଵሻொሺ௧ሻ௦షమഁషమ

ఊ

     (29) 

 
Substituting (29) into (26), (27) and (28), we have: 
 

𝜑∗ ൌ െ ቂ
ሺఈି௥ሻ஺ାଶఉொ௉௞మ

௉ఊ௫௞మ௦మഁ ቃ             (30) 

 
𝐴௧ሺ𝑡ሻ ൅ 𝑟𝐴ሺ𝑡ሻ ൌ 0               (31) 

 

𝐵௧ሺ𝑡ሻ ൅ 2𝛼𝛽𝐵 ൅
ሺఈି௥ሻమ஺మ

ଶ௉మ௞మ െ 2𝛽ଶ𝑄ଶ ൅ ଶሺఈି௥ሻఉ஺ொ

௉
ൌ 0  (32) 

 
஼೟ሺ௧ሻ

ఊ
൅ 𝐴 ቂ𝑝 ቀଶఠିଶఠబି௧

ఠିఠబି௧
ቁ െ 𝑎ቃ െ ଵ

ଶ
𝑃ଶ𝑏ଶ𝛾 ൅ 𝛽𝑠𝑃𝑄𝑘ଶ ൅

ఉሺଶఉାଵሻ஻ሺ௧ሻ௞మ

ఊ
ൌ 0                 (33) 

 
𝑃௧ሺ𝑡ሻ ൅ 𝑟𝑃ሺ𝑡ሻ ൌ 0               (34)

  

𝑄௧ሺ𝑡ሻ െ 2𝑟𝛽𝑄 ൅
ሺఈି௥ሻమ஺

௉௞మ ൌ 0           (35) 

ோ೟ሺ௧ሻ

ఊ
൅ 𝑃ሺ𝑡ሻ ቂ𝑝 ቀଶఠିଶఠబି௧

ఠିఠబି௧
ቁ െ 𝑎ቃ ൌ 0        (36) 

 
Solving (31), (34), (35) we obtain: 
 

𝐴ሺ𝑡ሻ ൌ 𝑒௥ሺ்ି௧ሻ                (37) 
 

𝑃ሺ𝑡ሻ ൌ 𝑒௥ሺ்ି௧ሻ                (38) 
 

𝑄ሺ𝑡ሻ ൌ 
ሺఈି௥ሻమ

ଶ௥ఉ௞మ ൛1 െ 𝑒ଶ௥ఉሺ௧ି்ሻൟ           (39) 

 
Substituting (37), (38), (39) into (32), (33) and (36) we 

have: 
 

𝐵ሺ𝑡ሻ ൌ 
ሺఈି௥ሻమ

ସఉ௞మ ቄ൫1 െ 𝑒ଶఈఉሺ௧ି்ሻ൯ ቀ
ሺఈି௥ሻమ

ఈ௥௞మ െ
ଶሺఈି௥ሻ

ఈ
െ

ଵ

ఈ
ቁ ൅

ቀఈି௥ିଶ௥௞మ

௥௞మ ቁ ሺ𝑒ଶ௥ఉሺ௧ି்ሻ െ 𝑒ଶఈఉሺ௧ି்ሻሻቅ         (40) 
 

𝑅ሺ𝑡ሻ ൌ 𝛾 ቀ௔

௥
൛1 െ 𝑒௥ሺ்ି௧ሻൟ െ 𝑝 ׬

ଶఠିଶఠబିఛ

ఠିఠబିఛ

்
௧ 𝑒௥ሺ்ିఛሻ𝑑𝜏ቁ (41) 

 

𝐶ሺ𝑡ሻ ൌ ሺଶఉାଵሻሺఈି௥ሻమ

଼ఉ
ቄ൫1 െ 𝑒ଶఈఉሺ௧ି்ሻ൯ ቀ௥௞మା௥௞మሺఈି௥ሻିሺఈି௥ሻమ

ఈమ௥௞మ ቁ ൅

ቀ
ఈି௥ିଶ௥௞మ

௥௞మ ቁ ሺ
ଵ

௥
ሺ𝑒ଶ௥ఉሺ௧ି்ሻ െ 1ሻ െ

ଵ

ఈ
ሺ𝑒ଶఈఉሺ௧ି்ሻ െ 1ሻሻቅ ൅

௦ሺఈି௥ሻమ

ଶ௥మ ቄ
ଵ

ଶఉିଵ
ሺ𝑒ሺଶ௥ఉି௥ሻሺ௧ି்ሻ െ 1ሻ െ ሺሺ𝑒௥ሺ்ି௧ሻ ൅ 1ሻቅ െ

𝑏ଶ𝛾ଶሺ𝑒ଶ௥ሺ்ି௧ሻ െ 1ሻ ൅

𝛾 ቀ௔

௥
൛1 െ 𝑒௥ሺ்ି௧ሻൟ െ 𝑝 ׬

ଶఠିଶఠబିఛ

ఠିఠబିఛ

்
௧ 𝑒௥ሺ்ିఛሻ𝑑𝜏ቁ     (42) 

 
𝐹ሺ𝑡, 𝑥, 𝑠ሻ ൌ

𝑥𝑒௥ሺ்ି௧ሻ ൅ ௦షమഁሺఈି௥ሻమ

ସఊ௥ఉ௞ర ቄ൫1 െ 𝑒ଶఈఉሺ௧ି்ሻ൯ ቀ
ሺఈି௥ሻమିଶ௥௞మሺఈି௥ሻି௥௞మ

ఈ
ቁ ൅

ሺ𝛼 െ 𝑟 െ 2𝑟𝑘ଶሻሺ𝑒ଶ௥ఉሺ௧ି்ሻ െ 𝑒ଶఈఉሺ௧ି்ሻሻቅ ൅
ሺଶఉାଵሻሺఈି௥ሻమ

଼௥௞మఉఊ
ቄ൫1 െ

𝑒ଶఈఉሺ௧ି்ሻ൯ ቀ
௥௞మା௥௞మሺఈି௥ሻିሺఈି௥ሻమ

ఈమ ቁ ൅ ሺ𝛼 െ 𝑟 െ 2𝑟𝑘ଶሻሺ
ଵ

௥
ሺ𝑒ଶ௥ఉሺ௧ି்ሻ െ

1ሻ െ ଵ

ఈ
ሺ𝑒ଶఈఉሺ௧ି்ሻ െ 1ሻሻቅ ൅ ௦ሺఈି௥ሻమ௘ೝሺ೅ష೟ሻ

ଶ௥మఊ
ቄ ଵ

ଶఉିଵ
ሺ𝑒ଶ௥ఉሺ௧ି்ሻ െ

𝑒௥ሺ௧ି்ሻሻ െ ሺ1 െ 𝑒௥ሺ௧ି்ሻሻቅ െ
௕మఊ

ସ௥
ሺ𝑒ଶ௥ሺ்ି௧ሻ െ 1ሻ ൅ ቀ

௔

௥
൛1 െ 𝑒௥ሺ்ି௧ሻൟ െ

𝑝 ׬
ଶఠିଶఠబିఛ

ఠିఠబିఛ

்
௧ 𝑒௥ሺ்ିఛሻ𝑑𝜏ቁ      (43) 

 

𝐺ሺ𝑡, 𝑥, 𝑠ሻ ൌ 𝑥𝑒௥ሺ்ି௧ሻ ൅
௦షమഁሺఈି௥ሻమ

ଶ௥ఉఊ௞మ ൛1 െ 𝑒ଶ௥ఉሺ௧ି்ሻൟ ൅ ቀ
௔

௥
൛1 െ

𝑒௥ሺ்ି௧ሻൟ െ 𝑝 ׬
ଶఠିଶఠబିఛ

ఠିఠబିఛ

்
௧ 𝑒௥ሺ்ିఛሻ𝑑𝜏ቁ     (44) 

 
Substituting 𝐹௫, 𝐹௫௦, 𝐺௫, 𝐺௦ into (26) we have 
 

𝜑∗ ൌ
ሺఈି௥ሻ

ఊ௫௞మ௦మഁ 𝑒௥ሺ௧ି்ሻ ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ  

B. Efficient Frontier 

Next, we compute the efficient frontier as follows 
Result 2. The efficient frontier is given as  
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𝐸௧,௫,௦ሾ𝑋ఝ∗
ሺ𝑇ሻሿ ൌ 𝑥𝑒௥ሺ்ି௧ሻ ൅ ቌ

௔

௥
൛1 െ 𝑒௥ሺ்ି௧ሻൟ െ

𝑝 ׬
ଶఠିଶఠబିఛ

ఠିఠబିఛ

்
௧ 𝑒௥ሺ்ିఛሻ𝑑𝜏

ቍ  ൅ ௦షమഁሺఈି௥ሻ

ଶ௥ఉ௞మ ൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

௏௔௥೟,ೣ,ೞሾ௑ക∗ሺ்ሻሿା
್మ

మೝ
ሺଵି௘మೝሺ೅ష೟ሻሻ

⎝

⎜
⎜
⎜
⎜
⎜
⎛

ೞషమഁ

మೝഁೖర൝
൫ଵି௘మഀഁሺ೟ష೅ሻ൯ቀ

ሺഀషೝሻమషమೝೖమሺഀషೝሻషೝೖమ

ഀ
ቁ

ାሺఈି௥ିଶ௥௞మሻ൫௘మೝഁሺ೟ష೅ሻି௘మഀഁሺ೟ష೅ሻ൯
ൡ

ା
ሺమഁశభሻ

రೝೖమഁ
ቐ

൫௘మഀഁሺ೟ష೅ሻିଵ൯ቀ
ೝೖమశೝೖమሺഀషೝሻషሺഀషೝሻమ

ഀమ ቁ

ାሺఈି௥ିଶ௥௞మሻሺ
భ
ೝ

ሺ௘మೝഁሺ೟ష೅ሻିଵሻି
భ
ഀ

ሺ௘మഀഁሺ೟ష೅ሻିଵሻሻ
ቑ

ೞ೐ೝሺ೅ష೟ሻ

ೝమ ቄ൫ଵି௘ೝሺ೟ష೅ሻ൯ି
భ

మഁషభ
ሺ௘మೝഁሺ೟ష೅ሻି௘ೝሺ೟ష೅ሻሻቅ ⎠

⎟
⎟
⎟
⎟
⎟
⎞

  

 
Proof. Recall that 
 

𝑉𝑎𝑟௧,௫ሾ𝑋ఝ∗ሺ𝑇ሻሿ ൌ 𝐸௧,௫ሾ𝑋ఝ∗ሺ𝑇ሻଶሿ െ ሺ𝐸௧,௫ሾ𝑋ఝ∗ሺ𝑇ሻሿሻଶ  

𝑉𝑎𝑟௧,௫,௦ሾ𝑋ఝ∗ሺ𝑇ሻሿ ൌ
ଶ

ఊ
ሺ𝐺ሺ𝑡, 𝑥, 𝑠ሻ െ 𝐹ሺ𝑡, 𝑥, 𝑠ሻሻ  

 
Substituting (43) and (44) for 𝐹ሺ𝑡, 𝑥, 𝑠ሻ and 𝐺ሺ𝑡, 𝑥, 𝑠ሻ in the 

above equation, we have 
 

𝑉𝑎𝑟௧,௫,௦ሾ𝑋ఝ∗
ሺ𝑇ሻሿ ൌ

ቂ
௦షమഁሺఈି௥ሻమ

ଶఊమ௥ఉ௞ర ቄ൫1 െ 𝑒ଶఈఉሺ௧ି்ሻ൯ ቀ
ሺఈି௥ሻమିଶ௥௞మሺఈି௥ሻି௥௞మ

ఈ
ቁ ൅ ሺ𝛼 െ 𝑟 െ

2𝑟𝑘ଶሻሺ𝑒ଶ௥ఉሺ௧ି்ሻ െ 𝑒ଶఈఉሺ௧ି்ሻሻቅ ൅ ሺଶఉାଵሻሺఈି௥ሻమ

ସ௥௞మఉఊమ ቄ൫𝑒ଶఈఉሺ௧ି்ሻ െ

1൯ ቀ
௥௞మା௥௞మሺఈି௥ሻିሺఈି௥ሻమ

ఈమ ቁ ൅ ሺ𝛼 െ 𝑟 െ 2𝑟𝑘ଶሻሺ
ଵ

௥
ሺ𝑒ଶ௥ఉሺ௧ି்ሻ െ 1ሻ െ

ଵ

ఈ
ሺ𝑒ଶఈఉሺ௧ି்ሻ െ 1ሻሻሽ ൅

௦ሺఈି௥ሻమ௘ೝሺ೅ష೟ሻ

௥మఊమ ቄ൫1 െ 𝑒௥ሺ௧ି்ሻ൯ െ ଵ

ଶఉିଵ
ሺ𝑒ଶ௥ఉሺ௧ି்ሻ െ 𝑒௥ሺ௧ି்ሻሻቅ ൅

௕మ

ଶ௥
ሼ𝑒ଶ௥ሺ்ି௧ሻ െ 1ቅቃ               (45) 

 

ଵ

ఊ
ൌ

ଵ

ሺఈି௥ሻ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

௏௔௥೟,ೣ,ೞሾ௑ക∗ሺ்ሻሿା
್మ

మೝ
ሺଵି௘మೝሺ೅ష೟ሻሻ

⎝

⎜
⎜
⎜
⎜
⎜
⎛

ೞషమഁ

మೝഁೖర൝
൫ଵି௘మഀഁሺ೟ష೅ሻ൯ቀ

ሺഀషೝሻమషమೝೖమሺഀషೝሻషೝೖమ

ഀ
ቁ

ାሺఈି௥ିଶ௥௞మሻ൫௘మೝഁሺ೟ష೅ሻି௘మഀഁሺ೟ష೅ሻ൯
ൡ

ା
ሺమഁశభሻ

రೝೖమഁ
ቐ

൫௘మഀഁሺ೟ష೅ሻିଵ൯ቀೝೖమశೝೖమሺഀషೝሻషሺഀషೝሻమ

ഀమ ቁ

ାሺఈି௥ିଶ௥௞మሻሺ
భ
ೝ

ሺ௘మೝഁሺ೟ష೅ሻିଵሻି
భ
ഀ

ሺ௘మഀഁሺ೟ష೅ሻିଵሻሻ
ቑ

ೞ೐ೝሺ೅ష೟ሻ

ೝమ ቄ൫ଵି௘ೝሺ೟ష೅ሻ൯ି
భ

మഁషభ
ሺ௘మೝഁሺ೟ష೅ሻି௘ೝሺ೟ష೅ሻሻቅ ⎠

⎟
⎟
⎟
⎟
⎟
⎞

(46) 

 

𝐸௧,௫,௦ሾ𝑋ఝ∗
ሺ𝑇ሻሿ ൌ 𝐺ሺ𝑡, 𝑥, 𝑠ሻ ൌ 𝑥𝑒௥ሺ்ି௧ሻ ൅ ൅ ቀ௔

௥
൛1 െ 𝑒௥ሺ்ି௧ሻൟ െ

𝑝 ׬
ଶఠିଶఠబିఛ

ఠିఠబିఛ

்
௧ 𝑒௥ሺ்ିఛሻ𝑑𝜏ቁ ൅

ଵ

ఊ
ቀ

௦షమഁሺఈି௥ሻమ

ଶ௥ఉఊ௞మ ൛1 െ 𝑒ଶ௥ఉሺ௧ି்ሻൟቁ  (47) 

 
Substituting (46) into (47) we obtain the efficient frontier: 
 

𝐸௧,௫,௦ሾ𝑋ఝ∗ሺ𝑇ሻሿ ൌ 𝑥𝑒௥ሺ்ି௧ሻ ൅ ቌ

௔

௥
൛1 െ 𝑒௥ሺ்ି௧ሻൟ െ

𝑝 ׬
ଶఠିଶఠబିఛ

ఠିఠబିఛ

்
௧

𝑒௥ሺ்ିఛሻ𝑑𝜏
ቍ  

 

൅
௦షమഁሺఈି௥ሻ

ଶ௥ఉ௞మ ൫1 െ

𝑒ଶ௥ఉሺ௧ି்ሻ൯

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

௏௔௥೟,ೣ,ೞሾ௑ക∗ሺ்ሻሿା
್మ

మೝ
ሺଵି௘మೝሺ೅ష೟ሻሻ

⎝

⎜
⎜
⎜
⎜
⎜
⎛

ೞషమഁ

మೝഁೖర൝
൫ଵି௘మഀഁሺ೟ష೅ሻ൯ቀ

ሺഀషೝሻమషమೝೖమሺഀషೝሻషೝೖమ

ഀ
ቁ

ାሺఈି௥ିଶ௥௞మሻ൫௘మೝഁሺ೟ష೅ሻି௘మഀഁሺ೟ష೅ሻ൯
ൡ

ା
ሺమഁశభሻ

రೝೖమഁ
ቐ

൫௘మഀഁሺ೟ష೅ሻିଵ൯ቀ
ೝೖమశೝೖమሺഀషೝሻషሺഀషೝሻమ

ഀమ ቁ

ାሺఈି௥ିଶ௥௞మሻሺ
భ
ೝ

ሺ௘మೝഁሺ೟ష೅ሻିଵሻି
భ
ഀ

ሺ௘మഀഁሺ೟ష೅ሻିଵሻሻ
ቑ

ೞ೐ೝሺ೅ష೟ሻ

ೝమ ቄ൫ଵି௘ೝሺ೟ష೅ሻ൯ି
భ

మഁషభ
ሺ௘మೝഁሺ೟ష೅ሻି௘ೝሺ೟ష೅ሻሻቅ ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 (48) 

 
Lemma1. Suppose ሺ𝛼 െ 𝑟ሻ ൐ 0, 𝑥 ൐ 0, 𝑘ଶ𝑠ଶఉ ൐ 0, 𝑒௥ሺ௧ି்ሻ ൐

0, ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ ൐ 0, 0 ൏ 𝑟 ൏ 1, 𝛽 ൏ 0 then 

ௗఝ∗

ௗఊ
൏ 0 

Proof.  

𝜑∗ ൌ
ሺఈି௥ሻ

ఊ௫௞మ௦మഁ 𝑒௥ሺ௧ି்ሻ ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ  

ௗఝ∗

ௗఊ
ൌ െ

ሺఈି௥ሻ

ఊమ௫௞మ௦మഁ 𝑒௥ሺ௧ି்ሻ ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ  

 

Since 
ሺఈି௥ሻ

ఊమ௫௞మ௦మഁ 𝑒௥ሺ௧ି்ሻ ൐ 0 𝑎𝑛𝑑 ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ ൐ 0 

 
ௗఝ∗

ௗఊ
൏ 0  

 
Lemma2. Suppose ሺ𝛼 െ 𝑟ሻ ൐ 0, 𝑥 ൐ 0, 𝑘ଶ𝑠ଶఉ ൐ 0, 𝑒௥ሺ௧ି்ሻ ൐

0, ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ ൐ 0, 0 ൏ 𝑟 ൏ 1, 𝛽 ൏ 0 then 

ௗఝ∗

ௗ௫
൏ 0 

Proof. 

𝜑∗ ൌ
ሺఈି௥ሻ

ఊ௫௞మ௦మഁ 𝑒௥ሺ௧ି்ሻ ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ  

ௗఝ∗

ௗ௫
ൌ െ

ሺఈି௥ሻ

௫మఊ௞మ௦మഁ 𝑒௥ሺ௧ି்ሻ ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ  

 

Since 
ሺఈି௥ሻ

௫మఊ௞మ௦మഁ 𝑒௥ሺ௧ି்ሻ ൐ 0 𝑎𝑛𝑑 ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ ൐ 0 

 
ௗఝ∗

ௗ௫
൏ 0  

 
Lemma3. Suppose ሺ𝛼 െ 𝑟ሻ ൐ 0, 𝑥 ൐ 0, 𝑘ଶ𝑠ଶఉ ൐ 0, 𝑒௥ሺ௧ି்ሻ ൐

0, ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ ൐ 0, 0 ൏ 𝑟 ൏ 1, 𝛽 ൏ 0 then 

ௗఝ∗

ௗ௧
൐ 0 

Proof. 

𝜑∗ ൌ
ሺఈି௥ሻ

ఊ௫௞మ௦మഁ 𝑒௥ሺ௧ି்ሻ ቂ1 ൅
ሺఈି௥ሻ

௥
൫1 െ 𝑒ଶ௥ఉሺ௧ି்ሻ൯ቃ  

ௗఝ∗

ௗ௧
ൌ 𝑒௥ሺ௧ି்ሻൣെሺ𝛼 െ 𝑟ሻ𝛽𝑒ଶ௥ఉሺ௧ି்ሻ െ ሺ𝛼 െ 𝑟ሻ𝑒ଶ௥ఉሺ௧ି்ሻ ൅

𝛼൧  
 
Since𝛽 ൏ 0,𝛼 ൐ 0, െሺ𝛼 െ 𝑟ሻ𝛽𝑒ଶ௥ఉሺ௧ି்ሻ ൅ 𝛼 ൐ ሺ𝛼 െ

𝑟ሻ𝑒ଶ௥ఉሺ௧ି்ሻ, hence 
ௗఝ∗

ௗ௧
൐ 0. 

V. DISCUSSION 

Lemma 1 and 2 show that the proportion of the wealth 
invested in the risky asset increases as the risk-averse level 
and initial wealth decrease. The implication here is that if 
members have high-risk averse level, they will prefer to invest 
in a risk-free asset and that will reduce the proportion of the 
wealth to be invested in the risky asset. Similarly, when the 
initial wealth is high, members prefer to invest in risk-free 
asset to reduce risk but if the initial wealth is low, members 
will take the risk and invest in the risky asset to increase their 
final wealth. 

Lemma 3 shows that as time increases, the optimal 
investment strategy increases as well, meaning that as time 
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goes on and there is return of premium, the fund manager will 
increase the proportion of the wealth to be invested in the 
risky asset to increase the overall pension wealth to satisfy the 
remaining members still alive. 

From (46) we observed that the surplus from the death 
members after retirement increases the initial wealth of the 
pension fund and as such increases the risk-averse level, this 
implies that the surplus decreases the optimal investment 
strategy. This is in agreement with Lemma 2. Also from (45) 
and (48), we observed that the higher the risk-averse level, the 
lower the variance and the expected return of the members and 
vice versa. 

VI. CONCLUSION 

The optimal investment strategy for a DC pension scheme 
with multiple contributors and with the return of premium 
clauses under CEV model is studied using mean-variance 
utility function. We consider the return clause which permits 
members to claim their accumulated contributions after death. 
We also consider that before the investment, the surplus 
includes funds from members who died after retirement. In 
addition, we considered the investment in a risk-free asset and 
a risky asset to achieve the expected returns of the remaining 
members and we obtained an optimized problem with the help 
of Hamilton's equation Jacobi Bellman. By using a stochastic 
optimal control technique, we obtain the optimal investment 
strategies for the two assets and the efficient frontier of the 
members. Furthermore, we studied the effect of the various 
parameters of the optimal investment strategies and the effect 
of the risk-averse level on the efficient frontier. We observed 
that the optimal investment strategy is the same in [7], 
secondly, we observed that the surplus decreases the 
proportion of the wealth invested in the risky asset. 
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