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 
Abstract—In this paper, there is concentration on collaborative 

transportation planning (CTP) among multiple carriers with pickup 
and delivery requests and time windows. This problem is a vehicle 
routing problem with constraints from standard vehicle routing 
problems and new constraints from a real-world application. In the 
problem, each carrier has a finite number of vehicles, and each 
request is a pickup and delivery request with time window. 
Moreover, each carrier has reserved requests, which must be served 
by itself, whereas its exchangeable requests can be outsourced to and 
served by other carriers. This collaboration among carriers can help 
them to reduce total transportation costs. A mixed integer 
programming model is proposed to the problem. To solve the model, 
a hybrid algorithm that combines Genetic Algorithm and Simulated 
Annealing (GASA) is proposed. This algorithm takes advantages of 
GASA at the same time. After tuning the parameters of the algorithm 
with the Taguchi method, the experiments are conducted and 
experimental results are provided for the hybrid algorithm. The 
results are compared with those obtained by a commercial solver. 
The comparison indicates that the GASA significantly outperforms 
the commercial solver. 
 

Keywords—Centralized collaborative transportation, 
collaborative transportation with pickup and delivery, collaborative 
transportation with time windows, hybrid algorithm of GA and SA.  

I. INTRODUCTION 

HE number of freight vehicles moving within a city is 
growing and expected to continue to grow at a steady rate 

particularly due to the current distribution practices with 
timely deliveries and the explosive growth of business-to-
customer electronic commerce that generates significant 
volumes of personal deliveries. Carrier collaboration, which 
can reduce the number of freight vehicles moving in a city, 
improves the efficiency of freight movements and reduces the 
empty vehicle-km, is emerging as a key strategy for realizing 
efficient urban distribution. By exchanging transportation 
requests among carriers in a transportation network, carriers 
can reduce their transportation costs, improve their 
profitability, and capture more business opportunities. In 
collaborative transportation, multiple companies (carriers) 
construct an alliance to improve their transportation operations 
by sharing vehicle capacities and transportation tasks. Such 
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collaboration is to reduce transportation costs by eliminating 
empty backhauls and increasing vehicle utilization rates so as 
to increase the profits of all partners.  

In carrier collaboration, multiple carriers collaborate with 
each other to maximize their total profit or to minimize their 
total transportation cost by optimally serving their requests. In 
practice, less than truckload (LTL) transportation services are 
often afforded to customers. For LTL transportation, whereas 
more studies adopt a decentralized planning approach for 
maximizing the individual profit of each partner, in this 
article, a centralized planning approach to the multi carrier 
collaborative problem is presented. Such a centralized 
planning approach has also been used in collaborative 
transportation service trading in B2B e-commerce logistics 
[1]. 

The objective of this study is to develop a mathematical 
model and a solution method for carrier collaboration in urban 
distribution. There is a focus on the horizontal collaboration 
among carriers via order sharing. Through order sharing, 
carriers can improve their efficiency and profitability because 
of an increase in vehicle capacity utilization, a reduction in 
empty vehicle repositions, and a reduction in total 
transportation costs due to an improved transportation 
planning. This order sharing or request exchange among 
carriers can be realized by using a centralized approach based 
on a global mathematical programming model or by using a 
decentralized approach such as combinatorial auctions. 
Centralized planning for order sharing means that customer 
orders from all participating carriers are combined and 
collected in a central pool, and efficient routes are set up for 
all requests. In this article, carriers in LTL transportation are 
considered where each request is a pick and delivery request 
with a time window for performing each pickup or delivery 
operation. Each carrier has a limited number of vehicles 
initially located at its own vehicle depot. These depots may be 
in different locations. The authors assumed that each carrier 
has both reserved requests, which must be served by itself 
because of its commitments to its customers (shippers), and 
shareable (exchangeable) requests that can be outsourced to 
other carriers. The collaborative transportation-planning 
problem with pickup and delivery requests and time windows 
is NP-hard, so metaheuristic algorithms are necessary to solve 
large instances of the problem. The algorithm proposed in this 
paper is based on GASA. On the one hand, this algorithm 
takes advantages of a population base algorithm with 
exploring multiple solutions at the same time, and on the other 
hand, by applying simulated annealing in each iteration of the 
genetic algorithm, there is a chance to choose a new solution 
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worse than the current one for diversification purpose. 
Furthermore, this algorithm can be viewed as a simulated 
annealing algorithm, in which the mutation and crossover 
operators are used to generate neighborhoods, and in each 
iteration, the temperature decreases. Comparison of the 
centralized approach with a decentralized approach proposed 
in [2] is implemented and shows that the suggested GASA 
algorithm is effective in reaching optimal or near-optimal 
solutions with very small gaps. 

II. LITERATURE REVIEW 

One of the important roles of collaborative transportation is 
increasing operational efficiency via sharing the requests 
among carriers. This collaboration not only has an effect on 
the system efficiency increasing but also has a vital role in the 
environment protection by decreasing the usage of the 
vehicles fuel [3]. Reference [4] modelled a carrier 
collaboration problem as a network flow problem by 
integrating the transportation networks and demands of all 
participating carriers to create a large network and a large 
pseudo-carrier, where the network of each carrier is 
determined according to the available capacity of cargo 
transportation in each flight leg operated by that carrier. The 
demand of each carrier is a set of loads that the carrier accepts 
for delivery. Reference [5] studied a problem of centralized 
collaborative transportation. In the transportation network of 
the problem, each node has a maximum capacity on its passing 
flow. Therefore, the objective of their problem is to find the 
maximum flow in the logistic network.  

Reference [6] considered time-dependent centralized 
collaborative transportation. Their model has multi carriers 
and its objective function is to minimize the total cost of all 
carriers. Their chosen solution approach is a branch and cut 
algorithm. Reference [7] studied a sub-problem (bid 
generation problem) for carrier collaboration with two 
different types of requests: reserved requests and shared 
requests, where each request is a pickup and delivery request 
with time windows. After presenting a mathematical model for 
the single carrier selective vehicle routing problem with 
profits, they solved the model with Adaptive Large 
Neighborhood Search (ALNS).  

III. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL 

The multi-carriers collaborative transportation-planning 
problem (Multi-carrier CTP) with pickup and delivery 
requests, hard time windows, and reserved requests can be 
defined on a directed graph 𝐺 ൌ ሺ𝑉, 𝐸ሻ where V is the set of 
all nodes and 𝐸 is the set of edges, where V contains the 
vehicle depots of all carriers. In the problem, there is a set M 
of carriers, each carrier mM has a set of reserved 
requests,𝑅௥௠, that must be served by itself and a set of 
exchangeable (shareable) requests,𝑅௦௠, that can be served by 
any carrier. The set of exchangeable requests of all carriers is 
represented by 𝑅௦ with 𝑅௦ = ⋃ 𝑅௦௠௠ெ , and the set of all 
requests of all carriers is denoted by R with R = 
ሺ⋃ 𝑅௥௠௠ெ ሻ ⋃ 𝑅௦. Each request has a pickup node and a 

delivery node with time windows for performing pickup and 
delivery operations. This problem extends the multi-depot 
pickup and delivery problem with time windows by 
introducing an additional constraint that each carrier must 
serve its reserved requests by itself. In the problem, each 
carrier mM has a finite set of homogenous vehicles denoted 
by 𝐾௠ ൌ ሼ1,2, … ,𝑘௠ሽ. The capacity of each vehicle is denoted 
by Q. The carriers form an alliance to collaboratively plan 
their transportation operations. This collaboration is realized 
by exchanging requests among the carriers. Each carrier has a 
vehicle depot. Let DC denote the set of depots of all carriers, 
W = V\DC denote the set of all nodes excluding the depot 
nodes of all carriers. 𝑃 ൌ ሼ1,2, … ,𝑛ሽ is the set of pickup nodes 
of all requests, and 𝐷 ൌ ሼ𝑛 ൅ 1, . . ,2𝑛ሽ is the set of all delivery 
nodes. For convenience of presentation, the requests of all 
carriers are indexed by 1, 2, …,n and the pick node of request 
i, i=1,.., n, is denoted by pickup node i, and node n+i 
represents the delivery node of request i. The demand of the 
pickup node of request i is denoted by di , whereas the demand 
of the delivery node of the same request is denoted by di+n, 
with di+n = -di. Each pickup and delivery node i is associated 
with a time window [𝑒௜, li]. The traveling time and cost from 
node i to node j are represented by 𝑡௜௝ and 𝑐௜௝, respectively. 
The maximum duration of each route is denoted by 𝑇. The 
objective of the problem is to make optimal decisions about 
the allocation of all exchangeable requests among the carriers 
under the constraint that each reserved request must be served 
by its own carrier and other constraints of the standard vehicle 
routing problem to minimize the total transportation cost of all 
carriers. Among the other constraints, the time window 
associated with each pickup/delivery node must be respected, 
the load of each vehicle cannot exceed its capacity, and the 
delivery node of each request must be visited after its pickup 
node on the same route.  

The multi-carrier CTP problem can be formulated as a 
mixed-integer linear programing model. In the model, 
parameters 𝐵𝑀௜௝ ൌ 𝑙௝ െ 𝑒௜ and 𝐶𝑉௜ ൌ 𝑄 ൅ 𝑑௜ are introduced to 
formulate linearly the time window constraints and the vehicle 
capacity constraints. The decision variables of the model 
include binary variables, 𝑥௜௝௞௠ and 𝑦௜௞௠and integer variables 
𝑈௜௞௠and 𝐿௜௞௠ are defined as follows. 

 
1        if and only if vehcile k of carrier m visits directly node j 

           after node i

0        else 
ijkmx


 



 

 

1           if and only if request i is served by vehicle k of carrier m

0           elseikmy


 


 
 arriving time of vehicle k of carrier m at node i

 Load of vehicle k of carrier m when it leaves node i
ikm

ikm

U

CV




 

 
The problem can be formulated as the following mixed 

integer-programming model: 
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The objective function minimizes the total transportation 
cost of the routes of all carriers. Constraint (1) describes that 
each customer node (pickup node or delivery node) is visited 
exactly once by a vehicle. Equation (2) is the flow 
preservation equation describing when a vehicle arriving at a 
customer node must leave it. Equations (3)-(6) indicate that 
each vehicle of any carrier leaves the carrier’s depot and 
returns to the same depot. Constraints (7)-(9) are about the 
reserved and shared requests. Equations (7)-(8) ensure that 
each reserved request must be served by its own carrier, 
whereas (9) implies that each exchangeable request can be 
served by any carrier. Constraints (10) and (11) ensure that if a 
request is served, there must be a vehicle leaving its pickup 
node and arriving at its paired delivery node. Constraint (12) is 
time constraint between pickup and delivery nodes. Constraint 
(13) ensures time feasibility, i.e. vehicle 𝑘 cannot start to serve 
the customer of node 𝑗 before completing service at the 
previous customer of node 𝑖. The time window constraint is 
formulated by (14). The maximum route duration constraint is 
given by (15). Equations (16)-(18) ensure that the capacity of 
each vehicle and the maximum number of vehicles of each 
carrier will not be exceeded. The constraints from (19) to (22) 
describe the domain of each variable.  

IV. GASA APPROACH TO THE MULTI-CARRIER CTP 

In this section, a metaheuristic approach is proposed to 
solve the multi-carrier collaborative transportation-planning 
problem. NP-hard multi-depot vehicle routing problem is a 
special case of the multi-carrier CTP, so the latter problem is 
also NP-had. Therefore, solving a large instance of the 
problem in an acceptable time by a commercial solver like 
Cplex is impossible. Hence, it is required to develop a 
metaheuristic algorithm to solve the problem. 

A. Genetic Algorithm 

GA is one of the popular metaheuristic algorithms firstly 
proposed in [8]. It is one of the most efficient methods to solve 
various vehicle routing problems. For this reason, GA is 
chosen as a solution method for CTP. GA is based on natural 
selection, where each solution of a problem is represented by a 
chromosome, and the population of GA at each iteration 
consists of a set of chromosomes (solutions). The fitness of 
each chromosome (solution) is evaluated by its objective 
function value. Similar to the real world, descendants in the 
population of the next generation are generated by a 
reproduction process unifying the genes of two parents 
through crossover operation, and altering the genes of a 
chromosome in the process is similar to the mutation in the 
real world. The choice of parents and children to be 
transferred to the next generation is made according to their 
fitness, i.e. the objective function value of each individual 
(solution). In this process, the individuals with lower fitness 
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will be removed from the population. By mimicking the 
natural selection process, a well-designed GA ensures that a 
near-optimal solution of a problem can be reached after a 
limited number of iterations. In the rest of this section, the 
components of our genetic algorithm for the multi-carrier CTP 
will be presented and explained. The general structure of the 
presented method is given by Algorithm 1 in Fig. 1. The first 
loop of the procedure starting with line 2 produces the initial 
population of GASA by using a heuristic approach. In the 
approach, firstly, all reserved requests of each carrier are 
assigned to the carrier itself, and then, each exchangeable 
request is allocated to its most efficient carrier, i.e. the carrier 
that can serve it at the minimal additional cost. The details of 
the construction of an initial solution are given in subsection B 
of this section. The step of line 5 initializes the temperature of 
simulation annealing (SA). The second loop starting with line 
7 is the main loop of GASA. In each iteration of GASA, the 
minimum cost of the problem firstly is updated according to 
the achieved costs of the latest generation. A probability is 
then calculated (defined) for the solution choice. In the sub-
loop starting with line 10, crossover and mutation operations 
are applied to the solutions of the current generation. After the 
operations of crossover and mutation, all the offspring 
generated is merged with the current population to create a 
new population. In the next step, the solutions in the new 
population are sorted according to their costs. The last sub-
loop staring with line 15 is to choose a solution by applying a 
SA rule. The SA rule is applied to each solution in the current 
population. The step on line 31 reduces the temperature of SA. 
The details of using SA to choose a solution in the hybrid 
algorithm are given in Section V.  

 

 

Fig. 1 The pseudo code of the presented GASA algorithm 

B. The Construction of Initial Solutions 

We construct initial solutions for GASA by using a 

sequential insertion heuristic. In Genetic Algorithm hybrid 
algorithms, the number of initial solution is equal to the 
number of population.  

In each population, the cost of initial solution must be 
preserved. After execution of the initial solution in the last 
population, all of the achieved costs are sorted and the 
minimum cost is selected as a best achieving solution.   

For the presented problem, the reserved requests of each 
carrier must be served by the carrier itself, whereas 
exchangeable requests can be served by any carrier. In the 
proposed heuristic, firstly, each reserved request is assigned to 
its own carrier. After that, each exchangeable request will be 
inserted into an existing route of a carrier. Before assigning all 
requests to their own carriers or other carriers according to the 
type of each request, all reserved requests and all 
exchangeable requests are sorted respectively in two lists 
along with their profits. Both reserved requests and 
exchangeable requests are assigned one by one in the order of 
their list. After assigning all reserved requests to their own 
carriers, exchangeable requests are assigned to carriers 
according to the following two policies: 

Policy one: Each exchangeable request is assigned to a 
route of its closest carrier. That is, each exchangeable request 
is assigned to the carrier with the minimum total distance of 
pickup and delivery nodes of the exchangeable request to the 
depot of the carrier.  

Policy two: Each exchangeable request is assigned to a 
route of its best carrier, i.e. the carrier that can serve this 
request at the minimal additional cost (the lowest insertion 
cost).  

In the heuristic, the two sorted lists, list of reserved requests 
and list of exchangeable requests are explored successively. If 
it is not feasible to insert both of the pickup and of delivery 
nodes of a request into the current route, a new route is created 
to insert the request. This process will continue until all 
requests are served and a feasible solution is reached.  

C. Solution Representation 

To achieve good results of the proposed hybrid algorithm, 
the structure (coding) of each solution (chromosome) has an 
important role. We code a solution of the multi-carrier CTP by 
three vectors X, K, and Y. 

Vector X specifies an order of pickup nodes and delivery 
nodes of all requests. The dimension of the vector is |PD|. 
Each component of vector K corresponds to a request, which 
indicates the index of the vehicle that serves the request. Each 
component of vector Y also corresponds to a request, which 
indicates the carrier to which the request is assigned, i.e. the 
carrier that serves the request. The dimension of both K and Y 
is the same as the number of all requests. Note that the index 
of each request is the same as its pickup node index. To 
construct a solution from the three vectors, we take pickup and 
delivery nodes one by one from X, from its first component to 
its last component. For each pickup node taken, its assignment 
to each carrier and a route of the carrier respectively is 
determined according to vector Y and vector K. If a pickup 
node is assigned to a route of a carrier, its paired delivery node 
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must also be assigned to the same route while satisfying the 
precedence relation between the two nodes. If the insertion of 
a request into a route leads to an infeasible solution that 
violates either the vehicle capacity constraint or time window 
constraint, the request will be served by anew route if such 
new route can be created.  

 

 

Fig. 2 Representation of Chromosome’s structure 
 

The coding of a solution by the three vectors is illustrated in 
Fig. 2 for a small example of multi-carrier CTP. In Fig. 2, X, 
K, and Y are vectors of dimension 8, 4, and 4, respectively. 
Vector Y indicates that request 1 and request 2 are assigned to 
carrier 1, and request 3 and request 4 are assigned to carrier 2. 
Vector K indicates that request 1 is served by vehicle (route) 
1, request 2 is served by vehicle 2, request 3 is served by 
vehicle 4, and request 4 is served by vehicle 3. Actually there 
are totally 4 vehicles. Vector X indicates a sequence of pickup 
nodes and delivery nodes of all requests. The total number of 
pickup and delivery nodes of the example is eight. Therefore, 
the dimension of the vector X is eight. Note that for each 
request i, its pickup node and delivery node are node i and 
node i+4, respectively. 

 

Carrier1:

⎩
⎪
⎨

⎪
⎧

𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡:  1
𝑡ℎ𝑒 𝑝𝑖𝑐𝑘𝑢𝑝 𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 1

𝑡ℎ𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 5
𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 2

𝑡ℎ𝑒 𝑝𝑖𝑐𝑘𝑢𝑝 𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 2 
𝑡ℎ𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 6 

 

 

Carrier2:

⎩
⎪
⎨

⎪
⎧

𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 3
𝑡ℎ𝑒 𝑝𝑖𝑐𝑘𝑢𝑝 𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 3
𝑡ℎ𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 7

𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 4
𝑡ℎ𝑒 𝑝𝑖𝑐𝑘𝑢𝑝 𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 4 

𝑡ℎ𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 8 

  

D. Genetic Operators  

Considering the structure of each solution of the proposed 
model, two crossover operators and two mutation operators 
are proposed. 

1. Crossover Operator of Vector X 

Since the vector X has a permutation structure, a single 
point crossover can be defined without requiring any extra 
operation to make its generated offspring’s chromosomes 
feasible. Actually, it is necessary to use such single point 
crossover operator to avoid any gene repetition. The crossover 
point is chosen randomly in the vector. To generate the first 
offspring, all of the genes of a chromosome before the 
crossover point are transferred sequentially and compose the 
first part of the offspring’s chromosome. In order to compose 
the rest genes of the offspring’s chromosome, at first, the 
genes of the second parent are compared with the first part of 
the offspring. All of the repetitive genes of the second parent 
in the offspring will be ignored, and non-repetitive genes of 
the second parent complete the rest genes of the first 
offspring’s chromosome. To generate the second offspring, the 
above-mentioned approach of gene selection is done in the 
opposite direction. Actually, in the second offspring, the 
parent selected to produce the first part of the offspring before 
the crossover point is the second parent. Fig. 3 shows the 
crossover of two X vectors and the generation of their two off-
springs after the application of the crossover operator. It is 
necessary to mention that, in Fig. 3, the two arrows indicate 
the crossover point. According to the single point crossover 
specification over permutation chromosomes, in the first 
offspring, after transferring the genes of the first parent before 
the crossover point, the rest genes of the offspring after the 
crossover point will be chosen from the genes of the second 
parent by comparing with the genes of the offspring and 
removing the repetitive genes. In Fig. 3, the genes of the 
offspring after the crossover point are the last three genes. 

 

 

Fig. 3 The single point crossover over two X vectors 
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2. Crossover Operator of Vector Y and K 

A crossover operator suitable for K and Y is uniform 
crossover. For the uniform crossover, after producing a mask 
with the same size of the parent vector and with zero and one 
genes, each offspring’s gene is selected according to the value 
of the mask vector and the same indexed gene of parent. Fig. 4 
illustrates the crossover over two K vectors. The crossover 
over two Y vectors is the same as the crossover over two K 
vectors. To generate the first offspring, if a gene of the mask 
vector is zero, the gene of the first offspring is chosen from the 
second parent and if the gene of the mask vector is one, the 
gene of the first offspring is chosen from the first parent. To 
create the second offspring, the same operation is performed 
but in the opposite direction. It means that, to produce the 
second offspring, when the gene of the mask vector is one, the 
gene of the second offspring is chosen from the second parent 
with the same index of the chosen gene and when the gene of 
the mask vector is zero, the gene selected to create the second 
offspring’s gene is the first parent’s gene.  

 

 

Fig. 4 The crossover over two K vectors 

3. Mutation over Vector X 

Because vector X has a permutation structure, a mutation 
operation with the following two steps can be applied to 
generate a diversified feasible solution.   
1) Choose two elements of the vector X randomly  
2)  Choose randomly one of the insertion, swap and 

reversion operations and perform the operation on the 
selected elements.  

4. Mutation over Vectors K and Y  

The mutation over vector K is realized in three steps. In the 
first step, the number of elements in K to be mutated, denoted 
by l, is first determined randomly. This number is obtained in 
the following way: firstly, an integer number h is randomly 
generated between 1 and dim[K], where dim[K] is the number 
of elements of vector K. This number is multiplied by a 
mutation rate r, leading to hr. The number l is then obtained 
by rounding hr to the least integer number larger than or equal 
to it. In the second step, l elements are randomly chosen from 
K. In the third step, for each element of K chosen, an integer 
number is randomly generated between 1 and k, and the 
element in K is changed to this number, where k is the total 
number of vehicles. The mutation over vector Y is similar to 

that of vector K except that in the third step, for each element 
of Y chosen, an integer number is randomly generated between 
1 and M, and the element in Y is changed to this number, 
where M is the number of carriers. In Fig. 5, the mutation over 
vector K is illustrated. The number of elements of K to be 
mutated is one, and the second gene with green color is chosen 
to be mutated. After the mutation, an offspring chromosome is 
transformed from the parent chromosome with new values in 
some genes. 

 

 

Fig. 5 The mutation operator over vector K 

V. SIMULATED ANNEALING IN GASA 

In comparison with most heuristics that only accept an 
improved solution, SA accepts a worse solution as well. If 
𝑓ሺ𝑠𝑜ᇱሻ is an objective function value in the new population 
and𝑓ሺ𝑠𝑜ሻ is objective function value in the previous 
population, the acceptance probability of the new solution is 

𝑒ିሺ௙ሺ௢ሻି௙൫௦௢ᇲ൯ሻ/்when 𝑓ሺ𝑠𝑜ᇱሻ ൏ 𝑓ሺ𝑠𝑜ሻ for a maximization 
problem. The probability for profit decreasing depends on 
both the profit disparity 𝑓ሺ𝑠𝑜ᇱሻ െ 𝑓ሺ𝑠𝑜ሻ and parameter 𝑇 
called temperature. At the beginning of simulated annealing, 
𝑇 is set to 𝑇௜௡.  𝑇௜௡ is computed so that a solution with profit 
30% lower than that of the initial solution is accepted with a 
given possibility 𝑝𝑟.The temperature T of SA is decreased 
after each iteration. This reduction is done by multiplying T 
and cooling factor 𝑐𝑜 ∈ ሺ0,1ሻ. To achieve a slow cooling, the 
cooling factor must be close to one. Generally, at the end of 
each iteration of GA, after sorting the solution generated by 
crossover and mutation operations, we merge them with the 
current population in order to generate the next generation. In 
GASA, the transformation of offspring into a solution 
(chromosome) in the next generation is done by applying the 
SA rule. This means that, after merging the solutions obtained 
by crossover and the solutions obtained by mutation and 
sorting them, the solutions are compared with those in the 
current population by applying the SA rule. In this way, each 
solution has an opportunity to be selected. At the end of each 
iteration of the genetic algorithm, the temperature of SA is 
decreased like whatever is done in any simulated annealing 
algorithm.  

VI. COMPUTATIONAL EXPERIMENTS 

To assess the performance of the GASA algorithm, the 
instances of [2] are utilized. All requests including reserved 
requests and exchangeable requests are the same as [2]. The 
GASA algorithm is executed on 50 instances with different 
specifications. The specifications of instances like the number 
of requests and the number of vehicles are different. The 
GASA is compared with Cplex 12.6 MILP solver and the 
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results of [2]. For large and medium size instances as the 
authors expected, it is not possible to get the solution with 
Cplex even by putting 5-hour time limitation, whereas the 
GASA algorithm could achieve the solution in a reasonable 
time. At last, the gap between the presented algorithm, GASA, 
the results of Cplex, and the results of [2] confirm the 
efficiency of the algorithm. 

A. Calibration of Parameters 

The solution of GASA and its execution time depend on the 
parameters quantity. Taguchi tunes some critical parameters 
that have been illustrated in Table II. Genichi Taguchi, 
Japanese electrical engineer, has developed a method to 
optimize the process of producing the products. His proposed 
approach is a robust method to produce the products in a low 
cost. Moreover, the approach minimizes the deviation in the 
quality attributes of the products. The aim of the Taguchi 
Method (TM) is optimizing the effects of the factors on the 
mean value. The factors are controllable factors and have an 
effect on the robustness of the objective function as well. In 
fact, their effectiveness on the objective function value is 
consideration of the noise factors according to use statistical 
design of experiments (DOE). To decrease the variation of the 
objective function value, firstly, the levels of the control 
factors are determined. After the determination of the control 
factor levels, mean value have to be adjusted to the target size. 
There are two different experimental designs to validate the 
experimental procedure of TM. Inner and outer arrays are the 
name of the experimental designs. In the inner array, all of the 
control factors are placed, whereas all noise factors are 
considered in the outer array. Each factor level combination of 
control factors from the inner array is tested against various 
combinations of the noise factors in the outer array, which can 
be referred to as “quasi-repetition”. In actual fact, by using the 
TM, combination of control factors in each level is examined. 
The important point to consideration is considering the 
combination of control factors under the influence of noise 
factors. There is necessary to mention that the control factors 
deviation is combined with the noise factors thanks to repeated 
measures. In other words, the related uncertainty is called an 
inner noise factor and the aim of the designing the system is 
being robust against these noise factors. By increasing the 
number of factors, the number of experiments are increased 
and a large number of experiments is necessary and the 
designing will be complex. To solve this problem, orthogonal 
array is applied in TM to decrease the number of experiments 
while entire parameter space is studied. Taguchi proposed to 
use loss function to measure the deviation of the performance 
of the attributes from the desired target value. The loss 
function value is converted to signal-to-noise (S/N) ratio. To 
analyze the S/N ratio, three types of the performance features 
are used. smaller-the-better, larger-the-better, and nominal-
the-best are the three category [9]-[11]. In this paper, authors 
utilize the third category; it means that smaller is better. If n 
denotes the orthogonal arrays and Y indicates response value, 
S/N ratio is formulated in Eq. (23) and S/N ratios are given in 
the decibel (db) scale. In the formulation, y is the response 

variable and n is the number of experiments. 
 

2( )
10 log( )

S S Y

N n
                             (23) 

 
Table I shows the domain of each candidate parameter in 

different levels to tuning by Taguchi approach. The results of 
Taguchi tuning approach of the selected parameters are 
depicted in Table II. Fig. 6 shows signal to noise figures of 
Taguchi approach in different parameters and different levels 
in Minitab. In signal to noise figures according to the feature 
of signal to noise, the maximum value in each parameter is 
acceptable.  

 
TABLE I 

PARAMETER VALUES OF GASA TO BE DETERMINED BY TAGUCHI 
Calibrated parameters 

of GASA 
npop Pc Pm nit 

Level 2 2 1 3 

     

Value 150 0.6 0.05 300 

 
TABLE II 

DETERMINED LEVEL OF TUNING PARAMETERS OF GASA  

Parameter Description Value range 

npop 
Number of 
population 

ቐ
𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑ሺ1ሻ: 100
𝑚𝑒𝑑𝑖𝑎𝑛 ሺ2ሻ: 150
𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑ሺ3ሻ: 200

 

 
 

Pc 

Crossover 
probability 

ቐ
𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑ሺ1ሻ: 0.4
𝑚𝑒𝑑𝑖𝑎𝑛 ሺ2ሻ: 0.6
𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑ሺ3ሻ: 0.8

 

pm 
Mutation 

probability 
ቐ

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑ሺ1ሻ: 0.05
𝑚𝑒𝑑𝑖𝑎𝑛 ሺ2ሻ:    0.175
𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑ሺ3ሻ: 0.3

 

    nit Number of iteration ቐ
𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑ሺ1ሻ: 100
𝑚𝑒𝑑𝑖𝑎𝑛ሺ2ሻ:    200
𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑ሺ3ሻ: 300

 

 

 

Fig. 6 The plot of S/N ratio at different levels of the selected 
parameters of GASA 

B. Experimentation and Results  

After determining the value of parameters by calibration, all 
instances of [2] were executed with GASA algorithm and 
Cplex. Because carrier collaborative transportation is Np-hard, 
the time limitation of execution was set in Cpelx for large size 
and medium size instances to compare the solution of GASA 
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with Cplex results. Finally, the results of GASA and Cplex 
were compared according to their gap. Equations (24) and (25) 
are used to formulate the gap between GASA, Cplex, and the 
results of [2].  

 

, (cos cos ) / cosGASA Chen GASA chen chenGAP t t t                    (24) 
 

, (cos cos ) / cosGASA CPLEX GASA cplex cplexGAP t t t                (25) 

 
The results of different size instances are illustrated in the 

following tables. Tables III and IV indicate the comparison 
results of GASA with Cplex and [2] for small size instances. 
Table V includes the results of comparing the presented 
approach with Cplex and [2] for medium size instances. 
Tables VI and VII consists of the comparing results for large 
instances. 

 
TABLE III 

THE RESULTS OF SMALL SIZE INSTANCES (3×5×2) 
Instance 
number 

GAPGASA,Cplex(%) GAPGASA,Chen(%) CPUGASA(s) 

1 0 0 88.377 

2 0 0 96.020 

3 0 0 94.436 

4 0 0 86.733 

5 0 0 91.930 

6 0 0 86.646 

7 0 0 91.932 

8 0 0 92.345 

9 0 0 90.213 

10 0 0 89.638 

 
TABLE IV 

THE RESULTS OF SMALL SIZE INSTANCES (3×8×2) 
Instance 
number 

GAPGASA,Cplex(%) GAPGASA,Chen(%) CPUGASA(s) 

1 0 0 263.644 

2 0 0 252. 293 

3 0 0 289.829 

4 0 0 271.758 

5 - 0 193.839 

6 - 0.093 240.213 

7 - 0 234.032 

8 - 0 265.126 

9 - 0.026 229.674 

10 - 0 191.011 

 
TABLE V 

THE RESULTS OF SMALL SIZE INSTANCES (3×15×4) 

Instance number GAPGASA,Cplex(%) GAPGASA,Chen(%) CPUGASA(s) 

1  0.071 691.537 

2 - 0.086 594.417 

3 - 0.122 638.526 

4 - 0.033 631.245 

5 - 0.018 654.513 

6 - 0.177 597.204 

7 - 0.088 576.208 

8 - 0.094 619.129 

9 - 0.042 647.118 

10 - 0.053 612. 227 

TABLE VI 
THE RESULTS OF SMALL SIZE INSTANCES (3×30×6) 

Instance number GAPGASA.Chen(%) CPUGASA(s) 

1 0.077 1346.392 

2 0.108 1247.729 

3 0.086 1308.046 

4 0.150 1281.783 

5 0.057 1319.637 

6 0.066 1307.521 

7 0.181 1384.930 

8 0.179 1296.012 

 
TABLE VII 

THE RESULTS OF SMALL SIZE INSTANCES (3×50×8) 

Instance number GAPGASA.Chen(%) CPUGASA(s) 

1 0.152 8315.214 

2 0.207 7987.192 

3 0.032 8422.596 

4 0.150 8721.154 

5 0.027 8515.219 

6 0.204 8852.186 

7 0.118 8911.88 

8 0.131 8687.173 

 
According to the results and calculating gaps, the 

effectiveness of the proposed GASA algorithm is proven. In 
small size instances (3×5), the GASA could obtain the exact 
solution, and the gap between the algorithm and Cplex is zero. 
In other small size instances like (3×8), in spite of Cplex, 
GASA could reach the solution for all instances of (3×8). In 
rest of the instances, (3×15), (3×30), and (3×50), GASA could 
reach the solution, whereas Cplex, even by setting time 
limitations, could not. Furthermore, the gap between the 
proposed GASA algorithm and the results of [2] is not 
prominent in all type of instances. All these results describe 
the efficiency of the GASA in comparison with commercial 
solver and decentralized approach in a reasonable time.   

VII. CONCLUSION 

In this paper, the authors focused on the multi-carriers 
collaboration transportation with pickup and delivery and hard 
time windows. In this article, a model was presented for 
centralized collaborative transportation according to the real-
world constraints. In the presented model, all of the vehicles 
of each depot in all carriers are homogenous and the vehicles 
have limit capacity. The presented model was mixed integer 
linear programming mathematical model, and the object was 
minimization of costs. This problem is Np-hard because it is a 
special case of vehicle routing problem. Hence, it is not 
possible to reach the solution in large size instances by 
commercial solvers. A hybrid algorithm of GASA algorithm 
with heuristic approach to find initial solution solved the large 
sizes of the model. The Taguchi-tuning approach was applied 
to parameter calibration due to the important roles of 
parameters in heuristic and metaheuristic algorithm to reach 
the acceptable solution in the reasonable time. By comparing 
the results with the solution of Cplex and decentralized 
collaborative transportation of [2], the effectiveness of the 
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proposed GASA algorithm was confirmed. In all of the 
instances, Cplex cannot reach the solution, whereas the 
proposed GASA algorithm could achieve solution. Moreover, 
its effectiveness by comparing the results of [2] in less time is 
conspicuous. As a future work, it can be considered as 
periodic aspect of collaborative transportation that is much 
closer to the real world applications.  
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