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 
Abstract—V-notch problem under dynamic loading condition is 

considered in this paper. In the time domain, the precise time domain 
expanding algorithm is employed, in which a self-adaptive technique 
is carried out to improve computing accuracy. By expanding variables 
in each time interval, the recursive finite element formulas are derived. 
In the space domain, a Symplectic Analytical Singular Element 
(SASE) for V-notch problem is constructed addressing the stress 
singularity of the notch tip. Combining with the conventional finite 
elements, the proposed SASE can be used to solve the dynamic stress 
intensity factors (DSIFs) in a simple way. Numerical results show that 
the proposed SASE for V-notch problem subjected to dynamic loading 
condition is effective and efficient. 
 
Keywords—V-notch, dynamic stress intensity factor, finite 

element method, precise time domain expanding algorithm 

I. INTRODUCTION 

HARP V-notch subjected to dynamic loading condition can 
be found in many engineering applications. Due to the 

stress concentration in the vicinity of the notch tip, the initiation 
of cracks is likely to occur and further result in the structural 
failure or shorten the service life. Consequently, an accurate 
evaluation of the stress distribution around the V-notch tip is of 
significant importance for a reliable performance analysis of 
the structures containing V-notches. And it is necessary to 
investigate the fracture mechanics parameters at the notch tip, 
e.g., the DSIFs. 

The sharp V-notch problem has been studied by using 
different numerical methods, including the boundary element 
method (BEM) [1], the finite element method (FEM) [2], the 
fractal-like FEM (FFEM) [3], the body force method (BFM) 
[4], the boundary collocation method (BCM) [5] and the 
extended finite element method (XFEM) [6]. Among them, 
FEM is the most commonly used numerical method in recent 
years. As a matter of fact, complex post-processing should be 
carried out to get the DSIFs of the V-notch. 

In the previous studies, Yao and Hu proposed a novel SASE 
for various crack problems [7], [8]. It was demonstrated that the 
numerical results are precise and stable with the change of the 
element size and the number of nodes. In fact, the SASE can 
also deal with the V-notch problems. However, the existing 
studies were concerned on static or quasi-static problems, 

 
Xiaofei Hu is with the State Key Laboratory of Structural Analysis for 

Industrial Equipment, International Research Center for Computational 
Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China 
(e-mail: hxf@dlut.edu.cn). 

dynamic problem has not been considered. 
In this study, the precise time domain expanding algorithm 

proposed by Yang [9] is used for the discretization of the time 
domain due to its advantages. In the space domain, the SASE 
which is constructed by using the analytical eigenexpanding 
terms is used to address the stress singularity in the vicinity of 
the V-notch tip, while the other area is meshed by conventional 
elements. The numerical solutions of the DSIFs are directly 
calculated through the relationship between the DSIFs and the 
expanding coefficients of the eigenexpansion, without any 
post-processing. Numerical examples are conducted, and the 
results show that the proposed method is effective and efficient. 

II. GOVERNING EQUATIONS 

 
Fig. 1 A two dimensional (2D) dynamic V-notch problem 

 
The fundamental equations for 2D dynamic problem can be 

given as follows: The differential equation of motion 
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The relationship between stress and strain 
 
σ Dε  (2) 

 
The relationship between displacement and strain 
 
ε Lu  (3) 
 
The boundary conditions can be specified by 
 

u u  on Γu  (4) 
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p p  on Γ  (5) 

 
The initial conditions of the whole domain can be given by 
 

0u u , 0
t
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u
u , 0t  ,  , Ωx y   (6) 

 
In the precise time-domain expanding algorithm, the time 

domain is divided into a number of time intervals. In each time 
interval, all the time-related variables can be expanded by the 
dimensionless parameter s, which is specified as 

 

0 0 0( ) / ,   +s t t T t t t T     (7) 

 

where 0t  and T  are the initial point and the size, respectively. 

Thus u , σ , ε , f  and p  can be expanded in the following 

forms 
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where the non-negative integer 0,1, 2, ...m   is the expanding 
order index. Similarly, the prescribed boundary conditions can 
also be expanded as 
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The first and second order derivatives of the displacement 

with respect to time coordinate can be given by 
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Through (8)-(11), the fundamental equations and boundary 

conditions can be rewritten using the recursive form. The 
explicit expressions are given as follows: 

The fundamental equations 
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m mσ Dε  (13) 

 
m mε Lu  (14) 

 
The boundary conditions 
 

m mu u  on Γu  (15) 

 
m mp p  on Γ  (16) 

III. SYMPLECTIC ANALYTICAL SINGULAR ELEMENT 

A sector element (SASE) with radius R  is constructed in 
polar coordinate system, to represent the vicinity of the crack 
tip. As shown in Fig. 2, there are N  nodes uniformly 
distributed on the element's boundary. They are used to connect 
the outside regular elements directly, and each of them has two 
degrees of freedom. 

 

  

Fig. 2 The illustration of the SASE 
 

The solution for static problem can be given in the form of 
eigenexpansion as follows 
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where i
  and i  denote the eigenvalues and the 

corresponding eigenvectors, respectively. m

ja  is the unknown 

eigenexpanding coefficients to be solved. It should be noted 
that all the eigenexpanding terms are arranged in an ascending 
order according to the values of eigenvalues. It may be noted 
that the eigensolution for V-notch problem is different from 
crack problem and can be found in existing literatures [10]. 
Thus, the displacement field around the crack tip can be defined 
by using (17), as specified by 
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where T{ }m

p ru uu  is the vector of displacements under 

polar coordinates.  
Although the eigensolution used in (18) cannot strictly 

satisfy the governing equations of dynamic problem, the 
displacement and stress fields defined by it are still close to the 
analytical solution. Therefore, it can bring many advantages to 
use (18) to represent the vicinity of the crack tip, instead of 
conventional shape functions. 
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In practical usage, the number of expanding terms of (18)
should be finite. The first 2N  terms are used. Thus, (18) can be 
given by 

 
T 0 2 11( )diag( ,  ,  ... ,  )m mN

p r r r
   uu a  (19) 

 

The coordinates of the nth node are denoted by ( , )nR  . 

Hence, the vector of nodal displacements of the SASE can be 
given by 
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where t  is a transformation matrix. ˆ m

pu  is defined by 

T
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The relationship between ma  and ˆ m

pu  can be derived from 

(20), as specified by 
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It should be noted that the number of the chosen expanding 

terms ( 2N ) must be two times of the number of the nodes (N) 

of the SASE, so that the inverse matrix of tT  can be obtained. 

To keep consistent with the global Cartesian coordinate 
system, a coordinate transformation should be carried out, as 
specified by 
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The coordinate transformation matrix cT  is given by 
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Through (19)-(22), the displacement field around the crack 

tip in the Cartesian coordinate can be given by 
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Thus, the matrix of shape function of the singular element 

can be given by 
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IV. FINITE ELEMENT FORMULATION 

The plane dynamic problem represented by (12)-(16) can be 
solved by the weighted residual method 
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Without loss of generality, assuming 
  0u  on Γu  for 

simplicity and considering (15), (27) can be rewritten as 
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In each element, 
mu  and 

u  can be expressed by 
 

ˆm mu Nu , ˆ u Nu  (29) 
 

Thus, the finite element formulas can be given by 
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where  K ,  M  and ˆ m

  f  denote stiffness matrix, mass 

matrix and nodal force vector, respectively. For each element, 

eK , eM  and ˆ m

ef  are specified as 
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It should be noted that (33) cannot be applied for SASE. For 

the SASE subjected to load, ˆ m

ef  can be derived by introducing 

special solution to (17). 

0t 2t kt 1kt 1t
0T 1T kT

 

Fig. 3 Initial points and sizes of time intervals 
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At the first time interval  0 1, t t t , the first two expanding 

terms can be given by (6), as specified by 
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At the kth time interval  1, k kt t t  , the first two expanding 

terms can be given by using the solutions of the previous time 
interval, as specified by 
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By solving (30), ˆ
k

mu  ( 1m  ) can be obtained step by step, 

until the number of expanding terms m  is enough. m  can be 
decided automatically by using a convergence criterion 
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where   is the error bound ( 410   usually). If the above 
criterion is satisfied for three consecutive iterations, the 
computing will be stopped, and the obtained solution is 
recognized as a convergent one. As long as the nodal 
displacements are solved, the DSIFs can be obtained directly 
through the definition, as specified by 
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V. NUMERICAL EXAMPLES 

A. Example 1 

a
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y

0
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0
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Fig. 4 A semi-infinite plate with an edge crack 
 

As shown in Fig. 4, a semi-infinite plate with an edge crack 
is considered. The material properties are: mass density 

38000 /kg m  , Poisson’s ratio 0.3v  , Young's modulus 

210 GPaE  .The displacement in the x-direction is 0xu   at 

the left edge and the right edge. The length and the height are 
2 10 a m  and 2 4H m , respectively. The theoretical 
solution of this problem is available, as specified by 
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 (39) 

 

where /c dt H c , and dc  is the dilatational wave speed. The 

mode-I DSIF is normalized by 0cK H . 

 

 

(a) Present method (2742 degrees of freedom) 
 

 

(b) ANSYS (2866 degrees of freedom) 

Fig. 5 The finite element meshes of the proposed method and ANSYS 
 

The number of nodes of the SASE is chosen as 17N  , and 
the radius is 0.05R a . Meshes of ANSYS QPE and the 
present method are shown in Fig. 5. In Fig. 6, numerical 

solutions of IK  obtained through different numerical methods 

are compared with the exact solution. 100 time steps are chosen 
arbitrarily in the time domain. In Fig. 7, the numbers of 
sub-steps in each time step during the calculation are provided. 

The impact of the SASE's size on computational accuracy is 
investigated. A series of SASEs with different radiuses are used 
to calculate the same problem, while the number of nodes is 
chosen as 17N  . Fig. 8 shows the relative errors compared 
with the theoretical solution. 

The impact of the number of nodes on solving accuracy is 
also studied. A series of SASEs with different numbers of 
nodes are used to deal with the same problem, while the radius 
is chosen as 0.05R a . Fig. 9 shows the relative errors 
compared with the theoretical solution. 
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(a) Results 
 

 

(b) Relative errors 

Fig. 6 Results and relative errors of the mode-I DSIF of the edge cracked plate 
 

 

Fig. 7 The number of sub-steps in each step 
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Fig. 8 Relative errors of the mode-I DSIF of the SASEs with different element sizes 
 

 

Fig. 9 Relative errors of the mode-I DSIF of the SASEs with different numbers of nodes 
 

B. Example 2 
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0
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Fig. 10 A semi-infinite plate with an edge crack subject to shear 
loading 

 
As shown in  
Fig. 10, a semi-infinite plate with an edge crack is 

considered. The displacement in the y-direction is 0yu   at 

the left edge and the right edge. The height is 2 4H m . 

Different lengths 2 20 ,  16 ,  12a m m m  are chosen. Material 

properties are: mass density 
38000 /kg m  , Poisson’s ratio 

0.3v  , Young's modulus 210 GPaE  . The theoretical 
solution of this problem is available, as specified by 
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 (40) 

where /c st H c  and sc  is the shear wave speed. The 

mode-II DSIF is normalized by 0cK H . 
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(a) Results 
 

 

(b) Relative errors 

Fig. 11 Results and errors of the mode II DSIFs of an edge crack problem under shear loading 
 

The number of nodes of the SASE is chosen as 17N  , and 
the radius is 0.05R a . Three cases are considered, where 
different length-width radios are used. In Fig. 11, numerical 

solutions of IIK  are compared with the exact solution. Fig. 12 

shows the stress distribution in the vicinity of the crack tip. 

C. Example 3 

As shown in Fig. 13, a semi-infinite plate with an edge crack 

is considered. The displacement in the y-direction is 0yu   at 

the top edge and the bottom edge. The geometric dimensions 
are: 4 L m , 6 H m  and 1 a m . The material properties 

are: mass density
37850 /kg m  , Poisson’s ratio 0.25v  , 

Young's modulus 200 GPaE  . The prescribed velocity on 

the boundary is 0 16.5 /V m s . The analytical solution when 

3 ct t  is available for this problem, where /c dt a c , and dc  

is the dilatational wave speed. The DSIFs are normalized by 

2

0 / / [2 (1 )]c dK EV a c v   . 
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(b) r  

Fig. 12 The stress distribution near the crack tip ( 0.1r R ) 
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L
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0V

0yu 

0yu 

x
y

 

Fig. 13 The geometry and the boundary condition of an edge cracked 
semi-infinite plate 

 
In Fig. 14 and 15, numerical solutions of DSIFs obtained 

through different numerical methods are compared with the 
exact solution. Fig. 16 illustrates the DSIFs obtained by the 
present method, when different SASEs are used. The number of 
nodes is chosen as 17N   and the radiuses are

0.25 ,  0.5 ,  0.75R a a a . 
 

 

Fig. 14 Results of the DSIFs of the edge crack problem 

 

(a) Mode I 
 

 

(b) Mode II 

Fig. 15 Relative errors of the DSIFs of the edge crack problem 
compared with the exact solution 

 

Fig. 16 The DSIFs predicted by the present SASEs with different 
element sizes 

VI. CONCLUSION 

In this study, the SASE is further extended for sharp V-notch 
problem under dynamic loading condition. The analytical 
eigenexpanding coefficients around the notch tip are used to 
represent the fields in the vicinity of notch hence brings higher 
solving accuracy. The precise time domain expanding 
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algorithm is adopted to treat the time related problem. 
Numerical examples show that the proposed method is stable 
and effective for V-notch problem under dynamic loading 
condition. 
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