Total Chromatic Number of Δ-Claw-Free 3-Degenerated Graphs

Wongsakorn Charoenpanitseri

Abstract

The total chromatic number $\chi^{\prime \prime}(G)$ of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no incident or adjacent pair of elements receive the same color Let G be a graph with maximum degree $\Delta(G)$. Considering a total coloring of G and focusing on a vertex with maximum degree. A vertex with maximum degree needs a color and all $\Delta(G)$ edges incident to this vertex need more $\Delta(G)+1$ distinct colors. To color all vertices and all edges of G, it requires at least $\Delta(G)+1$ colors. That is, $\chi^{\prime \prime}(G)$ is at least $\Delta(G)+1$. However, no one can find a graph G with the total chromatic number which is greater than $\Delta(G)+2$. The Total Coloring Conjecture states that for every graph $G, \chi^{\prime \prime}(G)$ is at most $\Delta(G)+2$.

In this paper, we prove that the Total Coloring Conjectur for a Δ-claw-free 3 -degenerated graph. That is, we prove that the total chromatic number of every Δ-claw-free 3 -degenerated graph is at most $\Delta(G)+2$.

Keywords-Total colorings, the total chromatic number, 3-degenerated.

I. Introduction

Am-coloring of a graph G is a coloring $f: V(G) \rightarrow$ $\{1,2, \ldots, m\}$. A m-coloring is proper if adjacent vertices have different colors. A graph is m-colorable if it has a proper m-coloring. The chromatic number $\chi(G)$ is the least positive integer m such that G is m-colorable.

A m-edge coloring of a graph G is a coloring $f: E(G) \rightarrow$ $\{1,2, \ldots, m\}$. A m-edge coloring is proper if incident edges have different colors. A graph is m-edge-colorable if it has a proper m-edge coloring. The edge chromatic number $\chi^{\prime}(G)$ of a graph G is the least positive integer m such that G is m-edge-colorable.

A m-total coloring of a graph G is a coloring $f: V(G) \cup$ $E(G) \rightarrow\{1,2, \ldots, m\}$. A m-total coloring is proper if incident edges have different colors, adjacent vertices have different colors, and edges and its endpoints have different colors. A graph is m-total colorable if it has a proper m-total coloring. The total chromatic number $\chi^{\prime \prime}(G)$ of a graph G is the least positive integer m such that G is m-total colorable.

However, no one can find a graph G with $\chi^{\prime \prime}(G)>\Delta(G)+$ 2. The Total Coloring Conjecture, introduced independently by Behzad [1] and Vizing [2], states that for every graph G, $\chi^{\prime \prime}(G) \leq \Delta(G)+2$. In 2003, Zhou, Matsuo and Nishizeki [3] found the total chromatic number of a series parallel graph which is a 2-degenerated graph. Furthermore, the Total Coloring Conjecture has been proved for graphs of sufficiently small maximum degree. It was proved for $\Delta(G)=3$ by Rosenfeld [4] and indepently by Vijayaditya [5], and an
W. Charoenpanitseri is with the Department of Mathematics, Rangsit University, Thailand, 12000 (e-mail: Wongsakorn.c@rsu.ac.th).
algorithmic proof was presented by Yap [6]. For $\Delta(G)=4$ Kostochka [7] gave a proof of $\chi^{\prime \prime}(G) \leq 6$. The case $\Delta(G)=5$ was settled in the doctoral thesis of Kostochka [8], [9], who proved that $\chi^{\prime \prime}(G) \leq \Delta(G)+2$ is valid for all graphs G with $\Delta(G) \leq 5$.

Proposition 1. Let G be a nontrivial graph. We obtain $\chi^{\prime \prime}(G) \geq 3$.

Proof: Since G is a nontrivial graph, there is an edge $u v$ where $u, v \in V(G)$. We need 3 colors to label vertices u, v and edge $u v$. Thus $\chi^{\prime \prime}(G) \geq 3$.

The following statments are the chromatic number, the edge chromatic number and the total chromatic number of some well known graphs such as cycle and complete graphs. A cycle is a graph with a single cycle through all vertices. A cycle with n vertices is denoted by C_{n}. A complete graph is a graph whose vertices are pairwise adjacent. The complete graph with n vertices is denoted by K_{n}.
Remark 1. $\chi\left(C_{n}\right)=\chi^{\prime}\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is even }, \\ 3 & \text { if } n \text { is odd } .\end{cases}$
Proof: Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. If n is even, we color all vertices by color 1 and 2 alternatively to obtain $\chi\left(C_{n}\right)=2$. Similarly, $\chi^{\prime}\left(C_{n}\right)=2$ when n is even. If n is odd, we color a vertex of C_{n} by color 1 and color remaining vertices by color 2 and color 3 alternatively to obtain $\chi\left(C_{n}\right)=3$. Similarly, $\chi^{\prime}\left(C_{n}\right)=3$ when n is odd.
Proposition 2. [10] $\chi^{\prime \prime}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \equiv 0(\bmod 3), \\ 4 & \text { otherwise. }\end{cases}$
Theorem 1. [11], [12] For every graph G, $\chi(G) \leq \Delta(G)+1$. The equality holds if and only if G is a complete graph or an odd cycle.

Remark 2. $\chi^{\prime \prime}\left(C_{n}\right) \geq \chi^{\prime}\left(C_{n}\right)=\chi\left(C_{n}\right)$.
Proof: By Remark 1, we obtain $\chi\left(C_{n}\right)=\chi^{\prime}\left(C_{n}\right)$. By Theorem 1, $\chi\left(C_{n}\right)=\chi^{\prime}\left(C_{n}\right) \leq 3$. By Proposition 2, $\chi\left(C_{n}\right)=$ $\chi^{\prime}\left(C_{n}\right) \leq 3 \leq \chi^{\prime \prime}\left(C_{n}\right)$.
Proposition 3. $\chi\left(C_{n}\right)=\chi^{\prime}\left(C_{n}\right)=\chi^{\prime \prime}\left(C_{n}\right)$ if and only if $n \equiv 3(\bmod 6)$.

Proof: Sufficiency. Assume that $n \equiv 3(\bmod 6)$. Since C_{n} is an odd cycle, we get $\chi\left(C_{n}\right)=3$ and $\chi^{\prime}\left(C_{n}\right)=3$. By Proposition 2, we get $\chi^{\prime \prime}\left(C_{n}\right)=3$. Therefore, $\chi\left(C_{n}\right)=$ $\chi^{\prime}\left(C_{n}\right)=\chi^{\prime \prime}\left(C_{n}\right)$.
Necessity. We will prove by contrapositive. Assume that $n \not \equiv 3$ $(\bmod 6)$. By the division algorithm, $n=6 k, 6 k+1,6 k+$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934

Vol:12, No:4, 2018
$2,6 k+4$ or $6 k+5$ for some integer k.
Case 1. $n=6 k, 6 k+2$ or $6 k+4$.
Since C_{n} is an even cycle, we get $\chi\left(C_{n}\right)=2$. However, $\chi^{\prime \prime}\left(C_{n}\right) \geq \Delta\left(C_{n}\right)+1=3$. Then $\chi\left(C_{n}\right) \neq \chi^{\prime \prime}\left(C_{n}\right)$.
Case 2. $n=6 k+1$ or $n=6 k+5$.
Since n is not divisible by 3 , by Proposition 2, we get $\chi^{\prime \prime}\left(C_{n}\right)=4$. By Theorem 1, $\chi\left(C_{n}\right) \leq \Delta\left(C_{n}\right)+1=3$ and $\chi^{\prime \prime}\left(C_{n}\right)=4$. Then $\chi\left(C_{n}\right) \neq \chi^{\prime \prime}\left(C_{n}\right)$. Therefore, $\chi\left(C_{n}\right)=$ $\chi^{\prime}\left(C_{n}\right)=\chi^{\prime \prime}\left(C_{n}\right)$ if and only if $n \equiv 3(\bmod 6)$.

It is easy to find a coloring of a complete graph K_{n}. That is, $\chi\left(K_{n}\right)=n$ However, it is quite complicated to find an edge coloring or a total coloring of a complete graph K_{n}. An edge coloring of K_{n} was found by Fiorini and Wilson [13] and a total coloring of K_{n} was found by Bezhad, Chartrand and Cooper [14].
Proposition 4. [13] $\chi^{\prime}\left(K_{n}\right)= \begin{cases}n & \text { if } n \text { is odd }, \\ n-1 & \text { if } n \text { is even } .\end{cases}$
Proposition 5. [14] $\chi^{\prime \prime}\left(K_{n}\right)= \begin{cases}n & \text { if } n \text { is odd, } \\ n+1 & \text { if } n \text { is even } .\end{cases}$
Let G be a graph. It requires more colors to color all vertices and edges of G than to color only vertices of G. Hence, $\chi^{\prime \prime}(G) \geq \chi(G)$. Similarly, $\chi^{\prime \prime}(G) \geq \chi^{\prime}(G)$. However, it is not true that $\chi^{\prime}(G) \geq \chi(G)$ or $\chi^{\prime}(G) \leq \chi(G)$. For example, $\chi^{\prime}\left(K_{4}\right)=3$ but $\chi\left(K_{4}\right)=4$.
Proposition 6. If n is odd then $\chi\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)$. Otherwise, $\chi\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)+1=\chi^{\prime \prime}\left(K_{n}\right)-1$.

Proof: Case 1. n is odd. By Proposition 4 and Proposition 5, we get $\chi\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)=n$. Case 2. n is even
By Proposition 5, we get $\chi^{\prime \prime}\left(K_{n}\right)=n+1$. However, $\chi\left(K_{n}\right)=n$. Thus $\chi\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)-1$. By Proposition 4, we get $\chi^{\prime}\left(K_{n}\right)=n-1$. Thus $\chi\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)+1$.
Theorem 2. Let G be a graph. If G is not a complete graph of even degree, then $\chi^{\prime \prime}(G) \geq \chi^{\prime}(G) \geq \chi(G)$. Otherwise, $\chi(G)=\chi^{\prime}(G)-1=\chi^{\prime \prime}(G)+1$.

Proof: Case 1. G is neither a complete graph nor an odd cycle. By Theorem 1, $\chi(G) \leq \Delta(G)$. Since $\Delta(G) \leq \chi^{\prime}(G)$ and $\chi^{\prime}(G) \leq \chi^{\prime \prime}(G)$, we get $\chi^{\prime \prime}(G) \geq \chi^{\prime}(G) \geq \chi(G)$.
Case 2. G is an odd cycle. By Remark 2, $\chi^{\prime \prime}(G) \geq \chi^{\prime}(G) \geq$ $\chi(G)$.
Case 3. G is a complete graph. If n is odd then $\chi\left(K_{n}\right)=$ $\chi^{\prime}\left(K_{n}\right)=\chi^{\prime \prime}\left(K_{n}\right)$ and if n is even then $\chi\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)+$ $1=\chi^{\prime \prime}\left(K_{n}\right)-1$ by Proposition 6.

The following theorem gives necessary and sufficient conditions for the equality of the chromatic number, the edge-chromatic number and the total chromatic number.
Theorem 3. Let G be a graph with n vertices. $\chi(G)=$ $\chi^{\prime}(G)=\chi^{\prime \prime}(G)$ if and only if G is C_{n} where $n \equiv 3(\bmod 6)$ or K_{n} where n is odd.

Proof: Sufficiency. $\chi(G)=\chi^{\prime}(G)=\chi^{\prime \prime}(G)$ by Proposition 3 and Proposition 6.
Necessity. Assume that $\chi(G)=\chi^{\prime}(G)=\chi^{\prime \prime}(G)$. By Theorem 1 and Remark ??, we get $\chi(G) \leq \Delta(G)+1 \leq$
$\chi^{\prime \prime}(G)$. Then $\chi(G)=\Delta(G)+1=\chi^{\prime \prime}(G)$. Thus $\chi(G)>$ $\Delta(G)$. From Theorem 1, G is an odd cycle or a complete graph. By Proposition 3 and Proposition 6, G is a cycle of length $n \equiv 3(\bmod 6)$ or a complete graph of order n when n is odd.
In Fig. 1, we can remove all vertices by this order $v_{7}, v_{6}, v_{5}, v_{4}, v_{3}, v_{2}, v_{1}$ which satisfy the definition of 3 -degenerated graph.

Fig. 1 A 3-degenerated graph
A m-claw in a graph G is the bipartite $K_{1,3}$ whose all leaves are vertices with degree m in G. A graph G is m-claw-free if G has no m-claw as an induced subgraph. A Δ-claw in a graph G is the bipartite $K_{1,3}$ whose all leaves are vertices with maximum degree in G. A graph G is Δ-claw-free if G has no Δ-claw as an induced subgraph.

Fig. 2 graphs which have exactly 1Δ-claw
Although each graph in Fig. 2 has 4 claws, it has only 1 Δ-claw. In this paper, $N(v)$ is denoted the set of all vertices adjacent to a vertex v.

II. Main Result

Our main result is that every Δ-claw-free 3 -degenerated graph satisfies the Total Coloring Conjecture. Let G be a Δ-claw-free 3 -degenerated graph. We will prove that if $m \geq \Delta(G)+2$ and G is $(m-2)$-claw-free, then $\chi^{\prime \prime}(G) \leq$ m by induction on the number of vertices. Since G is a 3 -degenerated graph, it can be succesive removal vertices with degree at most 3 . Let v the first removal vertex. The proof is divided into four cases; the first case is $d(v)=1$, the second case is $d(v)=2$, the third case and the fourth case are $d(v)=3$ with different conditions.
Lemma 1. Let G be a graph and contain a vertex v with degree 1. If $\chi^{\prime \prime}(G-v) \leq m$ where m is an integer such that $m \geq \Delta(G)+2$ then $\chi^{\prime \prime}(G) \leq m$.

Proof:

Let $m \geq \Delta(G-v)+2$ be an integer. Assume that $\chi^{\prime \prime}(G-$ $v) \leq m$. Then there is a proper total coloring $f: V(G-v) \cup$ $E(G-v) \rightarrow[m]$. Since $d_{G-v}(u)+1 \leq m-1$, there exists a remaining color in [m], say r, which is not used to color u and edges incident to u in $G-v$. Since $m \geq \Delta(G)+2 \geq$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934

Vol:12, No:4, 2018
$d(v)+2=3$. Thus we can pick a color s which differs from $f(u)$ and r.

Let $f^{\prime}: V(G) \cup E(G) \rightarrow[m]$ be a total coloring defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(G-v) \cup E(G-v) \\ r & \text { if } x=u v \\ s & \text { if } x=v\end{cases}
$$

The properties of the proper total coloring f, color r and color s yield that f^{\prime} is a proper total coloring from $V(G) \cup E(G)$ to $[m]$. Therefore $\chi^{\prime \prime}(G) \leq m$.
Lemma 2. Let v be a vertex with degree 2 of a graph G and $m \geq \Delta(G)+2$. If $\chi^{\prime \prime}(G-v) \leq m$ then $\chi^{\prime \prime}(G) \leq m$.

Proof:

Let u_{1} and u_{2} be the vertices which are adjacent to v. Let $m \geq \Delta(G)+2$. Assume that $\chi^{\prime \prime}(G-v) \leq m$. If $\Delta(G) \leq 2$, each component of G is a path or a cycle. Then $\chi^{\prime \prime}(G) \leq$ $\Delta(G)+2 \leq m$. Assume that $\Delta(G) \geq 3$.

It suffices to show that there is a proper total coloring from $V(G) \cup E(G)$ to $[m]$.
Since $\chi^{\prime \prime}(G-v) \leq m$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[m]$. Since $d_{G-v}\left(u_{1}\right)+1 \leq$ $d_{G}\left(u_{1}\right) \leq \Delta(G) \leq m-2$, we use at most $m-2$ colors to color u_{1} and edges incident to u_{1} in $G-v$. Then there are 2 remaining colors for coloring $u_{1} v$. Let one be r_{1}. Similarly, there are 2 remaining colors for coloring $u_{2} v$. Pick the one which differs from r_{1}, say r_{2}. Since $\Delta(G) \geq 3$, we get $m \geq 5$. Let s be a color which differs from $f\left(u_{1}\right), f\left(u_{2}\right), r_{1}$ and r_{2}. Let $f^{\prime}: V(G) \cup E(G) \rightarrow[m]$ be a total coloring defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(G-v) \cup E(G-v) \\ r_{1} & \text { if } x=u_{1} v \\ r_{2} & \text { if } x=u_{2} v \\ s & \text { if } x=v\end{cases}
$$

By Properties of f, color r_{1}, color r_{2} and color s. Then f^{\prime} is a proper total coloring from $V(G) \cup E(G)$ to $[m]$. Hence $\chi^{\prime \prime}(G) \leq m$.

Lemma 3. Let v be a vertex with degree 3 of a graph G and $m \geq \Delta(G)+2$.
If $\exists u \in N(v), d_{G}(u) \leq m-3$ and $\chi^{\prime \prime}(G-v) \leq m$, then $\chi^{\prime \prime}(G) \leq m$.

Proof: Let v be a vertex with degree 3 of a graph G and $m \geq \Delta(G)+2$. Assume that $\exists u \in N(v), d_{G}(u) \leq m-3$ and $\chi^{\prime \prime}(G-v) \leq m$. As mention in first page, for any graph G such that $\Delta(G) \leq 5$, we know that $\chi^{\prime \prime}(G) \leq \Delta(G)+2 \leq m$. Suppose that $\Delta(G) \geq 6$. Let u_{1}, u_{2} and u_{3} be the vertices which are adjacent to v. Without loss of generality, assume that $d_{G}\left(u_{3}\right) \leq m-3$. Since $\chi^{\prime \prime}(G-v) \leq m$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[m]$.

Since $\chi^{\prime \prime}(G-v) \leq m$, there is a proper total coloring f : $V(G-v) \cup E(G-v) \rightarrow[m]$. Since $d_{G-v}\left(u_{1}\right)+1 \leq d_{G}\left(u_{1}\right) \leq$ $\Delta(G) \leq m-2$, we use at most $m-2$ colors to color u_{1} and edges incident to u_{1} in $G-v$. Then there are 2 remaining colors for coloring $u_{1} v$. Let one be r_{1}. Similarly there are 2 remaining colors for coloring $u_{2} v$. Pick the one which differs
from r_{1}, say r_{2}. Since $d_{G-v}\left(u_{3}\right)+1 \leq d_{G}\left(u_{3}\right) \leq m-3$, there are 3 remaining colors for coloring $u_{3} v$. Pick the one which differs from r_{1} and r_{2}, say r_{3}. Since $\Delta(G) \geq 6$, we get $m \geq 8$. Let s be a color which differs from $f\left(u_{1}\right), f\left(u_{2}\right), f\left(u_{3}\right), r_{1}, r_{2}$ and r_{3}. Let $f^{\prime}: V(G) \cup E(G) \rightarrow[m]$ be a total coloring defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(G-v) \cup E(G-v) \\ r_{1} & \text { if } x=u_{1} v \\ r_{2} & \text { if } x=u_{2} v, \\ r_{3} & \text { if } x=u_{3} v \\ s & \text { if } x=v\end{cases}
$$

Then f^{\prime} is a proper total coloring from $V(G) \cup E(G)$ to $[m]$. Hence $\chi^{\prime \prime}(G) \leq m$.

Theorem 4. [12] For sets $A_{1}, A_{2}, \ldots, A_{n}, \exists a_{i} \in A_{i}$ such that $a_{i} \neq a_{j}$ for $i \neq j$ if and only if $\left|\bigcup_{i \in S} A_{i}\right| \geq|S|$ for every $S \subseteq[n]$.
Remark 3. Let A_{1}, A_{2}, A_{3} be sets containing at least 2 elements. If $A_{1} \cup A_{2} \cup A_{3}$ has at least 3 elements, then there are $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}$ such that a_{1}, a_{2}, a_{3} are different.

Proof: Let A_{1}, A_{2}, A_{3} be sets containing at least 2 elements. Assume that $A_{1} \cup A_{2} \cup A_{3}$ has at least 3 elements. To use Theorem 4, we consider following sets

- $\left|A_{1}\right|,\left|A_{2}\right|,\left|A_{3}\right| \geq 1$,
- $\left|A_{1} \cup A_{2}\right|,\left|A_{2} \cup A_{3}\right|,\left|A_{1} \cup A_{3}\right|$,
- $\left|A_{1} \cup A_{2} \cup A_{3}\right| \geq 3$.

Thus there are $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}$ such that a_{1}, a_{2}, a_{3} are different.

Lemma 4. Let v be a vertex with degree 3 of a graph G and m be integer such that $m \geq \Delta(G)+2$. If $N(v)$ is not an independent set and $\chi^{\prime \prime}(G-v) \leq m$ then $\chi^{\prime \prime}(G) \leq m$.

Proof: Let v be a vertex with degree 3 of a graph G and $m \geq \Delta(G)+2$. Assume that $N(v)$ is not an independent set and $\chi^{\prime \prime}(G-v) \leq m$. As mention in first page, for any graph G such that $\Delta(G) \leq 5$, we know that $\chi^{\prime \prime}(G) \leq \Delta(G)+2 \leq m$. Suppose that $\Delta(G) \geq 6$. Let u_{1}, u_{2} and u_{3} be the vertices which are adjacent to v. Without loss of generality, assume that u_{1} and u_{2} are adjacent. Since $\chi^{\prime \prime}(G-v) \leq m$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow[m]$. Since $d_{G-v}\left(u_{1}\right)+1 \leq d_{G}\left(u_{1}\right) \leq \Delta(G) \leq m-2$, we use at most $m-2$ colors to color u_{1} and edges incident to u_{1} in $G-v$. Then there are 2 remaining colors for coloring $v u_{1}$, say r_{1}, r_{2}. Similarly, there are 2 remaining colors for coloring $v u_{2}$, say s_{1}, s_{2} and there are 2 remaining colors for coloring $v u_{3}$, say t_{1}, t_{2}. Let $R=\left\{r_{1}, r_{2}\right\}, S=\left\{s_{1}, s_{2}\right\}, T=\left\{t_{1}, t_{2}\right\}$. Case1. $|R \cup S \cup T| \geq 3$.
By Remark 3, there is $r \in R, s \in S, t \in T$ such that r, s, t are different

Since $\Delta(G) \geq 6$, we get $m \geq 8$. Let c be a color which differs from $f\left(u_{1}\right), f\left(u_{2}\right), f\left(u_{3}\right), r, s, t$. Let $f^{\prime}: V(G) \cup$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934

Vol:12, No:4, 2018
$E(G) \rightarrow[m]$ be a total coloring defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(G-v) \cup E(G-v) \\ r & \text { if } x=u_{1} v, \\ s & \text { if } x=u_{2} v, \\ t & \text { if } x=u_{3} v, \\ c & \text { if } x=v .\end{cases}
$$

Then f^{\prime} is a proper total coloring from $V(G) \cup E(G)$ to $[m]$. Hence $\chi^{\prime \prime}(G) \leq m$.
Case2. $|R \cup S \cup T|=2$.
Thus $R=S=T$. Without loss of generality, let $r_{1}=s_{1}=t_{1}$ and $r_{2}=s_{2}=t_{2}$. Let $g: V(G-v) \cup E(G-v) \rightarrow[m]$ be a total coloring of a graph $G-v$ defined by

$$
g(x)= \begin{cases}r_{1} & \text { if } x=u_{1} u_{2} \\ g(x) & \text { otherwise }\end{cases}
$$

Then g is a proper total coloring from $V(G-v) \cup E(G-v)$ to $\left[m\right.$]. Moreover, remaining color sets for $v u_{1}, v u_{2}$ and $v u_{3}$ are $\left\{f\left(u_{1} u_{2}\right), r_{2}\right\},\left\{f\left(u_{1} u_{2}\right), r_{2}\right\}$ and $\left\{r_{1}, r_{2}\right\}$, respectively. Since $f\left(u_{1} u_{2}\right) \neq r_{1}, r_{2}$, we get g is in Case 1 . Similar to Case 1, we can use g to define a proper total coloring from $V(G) \cup E(G)$ to $[m]$.

The main result is obtained by combining Lemma 1, Lemma 2, Lemma 3 and Lemma 4.

Theorem 5. Every Δ-claw-free 3-degenerated graph satisfies the Total Coloring Conjecture.

Proof: First, we will prove that for a 3 -degenerated graph G with n vertices, if $m \geq \Delta(G)+2$ and G is ($m-2$)-claw-free, then $\chi^{\prime \prime}(G) \leq m$.

Let $P(n)$ be the statement that for a 3-degenerated graph G with n vertices, if $m \geq \Delta(G)+2$ and G is $(m-2)$-claw-free, then $\chi^{\prime \prime}(G) \leq m$.

It is easy to see that $P(1)$ holds. Assume that $P(1), P(2), \ldots, P(k-1)$ hold. Let G be a 3-degenerated graph with k vertices. Then G has a vertex with degree at most 3 , say v. Assume that $m \geq \Delta(G)+2$ and G is $(m-2)$-claw-free. Then $G-v$ is also 3 -degenerated and ($m-2$)-claw-free. Thus $\chi^{\prime \prime}(G-v) \leq m$.
Case1. $d_{G}(v)=1$. By Lemma 1, we get $\chi^{\prime \prime}(G) \leq m$.
Case2. $d_{G}(v)=2$. By Lemma 2, we get $\chi^{\prime \prime}(G) \leq m$.
Case3. $d_{G}(v)=3$.
Since G is $(m-2)$-claw-free, $\exists u \in N(v), d_{G}(v) \neq m-2$ or $N(v)$ is not an independent set.
(3.1) $\exists u \in N(v), d_{G}(v) \neq m-2$. Since $m \geq \Delta(G)+2$, we get $d_{G}(u) \leq m-3$. By Lemma 3, we get $\chi^{\prime \prime}(G) \leq m$.
(3.2) $N(v)$ is not an independent set. By Lemma 4, we get $\chi^{\prime \prime}(G) \leq m$. Hence $P(k)$ hold.
By mathematic induction, $P(n)$ holds for any natural number n.

Let G be Δ-claw-free 3 -degenerated graph To prove the Total Coloring Conjecture, we focus only when $m=\Delta(G)+$ 2. Thus $m-2=\Delta(G)$; hence, G is ($m-2$)-claw-free. By the statement, $\chi^{\prime \prime}(G) \leq m=\Delta(G)+2$. That is, G satisfies the Total Coloring Conjecture.

References

[1] M. Behzad, The total chromatic number of a graph Combinatorial Mathematics and its Applications, Proceedings of the Conference Oxford Academic Press N. Y. 1-9, 1971.
[2] V. G. Vizing, On evaluation of chromatic number of a p-graph (in Russian) Discrete Analysis, Collection of works of Sobolev Institute of Mathematics SB RAS 3 3-24, 1964.
[3] X. Zhou, Y. Matsuo, T. Nishizeki, List total colorings of series-parallel Graphs, Computing and Combinatorics,Lecture Notes in Comput. Sci. 2697, Springer Berlin, 172-181, 2003.
[4] M. Rosenfeld, On the total coloring of certain graphs. Israel J. Math. 9 396-402, 1971.
[5] N. Vijayaditya, On total chromatic number of a graph, J. London Math Soc. 3 405-408, 1971.
[6] H. P. Yap, Total colourings of graphs. Bull. London Math. Soc. 21 159-163, 1989.
[7] A. V. Kostochka, The total colorings of a multigraph with maximal degree 4. Discrete Math. 17, 161-163, 1977.
[8] A. V. Kostochka, Upper bounds of chromatic functions of graphs (in Russian). Doctoral Thesis, Novosibirsk, 1978.
[9] A. V. Kostochka, Exact upper bound for the total chromatic number of a graph (in Russian). In: Proc. 24th Int. Wiss. Koll.,Tech. Hochsch. Ilmenau, 1979 33-36, 1979
[10] H. P. Yap, Total coloring of graphs, Lecture Note in Mathematics Vol. 1623, Springer Berlin, 1996.
11] R. L. Brooks, On coloring the nodes of a network, Proc. Cambridge Phil. Soc. 37 194-197, 1941.
[12] D. B. West, Introduction to Graph Theory, Prentice Hall, New Jersey, 2001.
[13] S. Fiorini, R. J. Wilson, Edge Coloring of Graphs, Pitman London, 1977. [14] M. Bezhad, G. Chartrand, J. K. Cooper, The colors numbers of complete graphs, J. London Math. Soc. 42 225-228, 1967

