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Total Chromatic Number of A-Claw-Free
3-Degenerated Graphs

Wongsakorn Charoenpanitseri

Abstract—The total chromatic number x"'(G) of a graph G is the
minimum number of colors needed to color the elements (vertices
and edges) of GG such that no incident or adjacent pair of elements
receive the same color Let G be a graph with maximum degree A(G).
Considering a total coloring of GG and focusing on a vertex with
maximum degree. A vertex with maximum degree needs a color and
all A(G) edges incident to this vertex need more A(G) + 1 distinct
colors. To color all vertices and all edges of G, it requires at least
A(G) + 1 colors. That is, x(G) is at least A(G) + 1. However,
no one can find a graph G with the total chromatic number which
is greater than A(G) + 2. The Total Coloring Conjecture states that
for every graph G, x''(G) is at most A(G) + 2.

In this paper, we prove that the Total Coloring Conjectur for a
A-claw-free 3-degenerated graph. That is, we prove that the total
chromatic number of every A-claw-free 3-degenerated graph is at
most A(G) + 2.

Keywords—Total colorings, the total chromatic number,
3-degenerated.

I. INTRODUCTION

m-coloring of a graph G is a coloring f : V(G) —

{1,2,...,m}. A m-coloring is proper if adjacent
vertices have different colors. A graph is m-colorable if it
has a proper m-coloring. The chromatic number x(G) is the
least positive integer m such that G is m-colorable.

A me-edge coloring of a graph G is a coloring f : E(G) —
{1,2,...,m}. A m-edge coloring is proper if incident edges
have different colors. A graph is m-edge-colorable if it has a
proper m-edge coloring. The edge chromatic number X' (QG)
of a graph G is the least positive integer m such that G is
m-edge-colorable.

A m-total coloring of a graph G is a coloring f : V(G) U
E(G) — {L1,2,....,m}. A m-total coloring is proper if
incident edges have different colors, adjacent vertices have
different colors, and edges and its endpoints have different
colors. A graph is m-total colorable if it has a proper m-total
coloring. The total chromatic number x"'(G) of a graph G is
the least positive integer m such that G is m-total colorable.

However, no one can find a graph G with X"/ (G) > A(G)+
2. The Total Coloring Conjecture, introduced independently
by Behzad [1] and Vizing [2], states that for every graph G,
X" (G) < A(G) + 2. In 2003, Zhou, Matsuo and Nishizeki
[3] found the total chromatic number of a series parallel
graph which is a 2-degenerated graph. Furthermore, the Total
Coloring Conjecture has been proved for graphs of sufficiently
small maximum degree. It was proved for A(G) = 3 by
Rosenfeld [4] and indepently by Vijayaditya [5], and an
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algorithmic proof was presented by Yap [6]. For A(G) = 4
Kostochka [7] gave a proof of x”/(G) < 6. The case A(G) =5
was settled in the doctoral thesis of Kostochka [8], [9], who
proved that Y/ (G) < A(G) + 2 is valid for all graphs G with
A(G) <5.

Proposition 1. Let G be a nontrivial graph. We obtain
X"(G) = 3.

Proof: Since G is a nontrivial graph, there is an edge uv
where u,v € V(G). We need 3 colors to label vertices u, v
and edge uv. Thus x”/(G) > 3. [

The following statments are the chromatic number, the edge
chromatic number and the total chromatic number of some
well known graphs such as cycle and complete graphs. A cycle
is a graph with a single cycle through all vertices. A cycle
with n vertices is denoted by C,,. A complete graph is a graph
whose vertices are pairwise adjacent. The complete graph with
n vertices is denoted by K.

2 if nis even,

Remark 1. x(C,,) = X'(Cy) = {3 if n is odd

Proof: Let V(C,,) = {v1,va,...,v,}. If n is even, we
color all vertices by color 1 and 2 alternatively to obtain
X(Cy) = 2. Similarly, x'(C,,) = 2 when n is even. If n is odd,
we color a vertex of C,, by color 1 and color remaining vertices
by color 2 and color 3 alternatively to obtain x(C,) = 3.
Similarly, x’(C),) = 3 when n is odd. |

{3 if n=0 (mod 3),

Proposition 2. [10] " (C,) = 4 otherwi
otherwise.

Theorem 1. [11], [12] For every graph G, x(G) < A(G)+1.
The equality holds if and only if G is a complete graph or an
odd cycle.

Remark 2. " (C,) > x'(Cy) = x(Cy).

Proof: By Remark 1, we obtain x(C,) = x'(Cy). By
Theorem 1, x(C,,) = x’(Cy) < 3. By Proposition 2, x(C,)
X' (Cn) <3 <X"(C).

Proposition 3. x(C,) = X' (Cn) = x"(Cy) if and only if
n =3 (mod 6).

Proof: Sufficiency. Assume that n = 3 (mod 6). Since
C,, is an odd cycle, we get x(C,) = 3 and x'(C,) = 3.
By Proposition 2, we get x”(C,,) = 3. Therefore, x(C,) =
Y (Cn) = X"(C).
Necessity. We will prove by contrapositive. Assume that n % 3
(mod 6). By the division algorithm, n = 6k, 6k + 1,6k +
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2,6k + 4 or 6k + 5 for some integer k.

Case 1. n = 6k,6k + 2 or 6k + 4.

Since C,, is an even cycle, we get x(C,) = 2. However,

X" (Crn) > A(C,) + 1 =3. Then x(C,) # X" (Cy).

Case 2. n =6k +1 or n = 6k + 5.

Since n is not divisible by 3, by Proposition 2, we get

X" (Cy) = 4. By Theorem 1, x(C,) < A(C,) +1 = 3 and

X" (Cp) = 4. Then x(Cy) # x"(C,,). Therefore, x(C,,) =

X' (Crn) = x"(C,) if and only if n =3 (mod 6). |
It is easy to find a coloring of a complete graph K,,. That

is, x(K,) = n However, it is quite complicated to find an

edge coloring or a total coloring of a complete graph K,,. An

edge coloring of K,, was found by Fiorini and Wilson [13]

and a total coloring of K,, was found by Bezhad, Chartrand

and Cooper [14].

if n isodd,

Proposition 4. [13] x'(K,) = {Z —1 if n iseven

n if n isodd,

Proposition 5. [14] ' (K,) =
P (141 X7 () {n+1 if n is even.

Let G be a graph. It requires more colors to color all vertices
and edges of G than to color only vertices of . Hence,
X" (G) > x(G). Similarly, x"(G) > x'(G). However, it is
not true that x'(G) > x(G) or X'(G) < x(G). For example,
(K1) = 3 but (Ky) = 4.

Proposition 6. If n is odd then x(K,) = x'(Ky)
Otherwise, x(K,) = x'(K,)+ 1= x"(K,) — 1L

= X"(Kn)-

Proof: Case 1. n is odd. By Proposition 4 and
Proposition 5, we get x(K,) = X' (K,) = X" (K,) = n.
Case 2. n is even

By Proposition 5, we get x”/(K,) = n + 1. However,
X(K,) = n. Thus x(K,) = x”(K,) — 1. By Proposition 4,
we get Y/ (K,) =n — 1. Thus x(K,) = x"(K,) + 1. [

Theorem 2. Let G be a graph. If G is not a complete graph
of even degree, then x"(G) > X'(G) > x(G). Otherwise,
X(G) =X'(G) =1 =x"(G) + L.

Proof: Case 1. G is neither a complete graph nor an odd
cycle. By Theorem 1, x(G) < A(G). Since A(G) < ¥'(G)
and '(G) < X"(G). we get ' (G) > (@) > X(G).

Case 2. G is an odd cycle. By Remark 2, x"(G) > x/(G) >
x(G).
Case 3. G is a complete graph. If n is odd then y(K,) =
X' (K,) = x"(K,) and if n is even then x(K,) = x'(K,) +
1= x"(K,) — 1 by Proposition 6. [ |
The following theorem gives necessary and sufficient
conditions for the equality of the chromatic number, the
edge-chromatic number and the total chromatic number.

Theorem 3. Let G be a graph with n vertices. x(QG)
X' (G) = x"(G) if and only if G is C,, where n =3 (mod 6)
or K,, where n is odd.

Proof: Sufficiency. x(G) = X'(G) = x"(G) by
Proposition 3 and Proposition 6.

Necessity. Assume that x(G) = X'(G) =
Theorem 1 and Remark 2?2, we get x(G) < A(G) +1

X"(G). Then x(G) = A(G) + 1 = x"(G). Thus x(G) >
A(G). From Theorem 1, G is an odd cycle or a complete
graph. By Proposition 3 and Proposition 6, G is a cycle of
length n = 3 (mod 6) or a complete graph of order n when
n is odd. u

In Fig. 1, we can remove all vertices by this
order vy, vg, s, Vg, U3, V2, v1 Which satisfy the definition of
3-degenerated graph.

Fig. 1 A 3-degenerated graph

A m-claw in a graph G is the bipartite K 3 whose all leaves
are vertices with degree m in G. A graph G is m-claw-free
if G has no m-claw as an induced subgraph. A A-claw in
a graph G is the bipartite K 3 whose all leaves are vertices
with maximum degree in G. A graph G is A-claw-free if G
has no A-claw as an induced subgraph.

Fig. 2 graphs which have exactly 1 A-claw

Although each graph in Fig. 2 has 4 claws, it has only 1
A-claw. In this paper, N(v) is denoted the set of all vertices
adjacent to a vertex v.

II. MAIN RESULT

Our main result is that every A-claw-free 3-degenerated
graph satisfies the Total Coloring Conjecture. Let G be
a A-claw-free 3-degenerated graph. We will prove that if
m > A(G) + 2 and G is (m — 2)-claw-free, then x"(G) <
m by induction on the number of vertices. Since G is a
3-degenerated graph, it can be succesive removal vertices with
degree at most 3. Let v the first removal vertex. The proof
is divided into four cases; the first case is d(v) = 1, the
second case is d(v) = 2, the third case and the fourth case are
d(v) = 3 with different conditions.

Lemma 1. Let G be a graph and contain a vertex v with
degree 1. If X" (G — v) < m where m is an integer such that
m > A(G) + 2 then X" (G) < m.

Proof:

Let m > A(G —v) + 2 be an integer. Assume that x”(G —
v) < m. Then there is a proper total coloring f : V(G —v) U
E(G —v) — [m]. Since dg—,(u) +1 < m — 1, there exists
a remaining color in [m], say r, which is not used to color u
and edges incident to u in G — v. Since m > A(G) + 2 >
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d(v) 4+ 2 = 3. Thus we can pick a color s which differs from
f(u) and r.

Let f': V(G) U E(G) — [m] be a total coloring defined
by

flx) if 2eV(G—-v)UE(G—v),
ey =4

s if z=wo.

if = uw,

The properties of the proper total coloring f, color r and color
s yield that f’ is a proper total coloring from V(G) U E(G)
to [m]. Therefore X" (G) < m. |

Lemma 2. Let v be a vertex with degree 2 of a graph G and
m > A(G)+ 2. If X(G —v) <m then X"(G) < m.

Proof:

Let u; and wuy be the vertices which are adjacent to v. Let
m > A(G) + 2. Assume that (G —v) < m. If A(G) < 2,
each component of G is a path or a cycle. Then x”(G) <
A(G) 4+ 2 < m. Assume that A(G) > 3.

It suffices to show that there is a proper total coloring from
V(G)U E(G) to [m)].

Since x”(G — v) < m, there is a proper total coloring
f:V(G—=v)UEG —wv) — [m]. Since dg_,(u1) +1 <
de(ur) < A(G) < m — 2, we use at most m — 2 colors to
color u; and edges incident to w; in G — v. Then there are 2
remaining colors for coloring u;v. Let one be 7. Similarly,
there are 2 remaining colors for coloring ugv. Pick the one
which differs from rq, say r2. Since A(G) > 3, we get m > 5.
Let s be a color which differs from f(u1), f(ug),r1 and rs.
Let f': V(G) U E(G) — [m] be a total coloring defined by

flz) if ze€V(G—-v)UE(G—0v),

r if x=wuv

fay=q" .
ro if x=wuqv,
s if x=wo.

By Properties of f, color r1, color 7o and color s. Then f’
is a proper total coloring from V(G) U E(G) to [m]. Hence
X" (G) <m. [

Lemma 3. Let v be a vertex with degree 3 of a graph G and
m > A(G) + 2.

If 3u € N(v),dg(u) < m —3 and X"(G —v) < m, then
X' (G) <m.

Proof: Let v be a vertex with degree 3 of a graph G and
m > A(G) + 2. Assume that 3u € N(v),dg(u) < m—3 and
X" (G — v) < m. As mention in first page, for any graph G
such that A(G) < 5, we know that X" (G) < A(G)+2 < m.
Suppose that A(G) > 6. Let uj,ug and uz be the vertices
which are adjacent to v. Without loss of generality, assume
that dg(us) < m—3. Since x”/(G —v) < m, there is a proper
total coloring f : V(G —v) U E(G —v) — [m].

Since x”(G — v) < m, there is a proper total coloring f :
V(G—v)UE(G—v) — [m]. Since dg—,(u1)+1 < dg(uy) <
A(G) < m—2, we use at most m — 2 colors to color u; and
edges incident to u; in G — v. Then there are 2 remaining
colors for coloring ujv. Let one be ry. Similarly there are 2
remaining colors for coloring usv. Pick the one which differs

from 71, say 7. Since dg—,(us)+1 < dg(ug) < m—3, there
are 3 remaining colors for coloring uzv. Pick the one which
differs from ry and 3, say r3. Since A(G) > 6, we get m > 8.
Let s be a color which differs from f(uq), f(u2), f(us), 71,72
and r3. Let [/ : V(G) U E(G) — [m] be a total coloring
defined by

flx) if ze€eV(G—-v)UE(G—v),

71 if x=wuv,

fl(x)=<ry if o =ugv,
r3 if © = wugv,
s if x=w.

Then f’ is a proper total coloring from V(G)U E(G) to [m].
Hence x"(G) < m. [

Theorem 4. [12] For sets Ay, As, ..., Ay, Jda; € A; such
that a; # a; for i # j if and only if | U A;| > |S| for every

€S
S C [n).

Remark 3. Let Ay, Ay, A3 be sets containing at least 2
elements. If AyUA3UA3 has at least 3 elements, then there are
a1 € Ay,ay € Ag,ag € Ag such that ay,aq, a3 are different.

Proof: Let Ay, Ay, A3 be sets containing at least 2
elements. Assume that A; U As U A3 has at least 3 elements.
To use Theorem 4, we consider following sets

o |As],|A2],[As] > 1,
e |41 UAs U As| > 3.

Thus there are a; € Ay, as € Az, a3 € Az such that ay, as, a3
are different. [ |

Lemma 4. Let v be a vertex with degree 3 of a graph G and
m be integer such that m > A(G) + 2. If N(v) is not an
independent set and X" (G —v) < m then X" (G) < m.

Proof: Let v be a vertex with degree 3 of a graph G and
m > A(G) + 2. Assume that N (v) is not an independent set
and x”(G—v) < m. As mention in first page, for any graph G
such that A(G) < 5, we know that x”(G) < A(G)+2 < m.
Suppose that A(G) > 6. Let uy,us and us be the vertices
which are adjacent to v. Without loss of generality, assume
that u; and w9 are adjacent. Since x”(G —v) < m, there is a
proper total coloring f : V(G —v) U E(G —v) — [m]. Since
dag—v(u1) +1 < dg(ur) < A(G) < m — 2, we use at most
m — 2 colors to color u; and edges incident to u; in G — v.
Then there are 2 remaining colors for coloring vuy, say 1, 2.
Similarly, there are 2 remaining colors for coloring vus, say
s1,s2 and there are 2 remaining colors for coloring vus, say
t1,to. Let R = {7"1, 7'2}, S = {517 SQ}, T = {tth}.
Casel. | RUSUT| > 3.
By Remark 3, there is 7 € R, s € S,t € T such that r, s,t are
different

Since A(G) > 6, we get m > 8. Let ¢ be a color
which differs from f(uq), f(uz), f(us),r, s, t. Let f : V(G)U
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E(G) — [m] be a total coloring defined by

flx) if 2eV(G—-v)UE(G—v),

r if x=wuv,

f@)=1(s if = =uyv,
t if = wuzv,
c if z=nv.

Then f’ is a proper total coloring from V(G)U E(G) to [m)].
Hence x"(G) < m.

Case2. [RUSUT|=2.

Thus R = S = T'. Without loss of generality, let 1 = s1 = 3
and ro = s9 = ty. Let g : V(G —v) U E(G —v) — [m] be a
total coloring of a graph G — v defined by

71 if z=wujus,

g(z) = o(z)

otherwise.

Then g is a proper total coloring from V(G —v) U E(G — v)
to [m]. Moreover, remaining color sets for vuj, vus and vus
are {f(uiuz),r2}, {f(urua),r2} and {r1, 72}, respectively.
Since f(ujuz) # ri,72, we get g is in Case 1. Similar to
Case 1, we can use ¢ to define a proper total coloring from
V(G)U E(G) to [m]. [ |

The main result is obtained by combining Lemma 1, Lemma
2, Lemma 3 and Lemma 4.

Theorem 5. Every A-claw-free 3-degenerated graph satisfies
the Total Coloring Conjecture.

Proof: First, we will prove that for a 3-degenerated
graph G with n vertices, if m > A(G) + 2 and G is
(m — 2)-claw-free, then X" (G) < m.

Let P(n) be the statement that for a 3-degenerated graph G
with n vertices, if m > A(G)+2 and G is (m — 2)-claw-free,
then x"(G) < m.

It is easy to see that P(1) holds. Assume that
P(1),P(2),...,P(k — 1) hold. Let G be a 3-degenerated
graph with k& vertices. Then G has a vertex with degree
at most 3, say v. Assume that m > A(G) + 2 and G is
(m — 2)-claw-free. Then G — v is also 3-degenerated and
(m — 2)-claw-free. Thus x”(G — v) < m.

Casel. dg(v) = 1. By Lemma 1, we get X" (G) <m

Case2. dg(v) = 2. By Lemma 2, we get X"/ (G) < m.
Case3. dg(v) = 3.

Since G is (m — 2)-claw-free, Ju € N (v),dg(v) #m —2 or
N (v) is not an independent set.

(3.1) 3u € N(v),da(v) # m — 2. Since m > A(G) + 2, we
get dg(u) < m — 3. By Lemma 3, we get x"(G) < m.

(3.2) N(v) is not an independent set. By Lemma 4, we get
X" (G) < m. Hence P(k) hold.

By mathematic induction, P(n) holds for any natural number
n.
Let G be A-claw-free 3-degenerated graph To prove the
Total Coloring Conjecture, we focus only when m = A(G) +
2. Thus m — 2 = A(G); hence, G is (m — 2)-claw-free. By
the statement, x”(G) < m = A(G) + 2. That is, G satisfies
the Total Coloring Conjecture. u
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