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Abstract—In this paper, we study the performance of the strong
stability method of the univariate classical risk model. We interest to
the stability bounds established using two approaches. The first based
on the strong stability method developed for a general Markov chains.
The second approach based on the regenerative processes theory . By
adopting an algorithmic procedure, we study the performance of the
stability method in the case of exponential distribution claim amounts.
After presenting numerically and graphically the stability bounds, an
interpretation and comparison of the results have been done.
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I. INTRODUCTION

THE stochastic processes are used in ruin theory to model

the insurance company surplus and to evaluate its ruin

probability [4], that is to say, the probability that the total claim

amounts exceeds its reserve. This characteristic is a much

studied risk measure in the literature. In general, this measure

is very difficult or even impossible to evaluate explicitly.

Thus, different approximation methods have been proposed

to estimate this characteristic (see Asmussen and Albrecher,

2010 [3]; Grandell, 1990 [7]).

The classical risk model in the one-dimensional situation

can be stated as

R(t) = u+ c t− S(t), t ≥ 0 (1)

where R(t) is the surplus of an insurance company at time

t ≥ 0, and the process {S(t), t ≥ 0} is called the aggregate

claims process and is given by

S(t) =

N(t)∑
i=1

Xi,

{Xi, i ≥ 1} is a sequence of independent and identically

distributed random variables, representing the claim amounts

of distribution function denoted by F (x) and mean claim size

denoted by m, u ≥ 0 the initial surplus, c the rate at which

the premiums are received, and {N(t), t ≥ 0} being a Poisson

process with parameter λ, representing the number of claims.

The relative security loading η is defined by

η =
c− λm

λm
.
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We further assume that c > λm the expected payment per unit

of time.

Ruin theory for the univariate risk model characterized by

the surplus process R(t) has been discussed extensively in the

literature. Many results are summarized in the books authored

by Asmussen (2000) [2], Rolski and al. (1999) [11], Dickson

(2005) [5], Willmot and Lin (2001) [12] or Asmussen and

Albrecher (2010) [3].

The risk process can be related to a dual process {Vn} like

in queuing and storage. In risk theory this process is known

as a the reversed process since it is constructing by a certain

time-reversing procedure (for such constructions see [6]).

The reversed process satisfies the relation

Ψn(u) = P(Vn > u)

and

Ψ(u) = lim
n→∞P(Vn > u).

where u is the initial reserve.

II. STABILITY BOUNDS OF THE UNIVARIATE CLASSICAL

RISK MODEL

The application of the strong stability in risk theorie has

been widely discussed in Kalashnikov [9], in this article the

author determines a stability bounds in the univariate classical

risk models using the strong stability [1], [10], where it used

the analysis of the stability of limit distributions of general

Markov chains, and another bound based on the regenerative

processes theory [8].

Let us collect all the parameters of a risk model to a vector

valued governing parameter a. The stability approach consists

of identifying the ruin probability Ψ(u) associated to the risk

model governed by a vector parameter a = (c, λ,m), with the

stationary distribution of the reversed process {Vn}n≥0 [9].

Let a′ = (c′, λ′,m′) be the vector parameter governing

another univariate risk model defined as above, its ruin

probability and its reversed process being respectively Ψ′(u)
and {V ′

n}n≥0.

In what follows, we are interested to the stability bounds of

the univariate classical risk model established by Kalashnikov

(2000) [9] using two approaches. The first based on the strong

stability method developed for a general Markov chains [1],

[10] summarized in Theorem 1. The second approach based on

the regenerative processes theory [8] summarized in Theorem

2.

Theorem 1 (Kalashnikov 2000 [9]):
Consider a univariate classical risk model governed by a vector

parameter a. Then, there exists ε > 0 such that the reversed
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process {Vn}n≥0 (Markov chain) associated to this model is

strongly stable with respect to the weight function v(u) = eεu

(ε > 0), u ∈ R+. In addition, if

μ(a, a′) < (1− ρ(ε))2, (2)

then we obtain the margin between the transition operators P
and P′ of the Markov chains {Vn}n≥0 and {V ′

n}n≥0:

‖P − P ′‖v ≤ 2 E eεZ | ln λc′

λ′c
|+ ‖F − F ′‖v, (3)

where,

μ(a, a′) = 2 E eεZ | ln λc′

λ′c
|+ ‖F − F ′‖v,

ρ(ε) = E ( exp {ε(Z − cθ)})

‖F−F ′‖v =

∫ ∞

0

v(u)|d(F−F ′)|(u) =
∫ ∞

0

v(u)|f−f ′)|(u)du.

Moreover, we have the deviation between the ruin

probabilities:

‖Ψ−Ψ′‖v ≤ μ(a, a′)
(1− ρ(ε)) ((1− ρ(ε))2 − μ(a, a′))

(4)

Theorem 2 (Kalashnikov 2000 [9]):
Let Ψn(u) and Ψ′

n(u) ruin probabilities associated to the

reversed processes {Vn}n≥0 and {V ′
n}n≥0 respectively. For

v(u) = eεu, ξ = Z − cθ, u ≥ 0 and ε > 0,

Then, under assumption:

E ( exp {ε(Z − cθ)}) ≤ ρ(ε) < 1 (5)

E ( exp {εZ}) < ∞. (6)

we have the deviation between the ruin probabilities:

sup
n≥0

|Ψn −Ψ′
n|v ≤ γ(ε) μ

1− ρ(ε)
(7)

where,

γ(ε) = sup
n

E ( eεVn) < ∞,

μ = sup
−∞<x<∞

eεx|Fξ − Fξ′ |(x)

and

ρ(ε) = E ( exp {ε(Z − cθ)})

III. SIMULATION BASED STUDY

In the following sections, we are interested to the stability

bounds defined in Theorems 1 and 2 by the relations (4) and

(7). We want to study the performance of the strong stability

method in the univariate classical risk model in the case of

exponential distribution claim amounts. To do this, we have

developed the following algorithms:

A. Algorithms Construction

Algorithm 1: The strong stability approach
1) Introduction the parameters (c, λ,m) of the ideal model,

and (c′, λ′,m′) of the perturbed model.

2) Verify the positivity of the relative Security loadings η
and η′.
If Yes, go to step 3

else return to step 1

3) Generate a value of ε betwen 0 et min{a, b} such that

0 < ρ(ε) < 1 and ΓMC be minimal,

with a = 1
m , b = c−λm

cm ,

and test μ(a, a′) < (1− ρ)2

If yes (we can deduce the strong stability inequality) go

to step 4;

else return to step 3.

4) Compute the bound ΓMC and the deviation DMC such

that:

DMC = ‖Ψ − Ψ
′‖v ≤ μ(a, a′)

(1 − ρ(ε)) ((1 − ρ(ε))2 − μ(a, a′))
= ΓMC .

Algorithm 2: The regenerative process approach
1) Introduction the parameters (c, λ,m) of the ideal model,

and (c′, λ′,m′) of the perturbed model.

2) Verify the positivity of the relative Security loadings η
and η′.
If Yes, go to step 3

else return to step 1

3) Generate a value of ε betwen 0 et min{a, b} such that

0 < ρ(ε) < 1 and ΓPR be minimal,

with a = 1
m , b = c−λm

cm
4) Compute the bound ΓPR on the deviation DRP such

that:

DRP = sup
n≥0

|Ψn −Ψ′
n|v ≤ γ(ε) μ

1− ρ
= ΓPR.

The construction of the steps of this algorithms is based on

verification of the positivity condition of the relative security

loadings, order to avoid certain ruin. Its implementation will

allow us to calculate the stability bounds ΓMC and ΓPR given

by the relations (4) and (7) respectively.

B. Numerical and Graphical Results

This section is devoted to present the different numerical

and graphical results obtained when studying the performance

of the strong stability method in the univariate classical

risk model, by considering the exponential distribution claim

amounts.

1) The Strong Stability Approach:
2) The Regenerative Process Approach:
3) Comparison of the Two Approaches:

C. Discussion of Results

1) Variation of the Norm Parameter ε : Note, according

to Fig. 1 (a) (respectively Fig. 3 (a)) that the diviation DMC
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Fig. 1 Variation of the stability bounds ΓMC in function of the norm parameter ε

Fig. 2 Variation of the stability bounds ΓMC with respect to the perturbation of the average claim amounts m

(respectively the diviation DRP ), increases in function of the

ε.

We notice also that the stabilitie bounds ΓMC and ΓRP

increases speedily in the neighborhood of the boundary of the

epsilon variation domain (see Figs. 1 (b) and 3. (b)), that is

to say where ε is close to its bounds, ΓMC and ΓRP take

larger values and move away from the deviation of the ruin

probabilitie DMC and DRP respectively.

From the results given by the Fig. 5, we note that, the

epsilon variation domain is wider in The regenerative process
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Fig. 3 Variation of the stability bounds ΓRP in function of the norm parameter ε

Fig. 4 Variation of the stability bounds ΓPR with respect to the perturbation of the average claim amounts m

approach and too small for that obtained The strong stability

approach, this is due to the sensitivity of the stability bound

ΓMC with respect to the variation of epsilon and to the

condition given by the relation 2 that delimits the variation

domain.

2) Perturbation of the Average Claim Amounts m : We note

that the error due to the approximation is proportional to the

perturbation of the average the claim amounts. In other words,

by perturbing the average claim amounts m, the deviations

DMC (respectively the diviation DRP ) of the probability of
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Fig. 5 Variation of the stability bounds ΓMC and ΓPR in function of the norm parameter ε

Fig. 6 Variation of the stability bounds ΓMC and ΓPR with respect to the perturbation of the average claim amounts m

ruin and the stabilitie bounds ΓMC (respectively the diviation

ΓRP ) increases at the same time (see Table I and respectively

Figs. 2 and 4). However, we note in this case that the quality

of the stabilitie inequality decreases.

We notice also that the two bounds grow gradually as per =

|m−m′| increases. Having said, ΓMC grows faster than ΓRP

(see Table I and Fig. 6).

The stability bound ΓMC is much more sensitive to

perturbations of the average claim amounts than the stability

bound ΓRP (see Table I and Fig. 6).
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TABLE I
DISRUPTION OF THE AVERAGE CLAIM AMOUNTS m

per m m′ DMC ΓMC DRP ΓRP

0 2.5000 2.5000 0 0 0 0
0.1000 2.5000 2.6000 0.0078 0.1422 0.0004 0.3743
0.2000 2.5000 2.7000 0.0160 0.3121 0.0007 0.7346
0.3000 2.5000 2.8000 0.0243 0.5188 0.0011 1.0820
0.4000 2.5000 2.9000 0.0330 0.7758 0.0014 1.4169
0.5000 2.5000 3.0000 0.0418 1.1041 0.0017 1.7406
0.6000 2.5000 3.1000 0.0510 1.5384 0.0020 2.0531
0.7000 2.5000 3.2000 0.0603 2.1406 0.0023 2.3559
0.8000 2.5000 3.3000 0.0699 3.0319 0.0026 2.6486
0.9000 2.5000 3.4000 0.0797 4.4882 0.0029 2.9326
1.0000 2.5000 3.5000 0.0897 7.2997 0.0032 3.2077

IV. CONCLUSION

By adopting an algorithmic procedure, we have

implemented the approach based on the strong stability

and the approach based on the regenerative processes theory.

Thereafter, we have determined numerically the stability

bounds of the ruin probability of the univariate classical risk

model in the case of exponential distribution claim amounts.

We have interpreted and compared subsequently the results

obtained by the two approaches

From the results obtained, We noticed that the bounds

obtained by the approach based on the theory of regenerative

processes are much more affine because they are closer to the

deviation of the ruin probability and this is due to their lack

of sensitivity to disturbances of various parameters.
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