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A Tuning Method for Microwave Filter via
Complex Neural Network and Improved Space

Mapping
Shengbiao Wu, Weihua Cao, Min Wu, Can Liu

Abstract—This paper presents an intelligent tuning method of
microwave filter based on complex neural network and improved
space mapping. The tuning process consists of two stages: the initial
tuning and the fine tuning. At the beginning of the tuning, the return
loss of the filter is transferred to the passband via the error of phase.
During the fine tuning, the phase shift caused by the transmission line
and the higher order mode is removed by the curve fitting. Then, an
Cauchy method based on the admittance parameter (Y-parameter) is
used to extract the coupling matrix. The influence of the resonant
cavity loss is eliminated during the parameter extraction process. By
using processed data pairs (the amount of screw variation and the
variation of the coupling matrix), a tuning model is established by
the complex neural network. In view of the improved space mapping
algorithm, the mapping relationship between the actual model and
the ideal model is established, and the amplitude and direction of the
tuning is constantly updated. Finally, the tuning experiment of the
eight order coaxial cavity filter shows that the proposed method has
a good effect in tuning time and tuning precision.

Keywords—Microwave filter, scattering parameter (s-parameter),
coupling matrix, intelligent tuning.

I. INTRODUCTION

THE development of wireless communication and

microwave technology has led to more frequency

bands in the limited spectrum range. In order to avoid

interference between channels, it is necessary to configure

high-performance the microwavefilter devices in all systems.

However, the performance of the actual microwave filter is

difficult to meet the requirements because of the manufacturing

error and the material difference. Therefore, tuning after

production becomes an essential link. However, tuning is a

laborious and time-consuming task. Looking for intelligent

tuning methods is our common expectation.

Although the concept of microwave filter tuning was

presented several decades ago, the real application began in

the 90s of the last century. The intelligent tuning software

for microwave filters was developed by Com Dev company
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as early as 1995 [1], and it was applied to the actual filter

tuning in 2003 [2]. Several years later, the fuzzy logic is

applied to the tuning of the microwave filter in [3], but the

method is only a qualitative analysis of the filter tuning rules,

so the tuning accuracy is not very high. Subsequently, the

tuning methods in time domain and the method of tuning based

on equivalent circuit are also presented [4]. The key links of

these methods are the extraction of the coupling matrix. In

order to solve this problem, the method of coupling matrix

extraction based on S-parameter is emerging. These methods

include: optimization method [5], Cauchy method [6], vector

fitting method [7] and Jacobian inverse eigenvalue method.

However, these methods are not accurate enough for practical

filter applications, or have great limitations. In order to solve

the coupling matrix extraction in different environments, the

coupling matrix extraction method with the source load of the

filter is proposed in [8], this method solves the problem that

the unload Q value of the resonant cavity is not consistent

in the extraction of the coupled matrix. In the literature [9],

a vector fitting method based on Y-parameters is proposed,

this method can solve the problem of parameter extraction

for lossy filter and high-order filter. But due to the sampling

point is much larger than the unknown quantity in the actual

filter, the method is difficult to obtain accurate coefficients

and it is easy to form the sick matrix. In the [10], the

phase loading and unloading Q values were extracted by the

optimized method, then the coupling matrix is extracted by

the synthesis of Chebyshev filter. With the development of

microwave technology, many new tuning techniques began to

emerge. The time domain tuning method based on the phase of

the reflection characteristic is proposed in the literature [11].

This method can deal with the uncertainty of tuning direction

in the traditional time domain tuning method. Curve similarity

of the filter tuning method is presented in the literature [12], on

the basis of maintaining the original curve shape, the method

continuously optimizes the feature points on the curve until

the desired performance index is reached. But it is difficult to

select the feature points of the curve, so it has some influence

on the tuning accuracy. In order to avoid the complexity of

the extraction of coupling matrix, a filter tuning method based

on neural networks is proposed in the literature [13]. The

relationship between the return loss and the adjustment of

the screws is established by using the neural network. But

the drawback of this method is that the tuning model cannot

be updated in real time. In order to quickly find the optimal

position of the actual filter screws, the space mapping-based
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Fig. 1 Intelligent tuning system diagram of microwave filter

tuning method is mentioned in many literatures. Different

from the traditional space mapping, the paper [14] makes the

response of the rough model close to the fine model by setting

the preselected parameters, and constantly optimizes the rough

model to reach the ideal target. But when the higher order filter

is encountered, the method may be difficult to converge.

The advantage of the method in this paper is that it not

only solves the problem of the initial tuning of the filter

in the case of large detuning, but also solves the problems

of higher power, phase shift and loss in the extraction of

parameters. Finally, the hybrid tuning of the microwave filter

is performed by using complex neural networks and improved

space mapping algorithm. The rest of the paper is arranged as

follows: Section 2 introduces the initial tuning of the coaxial

cavity filter. The extraction of the coupling matrix is in the

Section 3. Section 4 is mainly the modeling and tuning of the

coaxial cavity filter. The last part is the conclusion.

II. INITIAL TUNING OF MICROWAVE FILTER

The intelligent tuning system of microwave filter mainly

consists of four links: The first link is the extraction of the

S parameter by vector network analyzer. The second link is

the construction of the tuning platform. The third link is the

design of intelligent optimization algorithm, and the last link

is the control part of the tuning system. Intelligent microwave

filter tuning system is shown in Fig. 1.

The key of tuning is to establish the mapping between

the ideal model and the actual model, which can guide the

iterative optimization direction to find the tuning position of

the screws. It is essential for tuning to accurately extract the

coupling matrix from the output S-parameters, however, the

initial detuning of the filter is very large and it is difficult to

extract the coupling matrix from the S-parameters. Therefore,

we need to tune the filter by optimizing the zero and pole

positions of the reflected parameters. The expressions of the

reflection function and phase are as follows:

S11( jω) = ε
(s− z1)(s− z2) · · ·(s− zn)

(s− p1)(s− p2) · · ·(s− pn)
, (1)

φs11
( jω) = ∑

poles
arctan(

ω −ωn

σn
)− ∑

zeros
arctan(

ω −ωn

σn
),

(2)

where ε is the normalized constant of amplitude response, zn
and pn are the nth zeros and poles of the S11 on the coordinate

axis (the horizontal axis is σ , and the vertical axis is jω), and

σn is the zero pole shift caused by the filter loss. The objective

function in the optimization is designed as follows:

F =
∫ ωh

ωl

∣∣∣φ i
s11
( jω)−φ i

s11

′
( jω)

∣∣∣2dω, (3)

where φ i
s11
( jω), φ i

s11

′
( jω) represent the phase of the current

state and the ideal state, respectively, ωh and ωl are the highest

and lowest frequencies of the reflected characteristics.

Fig. 2 shows the comparison of the phase characteristics of

the return loss before and after tuning. The results show that

Fig. 2 Comparison of Standard phase and tuned phase
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the phase after tuning is highly consistent with the standard

phase 1800. However, not every phase value of the peak can

achieve the standard. Therefore, the filter is still required fine

tuning.

III. COUPLING MATRIX EXTRACTION

The output response of the coaxial cavity filter mainly

includes the transmission characteristics (S12) and the

reflection characteristics (S11). How to extract the parameters

closely related to the tuning screw from the output response

is important to the tuning. In general, the output response is

represented by a coupling matrix, and the extraction process

is described below.

A. Elimination of Phase Shift

Generally, the coupling between the resonators of the filter

based on the circuit model is realized by the converter, so

there is no phase shift phenomenon. However, the filter based

on the actual physical model often has phase shift due to the

transmission line and the higher order mode. If the phase shift

of coaxial filters cannot be effectively eliminated, the accuracy

of the admittance parameters decreases, making poles and

residues of admittance parameters presenting big deviation,

which is unable to realize the extraction of coupling matrix and

the S-parameter description. For two-port dissipative network,

the scattering parameters of the network are expressed as

polynomials: {
v−1 = S11v+1 +S12v+2
v−2 = S21v+1 +S22v+2 ,

(4)

where v+1 and v+2 are incident voltage waves, v−1 and v−2
are are reflected voltage waves. After the transmission line

is connected, the incident wave and the reflected wave form

change as in Fig. 3.

v−1 = e jθ1 ∗h−1 v−2 = e jθ2 ∗h−2 (5)

v+1 = e− jθ1 ∗h+1 v+2 = e− jθ2 ∗h+2 . (6)

At this point, the relation between the scattering matrix of

the two port network and the normalized incident (reflected)

voltage wave is as follows:[
h−1
h−2

]
=

[
e− jθ1 0

0 e− jθ2

]
[S]

[
e− jθ1 0

0 e− jθ2

][
h+1
h+2

]
.

(7)

The relationship between the Smea based on the ideal model

and the S based on the actual filter model as follows [15]:

Si j =

[
Smea

11
exp(− j2θ1) Smea

12
exp[− j(θ1 +θ2)]

Smea
21

exp[− j(θ1 +θ2)] Smea
22

(− j2θ2)

]
.

(8)

The phase shift of the actual filter with high order mode

and phase loading is as follows [16]:

θ1 = θ01 +β ·Δl θ2 = θ02 +β ·Δl

Δϕs11 =−2βΔl ≈−2Δl
√

μεω,
(9)

where θ01, θ02 are the phase loading, β is the transmission

length of the transmission line, and l is the length of the

Fig. 3 S-parameter matrix of two port network

Fig. 4 Comparison of real of Y11 before and after phase shift

transmission line. When ω is the normalized frequency, the

phase of the reflection characteristic S11 is expressed as:

ϕs11
= tan−1 bn−1ωn−1 +bn−2ωn−2 + · · ·+b0

ωn +bn−1ωn−1 + · · ·+b0

ϕs11
=

k1

ω
τs11

=
∂ s11

∂ω
≈− k2

ω2
ω →±∞,

(10)

where k1 and k2 are proportional constants, bn,bn−1 · · · ,b1 is

the coefficient of the polynomial E(s), The expressions for

the phase and group delay of the actual filter are given by

combining (9), (10) as follows:

ϕs11
(ω)≈ k1

/
ω −2(ϕ0 +β ·Δl)≈ k1

/
ω −2ϕ0

τs11
=

∂ s11

∂ω
≈− k2

ω2
−2Δl

√
με.

(11)

In the curve fitting, the sampling point which is far from

the passband is selected as the object. It can be concluded

by experiment that the curve fitting effect is better. The phase

shift of I/O port is −74.530 and −71.8300 after fitting. The

length of the transmission lines embedded in the ports is

4.4847e-8(m) and 2.8792e-9 (m). In order to facilitate the

extraction of the coupling matrix, the S- parameter and the

Y-parameter need to be transformed as follows:

y11 =
(1−S11)(1+S22)+S12S21

(1+S11)(1+S22)−S12S21

y12 =
−2S12

(1+S11)(1+S22)−S12S21
.

(12)

In Figs. 4 and 5, the position of the poles and zero

of the admittance parameters is improved after phase shift

elimination. It improves the unload quality factor of the

resonator and the extraction precision of the coupling matrix,

which is very helpful for the modeling and tuning of the

system.
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Fig. 5 Comparison of imaginary of Y11 before and after phase shift

B. Solution of Coupling Matrix

The existing filter theory is generally based on the lowpass

prototype. In order to realize the synthesis of the coaxial

cavity bandpass filter, the frequency conversion is essential.

s = j( f0

/
Bw)

(
ω
/

ω0 −ω0

/
ω
)

is used in the bandpass filter.

By using the normalized conversion of frequency variable, the

synthesis of the low pass filter can be used to deal with the

bandpass filter.

The characteristic polynomials of the two-port network

admittance parameters are as follow [17]:

Y11 (s) =
U (s)
W (s)

=

n
∑

k=0
a(1)k sk

n
∑

k=0
bksk

(13)

Y12 (s) =
V (s)
W (s)

=

n
∑

k=0
a(2)k sk

n
∑

k=0
bksk

. (14)

where a(1) =
[
a(1)n , · · · ,a(1)0

]T
, a(2) =

[
a(2)nz , · · · ,a(2)0

]T
, b =

[bn, · · · ,b1]
T are the coefficients of the characteristic

polynomial respectively. The formula (13), (14) of the

reflection function and the transfer function are transformed

as follows: ⎧⎪⎨
⎪⎩

n
∑

k=0
a(1)k sk −Y11 (si)

n
∑

k=0
bksk = 0

n
∑

k=0
a(2)k sk −Y12 (si)

n
∑

k=0
bksk = 0

(15)

The starting point of the filter synthesis is to obtain the

polynomial coefficient of the S-parameters. In order to improve

the precision of the coupled matrix extraction, we need to

select the frequency point in the passband when extracting

polynomial coefficients. Here, 0i× j ∈ Ri× j is empty matrix,

Yi j = diag
{

Yi j (sk)
}

k=1,2,···N , Vn is a Vandermonde matrix with

elements vi,k = (si)
k−1, (k = 1,2, · · ·m+1), n is the number of

resonators in the filter. N is the number of frequency points.

∑ is a diagonal matrix whose elements are the eigenvalues

of the M matrix. U and V is a unitary matrix. After all the

polynomial coefficients are obtained, The pole and residues of

the ideal state can be obtained as shown in Table I.

According to the above Y21(s), Y22(s) of the numerator and

denominator polynomial coefficients, it is easy to obtain the

admittance matrix expression containing the poles and the

remainder by partial fractional expansion [18]:

[Y ] = j
[

0 K∞
K∞ 0

]
+

N

∑
k=1

1

s− ( jλk −σk)

[
r11k r12k
r21k r22k

]
.

(16)

In general, K∞ = 0 except that the transmission zero and

order of the filter are equal, λk is the eigenvalues of the coupled

matrix. ri j(i= 1,2, j = 1,2) is the corresponding residue under

its eigenvalue. σk = f0/(Bw ·Qu) is a loss factor and Qu is the

unload quality factor, which can be obtained by optimizing

algorithms.According to the equivalent circuit of the two port

network, the following admittance matrix expression based on

the circuit element can be obtained.

[Y ] = j
[

0 Msl
Msl 0

]
+

N

∑
k=1

1

sCk + jBk

[
M2

sk MskMlk
MskMlk M2

lk

]
,

(17)

where Msk is the coupling of the source to the kth resonator,

Mlk is the coupling of the load to the kth resonator, Mkk
represents the self-coupling of the kth resonator. By comparing

the element values of admittance matrix in (16) and (17), the

correspondence relationship between coupling matrix elements

and the circuit component values is as follows:

Mkk =−λk +σk Mlk =
√

r22k Msk =
√

r11k. (18)

By using the extracted coupling matrix, the curve of

the scattering parameters of the filter can be obtained by

combining the following formula:

A = sI − jR+M′ M′=M− j [σk]

S11 = 1+2 jR1 [A]
−1
n1 S21 =−2 j

√
R1Rn [A]

−1
11 ,

(19)

where [R] = diag [R1,0, · · ·0,Rn], [σk] = diag [0,σ1, · · ·σk,0] is

the loss of the resonant cavity.

TABLE I
THE RESIDUE AND EIGENVALUE OF COAXIAL CAVITY FILTER

k r21 r22 λk
1 -0.1088+0.0027 j 0.1257+0.0014 j 0.0095-1.2225 j
2 0.1710+0.0033 j 0.1387+0.0043 j -0.0099-1.1306 j
3 -0.1383+0.0001 j 0.1316+0.0001 j -0.0094-0.7214 j
4 -0.1508+0.0002 j 0.1435+0.0001 j -0.0095-0.2368 j
5 -0.1463+0.0001 j 0.1386+0.0014 j -0.0094-0.2781 j
6 -0.1229+0.0003 j 0.1009+0.0020 j -0.0090-0.7331 j
7 -0.1114+0.0005 j 0.0529+0.0016 j -0.0095-1.0923 j
8 -0.0583+0.0005 j 0.2350+0.0063 j -0.0096-1.2029 j

According to the eigenvalues, poles and residues, combined

with the formula (18), the coupling matrix of the filter can be

synthesized as shown in Table II.

Since the extracted coupling matrix contains elements that

are not needed by the filter, it needs to be further transformed.

The converted coupling matrix contains the physical and

electrical characteristics of the filter, it can be obtained by

rotating transform, as shown in Table III.

The nonzero elements on the diagonal of Table III represent

the magnitude of the resonant cavity’s deviation from the

center frequency, the other nonzero elements represent the

coupling between the resonators.
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TABLE II
THE INITIAL COUPLING MATRIX OF EXTRACTED

S 1 2 3 4 5 6 7 8 L
S 0 -0.3068 0.4590 -0.3813 0.3980 -0.3929 0.3870 -0.4577 0.1201 0
1 -0.3068 -0.0342 0 0 0 0 0 0 0 0.3545
2 0.4590 0 0.0142 0 0 0 0 0 0 0.3725
3 -0.3813 0 0 0.0371 0 0 0 0 0 0.3627
4 0.3980 0 0 0 0.1423 0 0 0 0 0.3788
5 -0.3929 0 0 0 0 0.0953 0 0 0 0.3723
6 0.3870 0 0 0 0 0 -0.1975 0 0 0.3176
7 -0.4577 0 0 0 0 0 0 -0.5434 0 0.2433
8 0.1201 0 0 0 0 0 0 0 -0.8824 0.4848
L 0 0.3545 0.3725 0.3627 0.3788 0.3723 0.3176 0.2433 0.4848 0

TABLE III
TRANSFORMED COUPLING MATRIX

S 1 2 3 4 5 6 7 8 L
S 0 0.1865 0 0 0 0 0 0 0 0
1 0.1865 -0.0342 -0.8337 0 0 0 0 0 0 0
2 0 -0.8337 0.0142 0.6003 0 0 0 0 0 0
3 0 0 0.6003 0.0371 -0.5933 0 0 0 0 0
4 0 0 0 -0.5933 0.1423 -0.6492 0 0 0 0
5 0 0 0 0 -0.6492 0.0953 -0.58 0 0 0
6 0 0 0 0 0 -0.58 -0.1975 0.5542 0 0
7 0 0 0 0 0 0 0.5542 -0.5434 0.5871 0
8 0 0 0 0 0 0 0 0.5871 -0.8824 0.024
L 0 0 0 0 0 0 0 0 0.024 0.0018

Fig. 6 The Tuning model of coaxial cavity filter

IV. MODELING AND TUNING OF SYSTEM

The main idea of coaxial cavity filter tuning is to accomplish

the task by establishing an alternative model of the actual filter.

In this way, the tuning problem of the filter is transformed into

the parameter optimization problem of the alternative model.

A. Establishment of Tuning System Model

Before the system is modeled, it is necessary to

normalize the input and output data according to x =
(x− xmin)

/
(xmax − xmin), where, xmax is the maximum value

of the sample data, xmin is the minimum value of the sample

data.

The first layer in Fig. 6 is the input layer. The input

layer sample set is di = (d1,d2, · · · ,d8)
T. The input layer

contains m neurons, the second and third layers have i and

j neurons respectively, and the output layer has p neurons.

ωmn is the weight from the input layer to the hidden layer,

ωi j is the weight from the hidden layer to the output layer.

Fig. 7 The Error Histogram of the Tuning model

Fig. 8 The prediction value of the coupling matrix

ωRi j, ωIi j represent the weights of the real and imaginary

parts respectively. The real and imaginary input signals of the

hidden layer are:

um
Ri =

r

∑
1

ωRri ·dir um
Ii =

r

∑
1

ωIri ·dir, (20)



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:3, 2018

227

the real and imaginary output signals of the hidden layer are:

up
Rp = f (up

Rp) up
I p = f (up

I p), (21)

an error signal of p neurons in the output layer:

eRp = m′
Rp −mRp eI p = m′

I p −mI p, (22)

the total error of output is:

E(n) =
1

2

P

∑
p=1

[(
m′

Rp −mRp
)2

+
(
m′

I p −mI p
)2
]
, (23)

where mi j = (m11,m12, · · · ,m78)
T is the actual output sample

set, m′
i j = (m′

11,m
′
12, · · · ,m′

78)
T is expected output. According

to the rules of Delta learning, the weights between the output

layer and the hidden layer are as follows:

ΔωR jP(n) =−η
∂E(n)

∂ΔωR jP(n)
=−η

∂E(n)
∂ΔuR jP(n)

· ∂ΔuR jP(n)
∂ΔωR jP(n)

ΔωR jP(n+1) = ωR jP(n)+ΔωR jP(n)

ΔωI jP(n+1) = ωI jP(n)+ΔωI jP(n).
(24)

Similarly, the weights between the hidden layer and the

input layer can also be obtained in the same way, in the

formula, ΔωR jP(n) represents the weights between the output

layer and the hidden layer, η =
[
1
/
(1+ exp(−ax))

]
+b, a is

the slope parameter of the Sigmoid function, x is the random

number within the [−1,−1] interval. The parameter b value

depends on the situation. The number of iterations is 20 times,

the iteration time is 1s, and the output error is 0.0553. Gradient

descent method is used for training. As can be seen from the

Error Histogram with 20 Bins in Fig. 7, the curve obeys a

normal distribution, which indicate the model is valid.

By establishing the tuning model, we can predict the

variation trend of element values in the coupling matrix.

The abscissa in the Fig. 8 is the element in the coupling

matrix, and the ordinate is the corresponding value of the

coupling element. Through the verification of the experiment,

the accuracy of the tuning model can meet the requirements

of post-tuning.

B. Tuning Based on Field Data

The purpose of tuning is to obtain the best screw position

so that the scattering parameters of the filter can meet

the performance indicators. In this paper, the mapping

relation between the ideal model and the actual model is

established by the improved space mapping algorithm, which

can guide the tuning amplitude and the tuning direction of

the filter. The ideal model parameters are represented by

x j
c = (m j

11,m
j
12, · · ·m j

78)
T, and the corresponding response is

Rc(xc). The parameters of the actual model are represented

as x j
f = (d j

1,d
j
2, · · ·d j

8)
T, the corresponding output response is

R f (x f ). By optimizing the parameters x( j)
c , let P(x f )−x∗c = 0.

x∗c is the optimal parameters and x( j+1)
f is obtained by the

iteration of x( j+1)
f = x( j)

f +h( j), h( j) is obtained by (B( j)T
B( j)+

μI)h( j) = B( j)T
(x∗c − x( j)

c ), μ is the selection parameter and

satisfies
∥∥∥h( j)

∥∥∥ ≤ ζ , ζ is the radius of the confidence range.

Fig. 9 Comparison of tuning S11 and standard S11

Fig. 10 Changes of S-parameter before and after tuning

The tuning of the coaxial cavity filter can be transformed into

the following optimization problem:

x∗f = argmin
x

U(R(x)) (25)

where, x∗f is the optimal solution of the parameter to be solved,

U is the objective function. B( j) is the approximation of the

Jacobian matrix, which is updated by following equation:

B( j+1) = B( j) + ( f ( j+1)h( j)T

)
/
(h( j)T

h( j)) (26)

It can be seen from the Fig. 9 and the Fig. 10 that after

several iterations of the improved space mapping algorithm,

the S11 and the S12 can be matched with the ideal S-parameter

after several iterations. By iterative optimization, the return

loss can be controlled within -18 dB, the insertion loss is

more than -0.8 dB, the passband width is 0.056 GHz, and

the maximum value of VSWR is 1.05. The attenuation in

2.037-2.085 GHz is greater than 2 and the attenuation in

2.090-2.096 GHz is greater than 22. The indicators obtained

show that the tuned filter can meet the design requirements.

V. CONCLUSIONS

In order to obtain the actual variation amount of the actual

filter for each screw tuning. This article presents a tuning

method based on complex Neural Network and improved

Space mapping. The method uses phase error to guide the

rotation magnitude and the rotation direction of the screws

when the detuning is large. When the detuning of the filter is
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small, the coupling matrix is extracted from the S-parameters

and the filter tuning model is established. The phase shift and

filter loss are processed in the process of parameter extraction.

According to the tuning model, the mapping relation between

the actual filter and the ideal filter is established. An improved

space mapping algorithm is used to update the location of the

tuning screws. The experiment of the eight order coaxial cavity

filter shows that the system can achieve the desired tuning

purpose well.
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