
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

185


Abstract—Even though past, current and future trends suggest

that multicore and cloud computing systems are increasingly
prevalent/ubiquitous, this class of parallel systems is nonetheless
underutilized, in general, and barely used for research on employing
parallel Delaunay triangulation for parallel surface modeling and
generation, in particular. The performances, of actual/physical and
virtual/cloud multicore systems/machines, at executing various
algorithms, which implement various parallelization strategies of the
incremental insertion technique of the Delaunay triangulation
algorithm, were evaluated. T-tests were run on the data collected, in
order to determine whether various performance metrics differences
(including execution time, speedup and efficiency) were statistically
significant. Results show that the actual machine is approximately
twice faster than the virtual machine at executing the same programs
for the various parallelization strategies. Results, which furnish the
scalability behaviors of the various parallelization strategies, also
show that some of the differences between the performances of these
systems, during different runs of the algorithms on the systems, were
statistically significant. A few pseudo superlinear speedup results,
which were computed from the raw data collected, are not true
superlinear speedup values. These pseudo superlinear speedup
values, which arise as a result of one way of computing speedups,
disappear and give way to asymmetric speedups, which are the
accurate kind of speedups that occur in the experiments performed.

Keywords—Cloud computing systems, multicore systems,
parallel delaunay triangulation, parallel surface modeling and
generation.

I. INTRODUCTION

HE emergence as well as the adoption and use of
multicore processors (and, therefore, the systems these

processors power) is a trend that has been ongoing for over a
decade or so. There has also been the trend of the adoption and
use of cloud computing systems. Processor designers have
discovered that, by using the technique of clock speed
increases, they have reached the limits of processor speed
improvements. In order to increase processor speeds today,
designers are resorting to placing multiple cores on the same
processor chip. This shift towards producing multicore
processors is responsible for parallel computing becoming
increasingly ubiquitous, including both the access to and the
applications for parallel computing becoming increasingly
more widespread. In particular, this paradigm shift in
processor design and manufacture is very largely and

N. P. Gyang is with the Mathematical and Computer Sciences Department

of the Metropolitan State University of Denver, USA (phone: 7192329020; e-
mail: yeipeng@gmail.com).

primarily responsible for the trend of the adoption/use of
multicore systems, including multicore systems provisioned
either physically or virtually (via cloud computing
technology). These trends suggest and promise the future
dominance of these kinds of system. In fact, [10] suggests that
manycore processors will quickly extend and replace
multicore ones, with the former processor type consisting of
tens to hundreds of cores per processor chip.

The quest for alternative means of accomplishing processor
speed increase and the derivable benefits of adopting and
using cloud computing systems furnish the motivation for the
trend towards the adoption and use of, respectively, multicore
and cloud computing systems. One envisages that the
emergence and future dominance of multicore and manycore
processors will usher the birth of the era of the vast
prevalence, ubiquity or preponderance of parallel computing
(including parallel algorithms development, parallel
programming, parallel processing systems development, etc.)
and the era of “desktop supercomputing.” Indeed, desktop
supercomputing may be seen in the horizon already. It is easy
to both see and underscore the aforementioned forecast
because consumer computing devices, ranging from personal
computers to smart phones, already come with and are
powered by multicore processors today. Furthermore, cloud
computing technology will facilitate the adoption and use of
multicore systems, by enabling the provisioning of these
systems more cheaply, more conveniently and virtually.

Cloud computing systems are also demonstrating that users
who adopt and use these systems derive benefits, ranging from
reduced Total Cost of Ownership (TCO) to more cheaply and
conveniently orchestrated scalability. Just like with systems
with the multicore architecture, systems with the Services
Oriented Architecture (SOA) are also increasingly being
adopted and used for a wide range of computing applications.
The SOA is the basic architecture of cloud computing
systems. The SOA comes in various “flavors” or service
models, including Software as a Service (SaaS), Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), Desktop as a
Service (DaaS), and Disaster Recovery as a Service (DRaaS),
etc. Various kinds of parallel computing systems (including
multicore systems) are provisioned virtually, using cloud
computing technology. Some may opine that the publicity and
promotion accorded cloud computing, in recent times, is
merely a hype and forecast that the following trend or
development with cloud computing will decline, rather than
increase, in the future: The adoption and use of what these

Nyeng P. Gyang

Performance Evaluation of Parallel Surface Modeling
and Generation on Actual and Virtual Multicore

Systems

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

186

forecasters construe as an overestimated, overhyped
computing model, which is merely associated with a lot of
hysteria and publicity. Despite this opinion and forecast that
some may hold and make, cloud computing nevertheless
furnishes a computing paradigm and architecture, which also
promises to dominate future computing systems, architectures
and platforms.

The goal of employing multicore systems, especially those
provisioned virtually using cloud computing technology, for
parallel surface modeling and generation is an auspicious and
worthy one. This is especially true considering the findings,
while conducting this study, that there is a dearth of research
on the implementation and performance evaluation of parallel
Delaunay triangulation for parallel surface modeling and
generation, using multicore or cloud computing systems.
Consequently, this research evaluates the performances, of
actual/physical and virtual/cloud multicore systems/machines,
at executing various algorithms that implement various
parallelization strategies of the incremental insertion technique
of the Delaunay triangulation algorithm.

Delaunay triangulation is itself a domain discretization or
meshing algorithm with a variety of applications; application
areas include (1) Computer graphics: Surface modeling,
volume rendering (2) Scientific visualization and
interpolation in mathematical and natural sciences: Mesh
generation for Partial Differential Equation (PDE) solution
techniques, such as the Finite Element Method (FEM)
analysis, which is employed in applications such as
Computational Fluid Mechanics (CFD), Computational Solid
Mechanics (CSM), Computational Electromagnetics (CE), etc.
(3) Robotics: Computer vision and image synthesis, pattern
recognition, etc. and (4) Structural networking for arbitrary
point sets.

This article is organized as follows: Section II furnishes a
literature review on parallel Delaunay triangulation research;
Section III presents a randomized incremental insertion
algorithm (which is a technique of the Delaunay triangulation
algorithm) and its evaluation methodology; Section IV
furnishes a discussion on experimental results; Section V is a
conclusion and Section VI furnishes recommendations for
future work.

II. LITERATURE REVIEW FOR RESEARCH ON SYSTEMS FOR

PARALLEL DELAUNAY TRIANGULATION

In the literature for research on the implementation and
performance evaluation of parallel Delaunay triangulation for
parallel surface modeling and generation, using multicore or
cloud computing systems, very little work has been conducted
to investigate the utilization of these systems for this purpose.
These kinds of systems are actually very notably barely
utilized for research on parallel Delaunay triangulation for
parallel surface modeling and generation. In the literature,
other kinds of parallel systems are typically employed for
research on parallel Delaunay triangulation, including
Connection Machines [17], [19], cluster (distributed)
computing systems [16], [6], [4], [5], multiprocessor systems
[11]-[13] and multicore systems [14], [15].

In the discussion in the literature, five different categories
of the Delaunay triangulation algorithm can be identified.
These categories of the Delaunay triangulation algorithm
include the following: Divide-and-conquer, sweepline,
incremental (including incremental construction and
incremental insertion), gift-wrapping and convex-hull-based.
These five methods are those for the direct Delaunay
triangulation construction; there is also an indirect Delaunay
triangulation construction technique, which starts with
constructing the Voronoi diagram dual of any particular
Delaunay triangulation and afterwards the Delaunay
triangulation is constructed from the Voronoi diagram.

Puppo et al. [17], which is a seminal article on parallel
Delaunay triangulation, present a range of topics on the
subject of parallel terrain modeling. Research efforts on
parallel Delaunay triangulation are on the design,
implementation and/or evaluation of the Delaunay
triangulation [1], [19], [9], on the investigation of properties,
features and/or application areas of the Delaunay triangulation
in general [14]-[17], [7], [2]-[5], [6] and on a widely known as
well as widely and practically used Delaunay triangulation
implementation work [18]. Furthermore, [8], which is a
research effort that this article transmits, discusses and
analyzes surface modeling and generation as well as parallel
Delaunay triangulation.

In the literature, schemes and algorithms for parallel
Delaunay triangulation are primarily and heavily de-pendent
on a couple of things, namely: (1) The category or type of
Delaunay triangulation algorithm employed and (2) The target
parallel system type on which an algorithm was either
implemented or intended to be implemented. The various
types or categories of the parallel Delaunay triangulation
algorithm that are typically discussed, in the literature, are the
aforementioned five types while the various types of system
targeted include shared-memory systems (including
multiprocessor systems) and distributed computing, message-
passing-based systems.

III. A RANDOMIZED INCREMENTAL INSERTION ALGORITHM

AND ITS EVALUATION METHODOLOGY

Kolingerová and Kohout [13], [11], [12] discuss research on
various parallelization strategies of, or approaches to, a basic
parallel type of Delaunay triangulation algorithm; these three
articles provide information on the design and implementation
of this algorithm. Each of these different parallelization
strategies or approaches – the various strategies include the
batch, burglary, optimistic, optimistic (circle), optimistic
(prev) and pessimistic strategies – represents a different
approach/strategy to accomplishing synchronization for this
basic parallel algorithm. The basic algorithm, which is
referred to as a randomized incremental insertion algorithm, is
an incremental insertion type of the Delaunay triangulation
algorithm. This article presents research, which studies and
extends these works.

The authors of the randomized incremental insertion
algorithm used the various implemented parallelization
strategies of, or approaches to, this algorithm to process both

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

187

artificially generated and real-life data sets. The artificially
generated data sets are of various distributions, including the
following: (A) Grid data set, (B) Uniform data set, (C) Gauss
data set, (D) Cluster data set, (E) Arc data set, and (F) Sphere
data set. The real-life data sets were obtained from the
following: (A) A crater lake, which contains 100,001 points
and (B) A whale, which contains 52,635 points. In the various
experiments conducted in this research, in order to evaluate
the various aforementioned parallelization strategies,
algorithms for these strategies processed only the 100,001
points of the crater lake (in other words, the algorithms
evaluated in this research did not process any of the
aforementioned artificially generated data sets or the real-life
data set obtained from the whale).

A. Operationalization of Variables and Research Design

The table of Fig. 1 furnishes information on the top-level
research design for the study presented in this article. The
various variables, on which data will be collected (as shown in
Fig. 1), are determined from the following:
1.) Sequential algorithm execution times, obtained according

to the following:
a) Whether the system/machine is virtual or actual.
b) Period of day – i.e., morning, afternoon and evening.
2.) Parallel algorithm execution times, obtained according to

the following:
a) Whether the machine/system is virtual or actual.
b) Number of threads/cores used – i.e., 1, 2, 4, 6 and 8

threads/cores.
c) Parallelization strategy used – i.e., batch, pessimistic,

optimistic, optimistic (circle), optimistic (prev) and
burglary.

d) Period of day – i.e., morning, afternoon and evening.
After collecting data on the variables described above, other

variables are subsequently computed; these other variables,
which are parallel processing speedups and efficiencies, are
computed from the values obtained/measured for (both
sequential and parallel) algorithm execution times and number
of processors used to achieve respective/corresponding
speedups. The variables described above, plus the setup
described in Fig. 1, together furnish the experimental
conditions for performing various experiments with the
algorithms.

Fig. 1 Top-level Research Design

As a result of the fact that a repeated-measures experiment

design is employed to address various hypotheses for this
research, the dependent-means t-test is employed in the data
analysis phase of the research. Fig. 2 is a generic table of

variables, which was created for the t-test performed for each
of N threads/cores (where N = 2, 4, 6 and 8); this means that,
for each of the actual and virtual machines, four of such tables
were created (each table was stored in a separate data analysis
software file). Fig. 2 expatiates on Fig. 1 (note, however, that
the table of Fig. 1 combines variables for both actual and
virtual machines, while each of the tables illustrated in Fig. 2
is either for an actual or for a virtual machine – i.e., there are
four Fig. 2 tables for the actual machine and four Fig. 2 tables
for the virtual machine).

Figs. 2 and 3 show the variables used in the t-tests
performed in this study. While the table of Fig. 2 shows six
categorical variables and nine continuous variables, for each
of N threads/cores, the table of Fig. 3 shows the same six
categorical variables and six continuous variables, for each of
N threads/cores. All the t-tests performed in this study were
performed using these six categorical variables and 9 + 6 = 15
continuous variables. (The six categorical variables are the six
algorithm types. The first set of nine continuous variables
consists of the three performance metrics, with a value being
expected or obtainable for each of these three performance
metrics during three different times of day – i.e., morning,
afternoon and evening. The other set of six continuous
variables consists of the three performance metrics, with a
value being expected or obtainable for each of these three
performance metrics for both the actual and virtual machines.)

There are four other categorical variables in this study,
namely: four different N threads/cores (where N = 2, 4, 6 and
8). For the t-tests performed in this study, the categorical
variables are the independent variables, while the continuous
variables are the dependent variables.

Fig. 2 Generic Table of Variables for the t-tests Performed for each N
Threads/Cores (nine continuous variables)

Legend for Fig. 2:
V1 ≡ Variable 1 ≡ Morning_execution_time
V2 ≡ Variable 2 ≡ Afternoon_execution_time
V3 ≡ Variable 3 ≡ Evening_execution_time
V4 ≡ Variable 4 ≡ Morning_speedup
V5 ≡ Variable 5 ≡ Afternoon_speedup
V6 ≡ Variable 6 ≡ Evening_speedup
V7 ≡ Variable 7 ≡ Morning_efficiency
V8 ≡ Variable 8 ≡ Afternoon_efficiency
V9 ≡ Variable 9 ≡ Evening_efficiency
Legend for Fig. 3:
V1 ≡ Variable 1 ≡ Actual_execution_time
V2 ≡ Variable 2 ≡ Virtual_execution_time
V3 ≡ Variable 3 ≡ Actual_speedup
V4 ≡ Variable 4 ≡ Virtual_speedup

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

188

V5 ≡ Variable 5 ≡ Actual_efficiency
V6 ≡ Variable 6 ≡ Virtual_efficiency

Fig. 3 Generic Table of Variables for the t-tests Performed for each N
Threads/Cores (six continuous variables)

The repeated-measures experiment design, which has been

adopted for this research, is presented as follows:
1) All the six parallelization strategies were run on the

following two kinds of system, which have comparable
platforms, including comparable system and processor
specifications: A physical multicore system and a cloud
multicore system. (The system and processor
specifications of both kinds of system are furnished in
Appendix I.)

2) All the six parallelization strategies were run, on an actual
multicore system as well as a virtual multicore system,
during three different times of the day, namely: Morning,
afternoon and evening.

In both repeated-measures experimental designs/setups
above, the same participating entities – i.e., the various
parallelization strategies – were subjected or exposed to
different experimental conditions/situations.

In the foregoing experiment design, the following control
measure was employed to guide the process of data collection:
As a result of the fact that this research entails an evaluation
and a comparison of the processing performances of systems
that process algorithms for the Delaunay triangulation, there is
the question of whether or not the following machines or
systems with the very same hardware and platform
specifications, as well as processing the same benchmark,
demonstrate the same parallel processing performance:
1) Physical multicore system.
2) Virtual multicore system, which is provided via the cloud.

To ensure that “apples are compared with apples,” the
following control measure was adopted: Sequential vs. parallel
processing performances were compared only when both of
these sequential and parallel processing performances were
obtained from the same kind of system – i.e. performances on
a physical, actual sequential system were compared only with
performances on a physical, actual parallel system and
performances on a virtual sequential system were compared
only with performances on a virtual parallel system (with the
virtual system being provided via the cloud).

The research design for this study also includes establishing
the metrics for evaluating and comparing the performances of
various algorithms and systems as well as the guidelines for
planning/arranging how to go about – i.e. planning/arranging
the procedure for – conducting experiments as well as
performing data collection and data analysis.

B. Establishing the Metrics for Comparison and Evaluation
of Algorithms

The basic performance metric is the running/execution time
of various algorithms (including both serial/sequential and
parallel). This basic performance metric plus other
performance metrics (which are computed from execution
times) were used to evaluate and compare the performance of
the various algorithms, on both kinds of multicore machines,
at processing a benchmark. The other performance metrics (in
addition to execution time) include speedups and efficiencies
of the algorithms. These three performance metrics comprise a
framework for the evaluation and comparison of algorithms.

C. Data Collection

Data were collected on the performance of the algorithms
and systems. The following couple of points furnish
information on the methodology for conducting data
collection:
1) Data were collected/obtained, for the algorithms on actual

and virtual machines, as follows:
a) Data on the running times of the sequential and parallel

algorithms were obtained.
b) The speedups of parallel algorithms over sequential

algorithms were determined.
c) The efficiencies of parallel algorithms were determined.
2) Data were collected/obtained from both repeated-

measures experiment designs/setups (which were
mentioned in Section III.A).

D. Data Analysis

The various performance metrics, which were either
obtained or determined/computed as mentioned in Section
III.C, were used in conducting the data analysis for this study.
This analysis entailed evaluating and comparing the
performances or behaviors of algorithms representing the
various parallelization strategies. The information, which is
furnished by this analysis, includes the performances or
behaviors of these algorithms, in terms of execution times,
speedups and efficiencies.

The dependent-means t-test is employed to test for the
statistical significance of the following differences (more
details on these differences are furnished in [8]):
1) The differences between performance data obtained on

(A) A physical multicore system and (B) A cloud
multicore system.

2) The differences between performance data obtained, on
an actual multicore system as well as a virtual multicore
system, during (A) The morning run and the afternoon run
(B) The morning run and the evening run and (C) The
afternoon run and the evening run.

Before applying the dependent-means parametric t-test to
the research data, the normality of the data was tested using
the Kolmogorov-Smirnov (K-S) test. An approach adopted in
conducting the t-test analysis for this research is to (A) Use the
(parametric) t-test when the dataset does not violate the
assumption of normality and (B) Use a non-parametric version
or equivalent of the t-test when the dataset violates the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

189

assumption of normality (the tests for normality, which were
performed on the research data, showed that some datasets are
not normal). The non-parametric version or equivalent of the
t-test that was used (when a dataset violates the assumption of
normality) is the Wilcoxon signed-rank test. All t-tests and
tests for normality were performed using IBM® SPSS®
Statistics, Version 22 (Release 22.0.0.0, 64-bit edition).

IV. DISCUSSION ON EXPERIMENTAL RESULTS

The data obtained from this study enables a dual and
simultaneous couple of evaluations, as follows: (1) The data
may be used to evaluate the performance of the cloud and
physical parallel systems used in the study and (2) The data
may be used to evaluate the performance of the various
algorithms studied. While this dual analysis is conducted in
this article, [8] furnishes a broader set of results as well as
analysis and discussion, of the study and results furnished in
this article, than the article itself does. The discussion on
experimental results is categorized into the following major
aspects: (1) Speedups and efficiencies characteristics, (2)
Summary of t-tests performed, (3) Performance of actual
machine vs. virtual machine in terms of execution time, (4)
Performance of actual machine vs. virtual machine in terms of
speedup and efficiency, (5) Performances of various

algorithms on both machines during different runs, and (6)
Asymmetric speedup performance for the batch strategy
parallel program.

A. Speedups and Efficiencies Characteristics

The experimental results, which are given in Figs. 3-7, are
not unlike those typically obtained from running parallel
programs; i.e., (A) Speedups generally increase as the number
of threads/cores increases, (B) Speedups generally reach a
peak value, as the number of threads/cores approach, reach
and exceed some value, and (C) Efficiencies generally
decrease as the number of threads/cores increases. These kinds
of result in the foregoing points numbers B and C are
demonstrated to a greater extent for a parallel processing
system that is characterized by poorer scalability. In other
words, for non-superlinear scalability, the better the scalability
of a parallel processing system, the more linear the graph of
the system’s speedup performance will be as well as the more
constant the graph of the system’s efficiency performance will
be (non-superlinear scalability is meant here to include both
linear scalability and sublinear scalability). Experimental
results also show that speedups are generally greater than half
of the number of threads/cores employed and parallel
processing efficiency values are generally greater than 50%.

Fig. 4 Average Speedups for Actual Machine

Fig. 5 Average Speedups for Virtual Machine

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

190

Fig. 6 Average Efficiencies for Actual Machine

Fig. 7 Average Efficiencies for Virtual Machine

B. Summary of t-Tests Performed

Gyang [8] presents detailed results of the t-test and
Wilcoxon signed-rank test analyses performed; these results
show the following, for the t-tests that were performed in the
study: (A) For the six categorical variables and nine
continuous variables, differences were taken between 36 pairs
of variables, for each of the actual and virtual systems and (B)
For the six categorical variables and six continuous variables,
differences were taken between 12 pairs of variables, for both
of the actual and virtual systems.

The aforementioned 36 pairs of variables (per machine
type) are computed as follows: Differences are taken between
nine pairs of the nine continuous variables for each of the 4
different numbers of threads/cores – i.e., each of 2, 4, 6 and 8
threads/cores has three performance metrics and, for each of
these performance metrics, the metrics in three different
metric pairs are compared (each pair is obtained from each of
the morning-afternoon, morning-evening and afternoon-
evening runs); this yields 9 × 4 = 36 variable pairs. The
aforementioned 12 pairs of variables (for both machine types)
are computed as follows: Differences are taken between three
pairs of the six continuous variables for each of the four
different numbers of threads/cores – i.e., each of 2, 4, 6 and 8
threads/cores have three performance metrics and, for each of

these performance metrics, the metrics in one metric pair are
compared (this pair is obtained from the two different types of
machine, i.e., actual and virtual); this yields 3 × 4 = 12
variable pairs.

Table I furnishes the results obtained, from the t-test and
Wilcoxon signed-rank test analyses performed, on the
differences between (A) The 36 pairs of variables per machine
type and (B) The 12 pairs of variables for both machine types.
The following are a summary of the results (which are
presented in Table I) for the 36 and the 12 variables:
 The following results were obtained, out of the 36

possible variable pairs for the actual machine:
o Two variable pair differences are statistically significant

with respect to the execution time metric.
o Three variable pair differences are statistically significant

with respect to the speedup metric.
o Four variable pair differences are statistically significant

with respect to the efficiency metric.
o The remaining 27 variable pairs are not statistically

significant with respect to any of the metrics.
 The following results were obtained, out of the 36

possible variable pairs for the virtual machine:
o One variable pair difference is statistically significant

with respect to the execution time metric.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

191

o Five variable pair differences are statistically significant
with respect to the speedup metric.

o Five variable pair differences are statistically significant
with respect to the efficiency metric.

o The remaining 25 variable pairs are not statistically
significant with respect to any of the metrics.

 The following results were obtained, out of the 12
possible variable pairs for both machines:

o The four variable pair differences with respect to the
execution time metric are statistically significant.

o The remaining eight variable pair differences (which are
with respect to the speedup and efficiency metrics) are not
statistically significant.

Furthermore, in general, no variable pairs, with respect to
any particular performance metric, demonstrated considerably
more statistically significant differences than others.

TABLE I

INFORMATION ON DIFFERENCES THAT ARE STATISTICALLY SIGNIFICANT

Machine Experimented on N-Thread/Core Performance Metrics Statistically Significant Differences

Actual machine

2-Thread/Core performance metrics There are no statistically significant differences between any of the variable pairs

4-Thread/Core performance metrics There are no statistically significant differences between any of the variable pairs

6-Thread/Core performance metrics The following differences are statistically significant:
 The speedup difference between afternoon and evening runs
 The efficiency difference between afternoon and evening runs
 The execution time difference between morning and evening runs
 The speedup difference between morning and afternoon runs
 The speedup difference between morning and evening runs
 The efficiency difference between morning and afternoon runs
 The efficiency difference between morning and evening runs

8-Thread/Core performance metrics The following differences are statistically significant:
 The execution time difference between morning and afternoon runs
 The efficiency difference between morning and afternoon runs

Virtual machine

2-Thread/Core performance metrics The following difference is statistically significant: The execution time difference between
morning and afternoon runs

4-Thread/Core performance metrics The following differences are statistically significant:
 The speedup difference between morning and afternoon runs
 The efficiency difference between morning and afternoon runs

6-Thread/Core performance metrics The following differences are statistically significant:
 The speedup difference between morning and afternoon runs
 The speedup difference between morning and evening runs
 The speedup difference between afternoon and evening runs
 The efficiency difference between morning and afternoon runs
 The efficiency difference between morning and evening runs
 The efficiency difference between afternoon and evening runs

8-Thread/Core performance metrics The following differences are statistically significant:
 The speedup difference between morning and evening runs
 The efficiency difference between morning and evening runs

Actual machine vs. virtual
machine

2-Thread/Core performance metrics The following differences are statistically significant for all the Threads/Cores (i.e., 2, 4, 6
and 8 Thread/Cores): Execution time differences between runs on actual and virtual
machines

4-Thread/Core performance metrics

6-Thread/Core performance metrics

8-Thread/Core performance metrics

TABLE II

AVERAGE EXECUTION TIMES FOR ACTUAL MACHINE

Parallelization Strategy 1 Thread/Core 2 Threads/Cores 4 Threads/Cores 6 Threads/Cores 8 Threads/Cores

Batch 1291.67 680.36 500.31 488.07 567.43

Burglary 1818.33 928.75 511.61 382.82 304.50

Optimistic 1823.00 933.09 505.33 387.78 301.12

Optimistic (circle) 1685.67 895.76 518.56 468.02 489.18

Optimistic (prev) 1860.00 956.49 514.33 381.31 307.83

Pessimistic 1776.33 914.28 536.87 563.92 594.04

TABLE III

AVERAGE EXECUTION TIMES FOR VIRTUAL MACHINE

Parallelization Strategy 1 Thread/Core 2 Threads/Cores 4 Threads/Cores 6 Threads/Cores 8 Threads/Cores

Batch 2827.00 1515.00 924.54 887.71 945.06

Burglary 3674.33 1861.33 1057.67 770.28 738.03

Optimistic 3664.33 1908.00 1036.28 792.83 675.95

Optimistic (circle) 3501.00 1869.00 1107.33 1023.00 1091.33

Optimistic (prev) 3642.33 1913.33 1063.67 777.20 673.25

Pessimistic 3536.00 1862.00 1166.00 1214.00 1242.33

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

192

TABLE IV
RATIOS OF AVERAGE EXECUTION TIMES

Ratios of Average Execution Times for Actual Machine to Average Execution Times for Virtual Machine

Parallelization Strategy 1 Thread/Core 2 Threads/Cores 4 Threads/Cores 6 Threads/Cores 8 Threads/Cores

Batch 2.19 2.23 1.85 1.82 1.67

Burglary 2.02 2.00 2.07 2.01 2.42

Optimistic 2.01 2.04 2.05 2.04 2.24

Optimistic (circle) 2.08 2.09 2.14 2.19 2.23

Optimistic (prev) 1.96 2.00 2.07 2.04 2.19

Pessimistic 1.99 2.04 2.17 2.15 2.09

C. Performance of Actual Machine vs. Virtual Machine in
Terms of Execution Time

Tables II and III furnish averages of execution times, for
each parallelization strategy, on both the actual and virtual
machines; these averages are taken over morning, afternoon
and evening runs.

D. Performance of Actual Machine vs. Virtual Machine in
Terms of Speedup and Efficiency

An analysis of Figs. 3-7 shows that these graphs are not
very different from each other – i.e., data, on both speedups
and efficiencies, shows that both the actual and virtual
machines demonstrated very similar performances (in terms of
these metrics) at executing the programs for the various
parallelization strategies (however, this information should be
considered in light of the fact that the actual machine is
approximately twice faster than the virtual machine at
executing the programs for the various parallelization
strategies). This result is consistent with the result of the t-test
performed on the data, which shows that the difference
between the performances of both machines, in terms of the
performance metrics of speedup and efficiency, is not
statistically significant. This difference, which is not
statistically significant, between the performances of both
machines (in terms of the speedup and efficiency metrics) may
be explained by the fact that these metrics were computed
independently for both machines. Consequently, even though
machine A executes a particular benchmark significantly
faster than another machine B executes the same benchmark
and both machines have about the same specifications, both
machines can actually have comparable or similar speedups
and efficiencies at processing the same benchmark.

E. Performances of Various Algorithms on both Machines
during Different Runs

1) For each machine, the vast majority of statistically
significant differences, between different runs, were with
respect to the speedup and efficiency metrics (these
differences were nearly exclusively with respect to the
speedup and efficiency metrics and were with respect to
the execution time metric on only a very few occasions).
This result is somewhat the converse, a flip over, of the
results on statistically significant differences between the
performances of the machines themselves. In particular,
note the following result summaries:

a) Out of nine statistically significant differences between
different runs for the actual machine, only two were with

respect to the execution time metric (the other seven were
with respect to the speedup and efficiency metrics).

b) Out of 11 statistically significant differences between
different runs for the virtual machine, only one was with
respect to the execution time metric (the other 10 were
with respect to the speedup and efficiency metrics).

2) For both machines, only about a quarter of all the possible
variable pairs had statistically significant differences. In
particular, consider the following result summaries:

a) Out of the 36 possible variable pairs for the actual
machine, 27 variable pairs are not statistically significant
with respect to any of the metrics.

b) Out of the 36 possible variable pairs for the virtual
machine, 25 variable pairs are not statistically significant
with respect to any of the metrics.

3) For the various algorithms, there were either no or only a
few statistically significant differences (with respect to
any performance metrics) between different runs when
these algorithms are used with 2, 4 or 8 threads/cores. The
preponderance of these statistically significant differences
was observed when 6-threads/cores are used. In particular,
consider the following result summaries:

a) Out of nine statistically significant differences between
different runs for the actual machine, seven were observed
when 6-threads/cores are used (the remaining two were
observed when 8-threads/cores are used).

b) Out of 11 statistically significant differences between
different runs for the virtual machine, six were observed
when 6-threads/cores are used (the remaining five were
observed when 2, 4 or 8 threads/cores are used).

An explanation for the aforementioned finding is that these
results are either an anomaly or are caused by some
phenomenon (i.e., since the vast majority of these statistically
significantly different metrics are observed when 6-
threads/cores were used with all parallelization strategies, this
suggests that all these parallelization strategies are having
relatively highly variable performances between various runs
when 6-threads/cores were used). Regarding this observation
and possible anomaly, information presented in the graphs in
Figs. 3-7 may be able to shed some more light. An analysis or
appraisal of these graphs shows that, in general, as the number
of threads/cores increases from two through eight, there is a
change in the general behavior of speedups and efficiencies at
the point when the number of threads/cores gets to be equal to
six.
4) In general, no particular pair of runs (i.e., either the

morning and afternoon runs, the morning and evening

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

193

runs or the afternoon and evening runs) demonstrated
considerably more statistically significant differences
(with respect to various performance metrics) than other
pairs of runs.

An explanation for the finding in point number one above is
that these results are an anomaly. Execution time is a raw
performance metric that is derived directly from the machines;
consequently, this metric reveals an intrinsic characteristic or
property of the machines. Unlike this metric, the speedup and
efficiency performance metrics were derived or computed
from other quantities (by using the usual formulae for
computing speedup and efficiency); these metrics reveal
combined characteristics or properties of both machine and
algorithm taken or considered together.

In terms of differences in performance during different runs
on the same machine, it is not unreasonable to expect that the
statistical significance of a metric that reveals intrinsic
behaviors of a machine will be less anomalous than the
statistical significance of a metric that reveals combined
behaviors of both machine and algorithm taken or considered
together. The result that the metrics, which had statistically
significant differences, do not represent intrinsic
characteristics or properties of the machines appears to be a
reasonable basis for the suggestion that the finding in point
number one above may simply be an anomaly.

In this study, statistically significant differences, between
the performances of the same benchmark algorithms, on the
same machine, during different runs of these algorithms, were
observed. This is not an observation that one would expect to
encounter and the finding in point number two above (which
shows that this observation is not very prevalent) maybe
provide some support for not expecting this result. However, it
is only for a physical machine that it is reasonable to not
expect this observation; it is reasonable to expect this
observation for a cloud machine. This is because there should
be more variability, in performance between different runs, for
the virtual machine than for the actual machine (if at all any
significant variability for the actual machine).

The reason for expecting the being of the aforementioned
greater variability in performance for the virtual machine (than
for the actual machine) is because the physical machine does
not share its hardware with other machines at all, while the
cloud machine typically shares some common underlying
hardware with other virtual machines. One would expect that
any particular virtual/cloud machine would demonstrate a
significantly wider range of different, varying performances or

capabilities during any long enough period (say, for example,
a 24-hour period; this is a period for which the usage
characteristics of a system may repeat in a pattern that occurs
during 24-hour-long cycles). A greater variable performance
for the cloud machine should be expected because, for
different times during a long enough period, the following
would happen:
1) . Unlike for a physical system, for a cloud system, the

probability that multiple (virtual) machines would be
competing for some single underlying hardware’s
resources and capabilities is nonzero.

2) During those times, when multiple virtual machines
actually compete for some single underlying hardware’s
resources and capabilities, the performance of each
individual virtual machine changes significantly or
considerably, to one extent or another, depending on the
number of virtual machines that get to run as well as the
loads that these virtual machines get to process

F. Asymmetric Speedup Performance for the Batch Strategy
Parallel Program

The implementation of the batch parallelization strategy
results in speedup that is asymmetric. This speedup is
characterized as symmetric using the following criteria (which
are considered together, in combination) when two threads are
used: (1) These two threads are assigned different kinds of
tasks to perform and (2) The amount of work, which is
performed by the one thread that is specified to be spawned, is
significantly greater than the amount of work performed by
the specialized thread; this observation is supported by the fact
that, in Tables I and II, the reciprocals of speedup values, for
the batch strategy parallel program, are significantly greater
than 0.5 (a user of the batch strategy parallel program specifies
that the program should spawn one of these threads, while the
other thread is a specialized thread that also gets to be
spawned). The variables in Tables V and VI are defined as
follows:
1) The execution time ݐௌ: This is the time it takes the serial

version of the program to compute the Delaunay
triangulation.

2) The execution time ݐ௉: This is the time it takes two
threads to compute the Delaunay triangulation. In the case
of the batch strategy, these two threads are 1-thread that is
specified to be spawned plus the specialized thread. In the
case of the other strategies, these two threads are 2-
threads that are specified to be spawned.

TABLE V

RECIPROCALS OF SPEEDUP VALUES WHEN 2-THREADS ARE USED (ACTUAL MACHINE)

Parallelization
Strategy

Morning Run (1746 = ࡿ࢚ ms) Afternoon Run (1681 = ࡿ࢚ ms) Evening Run (1671 = ࡿ࢚ ms)

 (ௌݐ/௉ݐ) ௉ (ms) Reciprocal of speedupݐ (ௌݐ/௉ݐ) ௉ (ms) Reciprocal of speedupݐ (ௌݐ/௉ݐ) ௉ (ms) Reciprocal of speedupݐ

Batch 1256.00 0.72 1361.00 0.81
1258.0

0
0.75

Burglary 918.39 0.53 933.78 0.56 934.07 0.56

Optimistic 909.74 0.52 934.27 0.56 955.25 0.57

Optimistic (circle) 892.50 0.51 911.26 0.54 883.51 0.53

Optimistic (prev) 1025.00 0.59 940.05 0.56 904.41 0.54

Pessimistic 888.00 0.51 923.04 0.55 931.81 0.56

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

194

TABLE VI
RECIPROCALS OF SPEEDUP VALUES WHEN 2-THREADS ARE USED (VIRTUAL MACHINE)

Parallelization
Strategy

Morning Run (3348 = ࡿ࢚ ms) Afternoon Run (3608 = ࡿ࢚ ms) Evening Run (3453 = ࡿ࢚ ms)

 (ௌݐ/௉ݐ) ௉ (ms) Reciprocal of speedupݐ (ௌݐ/௉ݐ) ௉ (ms) Reciprocal of speedupݐ (ௌݐ/௉ݐ) ௉ (ms) Reciprocal of speedupݐ

Batch 2798.00 0.84 2905.00 0.81 2778.00 0.80

Burglary 1803.00 0.54 1887.00 0.52 1894.00 0.55

Optimistic 1846.00 0.55 1922.00 0.53 1956.00 0.57

Optimistic (circle) 1842.00 0.55 1910.00 0.53 1855.00 0.54

Optimistic (prev) 1880.00 0.56 1962.00 0.54 1898.00 0.55

Pessimistic 1833.00 0.55 1851.00 0.51 1902.00 0.55

Going by the two criteria employed to characterize or

define asymmetric speedup, we may generalize the
observation of asymmetric speedup beyond only the case
when two threads are used. Even though the data presented in
Tables V and VI is only for the case when two threads are
used, there is no reason to doubt that similar results will be
seen for the case when x > 2 threads used, where x is defined,
for the batch strategy as x = N threads specified to be spawned
+ the one specialized thread and, for the other strategies, as x =
only the N threads specified to be spawned. Furthermore, the
N threads, which a user of the batch strategy parallel program
specifies that the program should spawn, are assigned the
same task to perform and this task is different than the task
that is assigned to the specialized thread to perform.

The graphs in Figs. 3-7 show what looks like superlinear
speedup performance for the batch strategy parallel program,
when a user of the program specifies that two threads should
be spawned. However, this performance is not truly
superlinear speedup performance. Rather, this batch strategy
parallel program performance is as a result of the fact that the
speedup and efficiency values data, which is plotted in the
graphs of Figs. 3-7, was computed (for the parallel programs
of all the parallelization strategies) based on using Nspecified
(i.e., number of threads specified to be spawned), not based on
using Nspawned (i.e., number of threads that were actually
spawned). For the batch strategy parallel program, Nspawned =
Nspecified + 1 while, for the parallel programs of all the other
strategies, Nspawned = Nspecified.

It is worth noting that the implementation of the batch
strategy parallel program results in either asymmetric or
pseudo superlinear speedup performance for this parallel
program, depending on which of two ways is employed to
compute speedup and efficiency values for the program. One
of these ways (by which to compute speedup and efficiency
values) is to use Nspecified (as has been done and the resulting

data plotted in Figs. 3-7). When speedup and efficiency values
are computed this way, pseudo superlinear performance is
observed. The other way (by which to compute speedup and
efficiency values) is to use Nspawned. When speedup and
efficiency values are computed this way, we have speedup that
is asymmetric (recall the two criteria employed for the
aforementioned definition of asymmetric speedup).

For the batch strategy parallel program, Nspawned = Nspecified +
1 because the implementation of this parallel program is such
that, whenever a user of the program specifies that only N
threads should be spawned, the program actually spawns N +
1 threads [11]-[13]. This explanation for the observed pseudo
superlinear scalability performance is also supported by data
collected during the experiments in this study (in particular,
the data presented in Tables VII and VIII and the charts in
Figs. 8-13). Regarding this data collected during the
experiments in this study, consider the following variables and
the ensuing discussion:
1) The execution time, ݐௌ, when the serial version of the

program is run. This serial version of the program is
independent on any of the various parallelization
strategies employed for the various parallel versions of
the algorithm (i.e., it is a sequential version of the
algorithm, which has not been parallelized in any way, let
alone been parallelized using any of the various
parallelization strategies employed for the various parallel
versions of the algorithm).

2) The execution time, ்ݐ, when any of the various parallel
versions of the program is run and it is specified that this
parallel version of the program should be executed with
only one thread used/spawned (each of the various
parallel versions of the algorithm has been parallelized
using one or the other of the various parallelization
strategies).

TABLE VII

RELATIONSHIP BETWEEN ݐௌ ்ݐ - AND 2-THREAD/CORE EFFICIENCY (ACTUAL MACHINE)

Parallelization
strategy

Morning Run Afternoon Run Evening Run

்ݐ - ௌݐ (ms) 2-Thread/Core Efficiency (%) (ms) ்ݐ - ௌݐ 2-Thread/Core Efficiency (%) ݐௌ - ்ݐ (ms) 2-Thread/Core Efficiency (%)

Batch 490 132.0 320 120.8 413 122.1

Burglary -19 95.1 -194 90.0 -144 89.4

Optimistic -53 96.0 -157 90.0 -161 87.5

Optimistic (circle) 30 97.8 -40 92.2 51 94.6

Optimistic (prev) -180 85.2 -90 89.4 -212 92.4

Pessimistic 33 98.3 -119 91.1 -145 89.7

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

195

TABLE VIII
RELATIONSHIP BETWEEN ݐௌ - ்ݐ AND 2-THREAD/CORE EFFICIENCY (VIRTUAL MACHINE)

Parallelization
strategy

Morning Run Afternoon Run Evening Run

(%) 2-Thread/Core Efficiency (ms) ்ݐ - ௌݐ (ms) ்ݐ - ௌݐ 2-Thread/Core Efficiency (%) ்ݐ - ௌݐ (ms) 2-Thread/Core Efficiency (%)

Batch 550 113.4 703 111.3 675 119.2

Burglary -200 92.8 -229 95.6 -185 91.2

Optimistic -457 90.7 -47 93.9 -80 88.3

Optimistic (circle) -198 90.9 76 94.5 28 93.1

Optimistic (prev) -493 89.0 215 91.9 -240 91.0

Pessimistic -282 91.3 125 97.5 -42 90.8

Fig. 8 2-Thread/Core Efficiency against ݐௌ - ்ݐ (Morning Run on Actual Machine)

Fig. 9 2-Thread/Core Efficiency against ݐௌ - ்ݐ (Afternoon Run on Actual Machine)

Tables VII and VIII show the relationship, between the
difference ݐௌ - ்ݐ and the 2-Thread/Core efficiency values, for
both the virtual and actual machines as well as for all
parallelization strategies. Figs. 8-13 furnish graphs/charts of
the data in Tables VII and VIII. The data in Tables VII and
VIII show that, in general, the higher the difference ݐௌ - ்ݐ, the
higher the 2-Thread/Core efficiency value; this relationship is
also shown by the linear trend lines in Figs. 8-13.

The data in Tables VII and VIII show that the difference ݐௌ
 ranges from +320ms to +703ms, during all runs on both ்ݐ -
actual and virtual machines, for the batch strategy parallel
program, which is the program that demonstrates pseudo
superlinear speedup. The following points, which may be
derived from Tables VII and VIII and Figs. 8-13, suggest that
the serial/sequential program is possibly performing some
extra processing, which the 1-thread-spawned instance of the
batch strategy parallel program is not performing:

 for all cases when the batch strategy parallel ்ݐ < ௌݐ (1
program runs, on either the actual or virtual machine,
during any run. This fact is true for only the batch strategy
parallel program alone (and untrue for the other versions
of the parallel program, which are implemented using the
other parallelization strategies).

2) The differences ݐௌ - ்ݐ are greater, by far, for the batch
strategy than these differences for the various other
strategies (on either the actual or virtual machine, during
any run).

The foregoing data/facts, about the batch parallelization
strategy, support and demonstrate the insight that, for this
strategy, the executing serial version of the randomized
incremental insertion algorithm does more work than the
executing parallel version of the algorithm using the batch
parallelization, with 1 thread spawned.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

196

Fig. 10 2-Thread/Core Efficiency against ݐௌ - ்ݐ (Evening Run on Actual Machine)

Fig. 11 2-Thread/Core Efficiency against ݐௌ - ்ݐ (Morning Run on Virtual Machine)

Fig. 12 2-Thread/Core Efficiency against ݐௌ - ்ݐ (Afternoon Run on Virtual Machine)

Fig. 13 2-Thread/Core Efficiency against ݐௌ - ்ݐ (Evening Run on Virtual Machine)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

197

V. CONCLUSION

This study evaluated the performances of two types of the
multicore system at executing various parallelization strategies
of the incremental insertion technique of the Delaunay
triangulation algorithm. The multicore systems used in the
study are actual or physical and virtual or cloud multicore
machines. The background to and methodology employed for
this study is presented. The study produced results that are
analyzed as well as herein presented and discussed/interpreted
in fairly great detail. Results show that the differences
between the performances of both machines were statistically
significant with respect to the execution time metric, but not
with respect to the speedup and efficiency metrics (the actual
machine is approximately twice faster than the virtual machine
at executing the programs for the various parallelization
strategies). The results also show that some of the differences
between the performances of various algorithms on both
machines, during different runs of the algorithms on the
systems, were statistically significant with respect to various
performance metrics employed in this study. A perusal of
results shows the scalability behaviors of the various
parallelization strategies. An interesting result observed is that,
depending on which of two ways is employed to compute
speedup and efficiency values, the batch strategy parallel
program results in either asymmetric or pseudo superlinear
speedup performance for this program (these pseudo
superlinear speedup values were observed with only the batch
strategy parallel program, when the number threads specified
to be spawned is equal to 2).

VI. FUTURE WORK

This study investigated the performances of only two types
of one class of parallel systems, namely: (1) Cloud multicore
system and (2) Physical multicore system. Future studies,
which extend this research, may investigate questions and
hypotheses on the performance, characteristics and behavior
of parallel systems, which have not been considered in this
study, for parallel surface modelling and generation using
parallel Delaunay triangulation. The recommended areas for
future research, which are herein furnished, are given in the
backdrop or context of the understanding that systems on
which parallel processing may be performed are getting
increasingly ubiquitous – multicore and similar parallel
systems promise as well as are envisaged to be increasingly
ubiquitous. Consequently, any identified significance or
benefits of using these systems promises to be a benefit for not
only the present, but also for the foreseeable future.

In the not-too-distant history of computing, parallel
computing systems have been only high-end systems that get
to be exclusively reserved for only very few users, especially
in the academia and government; however, a trend that has
been around in the past decade or so, as well as shows promise
of being around for some time into the future, is a great
increase in the prevalence of parallel computing systems. The
prevalence of these systems is such that they are quite
ubiquitous indeed (a very apt example of this current and

future trend is the abundance of multicore systems, which
have enabled parallel computing systems – ranging from
personal computers to smart phones – to be made available in
the hands of “ordinary” people, for performing their everyday
computing tasks).

Furthermore, it is easy to foresee a future in which research
in and development of parallel algorithms, for the following
applications, will continue to be undertaken: Computational
geometry applications, in general, and Delaunay triangulation
applications, in particular. A major motivation, for these
forecast research and development efforts, will be the goal of
exploiting the many, varied and increasingly ubiquitous
computing systems on which parallel processing can be
accomplished or performed. Consequently, it is also easy to
see how these forecast research and development efforts
would be apt recommended areas for future research – i.e.,
research in and development of parallel algorithms in an
area/field, which entails the application of parallel computing
concepts, principles and techniques for constructing the
Delaunay triangulation.

Another recommendation for future research is that a study
be conducted and a control measure, which was not
incorporated into this study, would be adopted in the
recommended study. Since the platforms of the actual and
virtual machines used in this study are not exactly the same,
but are only comparably the same, it appears like it is useful to
conduct research that employs system platform specifications
that are exactly the same (rather than merely comparably the
same). This recommendation is given despite an assumption
made in [8] that, in general, the slight differences that exist
between the platform specifications of the physical and cloud
machines used in this research should not be significant for
this particular study. This recommended research will
eliminate the following possibility, which this assumption
merely advises is unlikely: The observed statistically
significant discrepancy, between the execution time
performances of the physical and cloud machines, is due to the
differences between the platform specifications of both
machines.

Some related areas, which are also recommended for further
research, for either various individual Delaunay triangulation
algorithms or various categories of this algorithm, include
evaluating and investigating – including comparing and
contrasting – the following: (A) Code complexities of the
program codes that implement the algorithms and (B)
Computational complexities of the algorithms, in terms of the
following and particularly for multicore systems: (i)
Execution/running time (ii) Storage space required and (iii)
Processor-storage accesses required.

REFERENCES
[1] Blelloch, G. E., Miller, G. L., Hardwick, J. C. and Talmor, D. (1999).

Design and Implementation of a Practical Parallel Delaunay Algorithm.
Algorithmica, 24(3-4), 243-269. doi: 10.1007/pl00008262

[2] Blelloch, G. E., Miller, G. L., and Talmor, D. (1996). Developing a
practical projection-based parallel Delaunay algorithm. Paper presented
at the Proceedings of the twelfth annual symposium on Computational
geometry, Philadelphia, Pennsylvania, USA.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

198

[3] Chen, M.-B., Chuang, T.-R., and Wu, J.-J. (2001). Efficient Parallel
Implementations of 2D Delaunay Triangulation with High Performance
Fortran. Paper presented at the PPSC.

[4] Chen, M.-B., Chuang, T.-R., and Wu, J.-J. (2002). A parallel divide-
and-conquer scheme for Delaunay triangulation. Paper presented at the
Parallel and Distributed Systems, 2002. Proceedings. Ninth International
Conference on.

[5] Chen, M.-B., Chuang, T.-R., and Wu, J.-J. (2006). Parallel divide-and-
conquer scheme for 2D Delaunay triangulation: Research Articles.
Concurr. Comput. : Pract. Exper., 18(12), 1595-1612. doi:
10.1002/cpe.v18:12

[6] Cignoni, P., Laforenza, D., Perego, R., Scopigno, R., and Montani, C.
(1995). Evaluation of parallelization strategies for an incremental
Delaunay triangulator in E3. Concurrency: Practice and Experience,
7(1), 61-80. doi: 10.1002/cpe.4330070106

[7] Cignoni, P., Montani, C., Perego, R. and Scopigno, R. (1993). Parallel
3D Delaunay Triangulation. Computer Graphics Forum, 12(3), 129-142.
doi: 10.1111/1467-8659.1230129

[8] Gyang, N. P. (2014). Performance evaluation of parallel surface
generation from LiDAR point clouds on actual and virtual multicore
systems (Doctoral dissertation, Colorado Technical University).

[9] Hardwick, J. C. (1997). Implementation and evaluation of an efficient
parallel Delaunay triangulation algorithm. Paper presented at the
Proceedings of the ninth annual ACM symposium on Parallel algorithms
and architectures, Newport, Rhode Island, USA.

[10] Held, J., Bautista, J. and Koehl, S. (2006). From a few cores to many: A
tera-scale computing research overview. white paper, Intel.

[11] Kohout, J. and Kolingerová, I. (2003). Parallel Delaunay triangulation in
E3: make it simple. The Visual Computer, 19(7-8), 532-548. doi:
10.1007/s00371-003-0219-x

[12] Kohout, J., Kolingerová, I. and Ára, J. (2005). Parallel Delaunay
triangulation in E2 and E3 for computers with shared memory. Parallel
Comput., 31(5), 491-522. doi: citeulike-article id:3386087, doi:
10.1016/j.parco.2005.02.010

[13] Kolingerová, I. and Kohout, J. (2002). Optimistic parallel Delaunay
triangulation. The Visual Computer, 18(8), 511-529. doi:
10.1007/s00371-002-0173-z

[14] Lo, S. H. (2012a). Parallel Delaunay triangulation – Application to two
dimensions. Finite Elements in Analysis and Design, 62(0), 37-48. doi:
http://dx.doi.org/10.1016/j.finel.2012.07.003

[15] Lo, S. H. (2012b). Parallel Delaunay triangulation in three dimensions.
Computer Methods in Applied Mechanics and Engineering, 237–240(0),
88-106. doi: http://dx.doi.org/10.1016/j.cma.2012.05.009

[16] Park, C.-M., Lee, S., and Park, C.-I. (2001). An improved parallel
algorithm for delaunay triangulation on distributed memory parallel
computers. Parallel Processing Letters, 11(02n03), 341-352. doi:
doi:10.1142/S0129626401000634

[17] Puppo, E., Davis, L., De Menthon, D. and Teng, Y. A. (1994). Parallel
terrain triangulation. International Journal of Geographical Information
Systems, 8(2), 105-128. doi: citeulike-article-id:10466135 doi:
10.1080/02693799408901989

[18] Shewchuk, J. R. (1996). Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. Paper presented at the Selected
papers from the Workshop on Applied Computational Geormetry,
Towards Geometric Engineering.

[19] Teng, Y. A., Sullivan, F., Beichl, I. and Puppo, E. (1993). A data-
parallel algorithm for three-dimensional Delaunay triangulation and its
implementation. Paper presented at the Proceedings of the 1993
ACM/IEEE conference on Supercomputing, Portland, Oregon, United
States.

