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 
Abstract—This paper is a continuation of the work carried out by 

various turbulence modelers in Oceanography on the topic of oceanic 
turbulent mixing. It evaluates the evolution of ocean water 
temperature and salinity by the appropriate modeling of turbulent 
mixing utilizing proper prescription of eddy viscosity. Many 
modelers in past have suggested including terms like shear, buoyancy 
and vorticity to be the parameters that decide the slow pressure strain 
correlation. We add to it the fact that dissipation anisotropy also 
modifies the correlation through eddy viscosity parameterization. 
This recalibrates the established correlation constants slightly and 
gives improved results. This anisotropization of dissipation implies 
that the critical Richardson’s number increases much beyond unity 
(to 1.66) to accommodate enhanced mixing, as is seen in reality. The 
model is run for a couple of test cases in the General Ocean 
Turbulence Model (GOTM) and the results are presented here. 
 

Keywords—Anisotropy, GOTM, pressure-strain correlation, 
Richardson Critical number. 

I. INTRODUCTION 

ODELS which predict turbulent mixing due to rotation, 
shear and other sources in flows with vertical density 

gradients are of huge importance in the turbulence modeling 
of marine environment. Through this turbulence modeling, 
attempts are made to resolve the vertical structure of water 
column. Hence, these types of models have received a lot of 
importance during the last few decades, resulting in numerous 
such mixing models in the field of geophysical flows. Canuto 
et al. [1], Rodi [2], Mellor and Yamada [3] performed some of 
the important two parameter models. The mixing process with 
vertical density gradient is a complex physical process [4]. 
Reviews of such models for geophysical flows have been 
made by Umlauf and Burchard [5] Burchard and Bolding [6], 
Burchard and Peterson [7], etc. 

The physics of this ocean mixing dynamics is well included 
in Navier-Stokes equations and molecular tracer equations of 
temperature and salinity. One of the bottle necks that we 
encounter is that small scale turbulence in these large scale 
processes is more or less unresolvable. This leads the ocean 
modeler to make assumptions for these smaller scale processes 
which become critical in order to achieve an ocean model that 
is practical for all applications. In conformity with the 
mainstream ocean turbulence modeling, statistical closure has 
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been implemented in this present work. Statistical models are 
based on Reynolds decomposition. It decomposes scalar and 
momentum fields into mean and fluctuating terms. In the last 
few decades, there have been many solutions to this problem, 
taking into consideration higher statistical correlations to solve 
the heat and salt equations patterned in the same format as 
Reynolds momentum equations. The major achievement of 
turbulence modeler has been to suggest closure for this system 
of equations. This can be achieved at various levels of 
sophistication. Some milestones in this process were the works 
of Launder and colleagues [8], [9] and the works of Mellor 
and Yamada [3]. Until now, numerous modifications to these 
works have been suggested (e.g. [3], [10]-[12], [1]). This 
shows that till date entirely satisfying solutions have not been 
found. 

In most of the flows of engineering interest, like a turbulent 
boundary layer, or channel flow or different wall bounded 
flows, there is a strong influence of anisotropy in the 
momentum equations. When the flow is subjected to strain or 
rotation the above phenomenon still stands true. This 
anisotropic distribution gives rise to many difficult problems 
while handling turbulence modeling. We have dealt with this 
problem in the present work. In ocean flows, anisotropy of 
dissipation becomes important in the mixed layer and coastal 
boundary layers, lesser so in thermocline and negligible for 
deeper waters. If the dissipation rate components are not 
calculated exactly (by not including anisotropy), in these 
boundary layers, the pressure strain term of turbulence will not 
model the inter-directional energy transfer, and this leads to 
erroneous conclusion about model constants. This is evident in 
literature from experimental determination of pressure strain 
correlation. It was also shown that anisotropy of dissipation 
rate was comparable in magnitude to Reynolds stress tensor 
for low to moderate Reynolds numbers [13], hence cannot be 
neglected [14]. Oberlack [15] derived a new transport equation 
for the length scale tensor and subsequently for the anisotropic 
dissipation rate tensor and developed a new model for the 
rapid pressure strain correlation of turbulence. This was 
followed by the work of Panda et al. [21] where they modeled 
the anisotropy of length scale in laboratory flows. Speziale 
and Gatski [13] included the anisotropic flow physics in the 
dissipation rate equation. Various researchers have tried to 
incorporate the dissipation anisotropy in the formulation of the 
return to isotropy term of the pressure strain correlation; 
Warrior et al. [16] and Panda et al. [21] tried to incorporate the 
missing flow physics to increase the fidelity of their models. 
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In the present study, anisotropy of dissipation rate has been 
introduced in the pressure strain correlation (instead of 
assuming an isotropic dissipation, as current ocean models do) 
and has been incorporated into GOTM to simulate some 
known test cases. The basic structure of Canuto et al. [1] has 
been retained as such, and the new formulation has been added 
to it to recalibrate the model constants of Canuto et al. [1]. 

The new formulation introduced here is from the numerical 
studies of Warrior et al. [16]. In that paper, an improvement in 
turbulence prediction was observed by including anisotropic 
dissipation term for laboratory experiments. In this paper, the 
same formulation is being implemented for geophysical flows, 
i.e. in an oceanic model. 

II. BASIC EQUATIONS 

While solving for turbulence in oceans, one needs to solve 
for mean variables e.g. mean velocity (U) and mean 
temperature (T). The dynamic equations for these variables are 
as: 

 

1
, ,( )i

i i ij j

DU
g P

Dt
                          (1) 

 

1
, ,( )i i p z

DT
h c I

Dt
                              (2) 

 

In (2), I  represents the solar radiation and g  is the 

acceleration due to gravity. The turbulence enters through 

Reynolds stresses ij  and heat flux ih . These variables are 

defined as: 
 

ij i ju u  , i ih u                               (3) 

 
The dynamic equation of these variables can be derived from 

Navier-stokes equations. The process is available in many 
literatures such as Lumley and Khajeh-Nouri [17], Pope [18], 
Lumley [19], Shih and Shabbir [20]. These equations can be 
defined as follows: 

Reynolds stresses; 
 

2
( ) , ,

3

D ij
D U U h hij i j j i ij ijf jk i k ik j k

Dt


                (4) 

 
Heat flux; 

 

2
( ) , ,

Dhi D h T h Ui ij j j i j i if
Dt

                   (5) 

 
In the above equations, the second term on the left hand 

side represents third order moments. These are closed by 
considering dynamic equations of these moments. This 
method is defined by Canuto et al. [1]. 

The other terms which require closure are fifth terms in (4) 
and (5). These are known as pressure-strain correlation and 

pressure-temperature correlation. Our main interest in this 
study is to develop the pressure-strain correlation. For the 
pressure-temperature correlation, we accept the closure of 
Canuto et al. [1]. Closure is also required for the sixth term 
which is the dissipation term in (4). Apart from (4) and (5), 
there are some more important equations which are as follows: 

Temperature Variance: 
 

2
2

( ) 2 2,
D

D h Ti if
Dt


                          (6) 

 

where dissipation of potential energy (  ) is: 

 

1 2   
                                     (7) 

 
Turbulent kinetic energy: 
 

  1
,

2

DK
D K U uij i j i i iif

Dt
                    (8) 

 
The problem addressed in this study is closure of the 

pressure-strain correlation. We have added anisotropic 
dissipation to the existing pressure-strain correlation. This is 
discussed in more detail in the next section. 

III. PRESSURE-STRAIN CORRELATION 

Extensive literature is available on this topic (e.g. [18]-[20], 
[2], [1] etc.). Parameterization of pressure-strain correlation is 
necessary in order to provide closure to the second order 
moments. In the literatures presented till date, we observe that 
the pressure-strain correlation consists of five terms: the return 
to isotropy (Rotta term or slow term), the mean shear 
interaction (Rapid part), the buoyancy contribution, the 
anisotropic shear production, and the vorticity. 

This formulation though is not complete. In the classical 
paper of Lumley [19], it has been stated that the slow part of 
pressure-strain correlation depends upon both anisotropic 
Reynolds stresses and dissipation rate of turbulence. Later this 
was applied to engineering flows by Warrior et al. [16], and 
improved result was achieved. The models which have been 
developed until now have ignored this anisotropic dissipation 
rate tensor that we intend to apply. Hence, the proposed form 
of pressure-strain correlation is as follows: 

 
1 1

51 2 3 4 6C b C KS C B C C Z C epv pvij ij ij ij ij ij ij           (9) 

 
In (9)  
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Like other models, the dissipation anisotropy rate is 
assumed to have an algebraic relation with anisotropic 
Reynolds stress. It is somewhat similar to be having a direct 
proportionality between small scale turbulence and large scale 
processes in ocean. This relation is given as follows; 

 

2e f bsij ij                                   (11) 

 

In (11), fs is known as the blending function. This blending 

function relaxes the direct proportionality between small scale 
anisotropy and large scale isotropy.  

There are many formulations of fs available in literature. 
Early models had suggested that this blending function 
depends solely upon the turbulent Reynolds number [22], [23]. 
They assumed that anisotropic dissipation rate was dependent 
only on viscous effects. Later, the DNS results of Mansour et 
al. [24] and Durbin et al. [25] showed that the anisotropy in 
dissipation rate extends beyond the near-wall regions and it is 
due to non viscous blocking and eddy flattening effects. 

Due to these effects, several authors ([26] etc.) expressed 
the blending function in second and third stress invariants. 
Warrior et al. [16] showed that, with the use of Gilbert and 
Kleiser [26] formulation of blending function, better result 
could be achieved in engineering flows. Hence, we use the 
same formulation and apply it in geophysical flows. The 
formulation is given as: 

 

1f As                                        (12) 

 
A is known as Lumley’s flatness parameter and it is 

expressed as: 
 

 9
1 2 3

8
A A A                                   (13) 

 
A2 and A3 are the second and third order invariants 

respectively, which are expressed as: 
 

42A b bij ji and 83A b b bij jk ki                     (14) 

 
Assuming the state of turbulence in oceans to be two 

components, we choose the values of the above-mentioned 
invariants from the Lumley’s triangle. This is done to make 
sure that the values chosen make the state of turbulence 
realizable. Hence, after going through some simple algebra, 
we achieve from (13) that 

0.1744e bij ij                                   (15) 

      
So now the proposed pressure-strain correlation in (11) can 

be rewritten as: 
 

1
( 0.1744 ) 51 2 3 46C C b C KS C B C C Zpvij ij ij ij ij ij        

  (16) 
 

This formulation is structurally similar to that of Canuto et 
al. [1]. Now, the constants need to be calibrated. 

IV. THE COMPLETE MODEL 

For the model to be complete, we have to also consider the 
pressure-temperature correlation. In this study, we have taken 
the pressure-temperature correlation exactly from Canuto et al. 
[1]. This is because the pressure-strain correlation is complete 
in its sense in Canuto et al. [1]. The formulation of which is 
as: 

 

3 51 2
,1 4

4 3
h S V hi i i ij ij jp

     
   

 
 
 

            (17) 

 
The procedure to obtain the complete model is a matter of 

algebraization. This is described in literature clearly. In this 
process we put (16) and (17) in (4) and (5) respectively. The 
resulting equations are complex and hence cannot be applied 
directly to the ocean models.  To obtain the equations for 
variables of Reynolds stresses and heat fluxes, we adopt the 
algebraic Reynolds stress model method. The basic approach 
is to neglect time variations, advective and turbulent transport 
of Reynolds stresses and the fluxes and variance of 
temperature. The turbulent kinetic energy is multiplied by 
2

3 ij  and is subtracted from (4). This is done to preserve the 

transport of kinetic energy. Then, further the left hand side of 
the resulting equation is set to zero. The xame procedure is 
done with (5), hence obtaining the following equations of 
Reynolds stresses and heat flux: 

 

1 2 3 4b KS B Zij ij ij ij ij                          (18) 
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
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
                             (19) 

 
The tensors Aikand (Kh)ij are defined as follows: 

 
2

,5 78 6A T S Vij ij i i ij ij                           (20) 
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                           (21) 

 
Equations (18)-(21) are exactly the same equations as of 

Canuto et al. [1]. Equation (18) is structurally the same with 
that of Canuto et al. model, but it is different in the values of 
its constants. These are expressed as: 

 

1 132 4; ; ;1 2 3
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V. ASSUMPTION AND SOLUTION FOR REYNOLDS STRESS AND  
HEAT FLUX EQUATIONS 

While solving (18) and (19) some assumptions are made. 

These assumptions are as follows: 
T T

ij
x zi


 


 

and velocity 

is assumed to be neglected in the Z direction. 
The shear and vorticity take form: 
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Equations (18)-(21) acquire similar solution to that of 

Canuto et al. [1]. This is because the basic form of equations 
(18)-(21) is same to that of Canuto et al [1]. Hence, all the 
solutions thus obtained including turbulent momentum and 
heat diffusivities are structurally the same. Thedifference lies 
in the values of constants of (18). These constants need to be 
tuned toobtain better results. We made turbulence more 
anisotropic by the addition of dissipation term in pressure-
strain correlation. 

VI. MODEL CONSTANTS 

A numerical ocean model, GOTM is used in the present 
work. The success of the model has been accepted by the fact 
that this model has been applied to various regions, 
specifications and scales, by modifying the various parameters 
of the code. Not only turbulence, but mean flow modeling can 
also be carried out easily. The turbulence inside GOTM is 
such that it can be integrated into atmospheric model or into 
various other 3-D models for vertical exchange. Observational 
data can be read into this model for many cases. At least one 
case from each member of turbulence models is present in 
GOTM. The model output is optional in ASCII or netCDF 
format. 

The ocean domain is divided discontinuously from bottom 
to top, i.e. bottom being the first interval and surface being 
last. This discretization is not necessarily of equal distance. 
The different values of mean flow quantities like temperature, 
salinity, X and Y components of velocity represent average of 
an interval. Hence, they are located at mid points of each 
interval. On the other hand, the turbulent quantities like kinetic 
energy, length scales, eddy viscosity, heat diffusivity, etc. are 

located at the interface of each interval. The equidistant 
interval of grids allows second order approximation of vertical 
fluxes and tracers of momentum without averaging. Inferential 
treatment of diffusion and absence of advection allows time 
stepping to be equidistant, based on two time intervals. Fully 
constructive discretization of mean quantities leads each 
transport equation to a system of linear equations. This results 
in formation of tri-diagonal matrix which is solved by 
simplified Gaussian elimination method. 

The model constants of the present model were calibrated 
against observational data, the model constants are presented 
in Table I. 
 

TABLE I 
CALIBRATED MODEL CONSTANTS 

1  2  3  4    

0.13 0.0048 0.083 0.093 5.3178 

VII. RICHARDSON NUMBER (RI) 

Richardson number is defined as the ration of mean shear to 
temperature gradient or mean shear to Brunt Vaisala 
frequency. 

 
2

2
Ri

N


                                     (25) 

 

In (25), 
2 2

2 U V

Z Z

 
  

 

   
   
   

and 2 T
N g

Z






. the first term 

is mean shear term and second is temperature gradient term, 
also known as Brunt Vaisala frequency. 

This is the measure of existence of turbulence in a flow. 
The earlier works of Miles [27] and Howard [28] used linear 
stability analysis and established that for linear stability to 
exist in a flow the sufficient conditions is: 

 
1

4
Ri                                         (26) 

 
However, this was not a necessary condition. Some early 

turbulence modelers like Mellor and Yamada [3] showed from 
their model assumptions that turbulence ceases around 
Ri=0.25. 

Equation (26) fails to say anything about the nonlinearities 
and hence turbulence. Yet most models had assumed this 
result in their model description. Nonlinear interactions were 
included in the study of Abarbanel et al. [29], who derived the 
necessary and sufficient condition for stability to be: 

 

1Ri                                       (27) 
 
In Canuto et al. [1], the first approach, i.e. (26), has been 

called “bottom-top” approach and the later approach, i.e. (27) 
is known as the “top-bottom’ approach.  

Some earlier studies [30] used laboratory data of Taylor in 
which they showed that turbulence mixing can go up to 
Richardson number greater than 1. Martin [31] who corrected 
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mixing layer depths at OWS Papa had to allow turbulence to 
get up to Richardson number 1. Later, Galperin et al. [32] in 
their studies for marine and atmosphere proved that 
Richardson number greater than 1 exists.The model developed 
by Canuto et al [1] was able to get Richardson number up to 1. 

Due to the addition of dissipation rate of turbulence and 
recalibration of model constants, we have achieved that in our 
model turbulent does not cease till Richardson number 1.66, 
which is higher than 1. We assume this is due to the blending 
function used while modeling for dissipation rate. This 
actually allows a smooth transaction between small scale 
processes and large scale process in oceans. 

The Richardson number at which turbulence ceases to exist 
is known as Critical Richardson number (Ric). As stated 
earlier, using a similar process as described in Canuto et al. 
[1], we obtain Critical Richardson number value of 1.66. 

We define ‘Y’ as a function of mean shear stress. Since 
kinetic energy tends to zero as turbulence ceases to exist, Y 
will tend to infinity. This phenomenon is plotted in Fig. 1. 
This is because mean shear is inversely proportional to kinetic 
energy. The function ‘Y’ can be defined as: 

 

 2
Y                                   (28) 

 
Here,  is the timescale which is defined as: 
 

12K                                    (29) 
 

At Ricr stratification becomes too strong which does not 
allow flow to be turbulent. Thus, we can say that due to the 
novelty in the present model, we are able to achieve Ri> 1. 
This is in agreement with many studies like Galperin et al. 
[32], etc. The two structure functions Sm and Shas defined by 
Canuto et al. [1] are plotted against Ri (Fig. 2). These structure 
functions (also known as stability functions) are structurally 
similar to those of Canuto et al. [1] but actually in values they 
are different. These can be obtained by solving (18) and (19), 
which have been explained in Section V. 

 

 

Fig. 1 Variable ‘Y’ Vs the degree of stability Ri 

 

Fig. 2 Variation of stability functions vs Richardson number 
 

The relative position of the curves changes as one goes 
from negative Richardson number to positive Richardson 
number. As temperature gradient affects more the heat 
diffusivity than momentum diffusivity, the heat diffusivity is 
larger in the unstable case or negative Richardson number 
case. As one comes closer to positive Richardson number, 
moment diffusivity dominates. 

VIII. RESULTS AND DISCUSSION 

Before applying any model to ocean, testing the models 
reliability has been given huge importance in literatures. 
Hence, we pass our model through some reliability tests. 
These tests have also been performed by Canuto et al. [1]. We 
have plotted both the model of Canuto et al. and the proposed 
model in this study for these tests. The results and discussion 
on these results are explained elaborately in the following 
subsections. 

A. Test for Pure Shear Case 

This is the case of interest to the engineering flows. This 
case has been widely studied in [2]. Using the formula stated 
in Canuto et al. [1], we calculate the first order shear for our 
case and we get: 

 

0.065mS                                  (30) 

 
The formulation of momentum diffusivity used in Canuto et 

al. [1] and this present study is: 
 

2

2
K

K Sm m


                              (31) 

 
But the formulation used in [2] is: 

2
K

K cm 


                              (32) 

 
By comparing (31) and (32), we can obviously deduce that: 
 

2 mc S                                   (33) 

 
Hence, from our present study, we get 0.129c  , whereas 
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Canuto et al. [1] got 0.11c  , both values agree well with 

the study of Rodi [2].   

B. Test Results for Turbulent Prandtl Number Vs Ri 

The experimental data of Webster [33] are available. It is 
based on the formulation: 

 

( )
KmRit
Kh

                                 (34) 

 
where  

2

2h h

K
K S


                                (35) 

 
This is known as heat diffusivity. Direct Numerical Simulation 
(DNS) results on stratified turbulent shear flow are available 
in Gerz et al. [34]. Canuto et al. [1] in their paper also plotted 
their model results with these data. In this study, we do the 
same in Fig. 4. 

In Fig. 3, the turbulent Prandtl number has been non-
dimentionalised using turbulent Prandtl number at Ri = 0. 
The proposed or present model produces the data which agree 
well with Canuto et al. [1]. 

C. Test Results for Mixing Efficiency 

In some literatures, the heat diffusivity is expressed in terms 
of mixing efficiency.  

 
2

hK N                                    (36) 

 

In the above formulation,   is known as mixing efficiency, 
it is represented as: 

1
f

f

R

R
 


                                 (37) 

 

 

Fig. 3 Turbulent Prandtl number vs Richardson number 
 

In (37), R f  is known as the flux Richardson number. The 

formulation presented by (37) is famously known as 

Osborne’s formulation for turbulent diffusivity. This 
formulation assumes stationarity and has been shown to be an 
oversimplification of the mixing problem by Smyth et al. [35] 
and a number of recent studies like [36]. Still this formulation 
is used widely in literatures, hence we also use the same 
formulation. 

The measured value of mixing efficiency    is given as: 

 

For 0.25R f   ; 0.12 0.48                   (38) 

 
In Fig. 4, we have plotted the values of mixing efficiency as 

calculated using the proposed model. 
 

 

Fig. 4 Mixing efficiency Vs Richardson number 
 

At 0.25R f  , the proposed model predicts 0.1646   which 

is well within the measured range for the mixing efficiency. 
Then up to critical Richardson number, this study gives the 
values of mixing efficiency which are within the measured 
range.  

D. Comparison with Ocean Data 

After finding that the proposed model works well with the 
above mentioned tests, it can be concurred that our model is 
reliable. After the reliability of the proposed model is 
confirmed, we choose to apply our model to oceanic data 
available in GOTM. 

1. Fladenground Experiment (FLEX) 

This dataset has been used for the past several years as 
calibration for mixing parameterization. These data were 
collected during the measurements of the Fladenground 
experiment 1976 (FLEX’76). These measurements for 
meteorological forcing and temperature potential profiles were 
done in the spring of 1976 in northern North Sea. The water 
depth was about 145m and geographical location of 58055’N 
and 0032’E. The simulation was run from April 6 to June 7, 
1976. These FLEX’76 data havr been used in several 
literatures in order to test different schemes [7]. 

Temperature variation along the depth has been taken for 
two random days of the experiment. This is shown in Figs. 5 
and 6. It can be observed that, due to the recalibration of the 
model constants and addition of anisotropic dissipation rate, 
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the proposed model performs slightly better than Canuto et al. 
[1]. 
 

 

Fig. 5 Temperature (Celsius) variation along the depth (m) on Day 
151 of the FLEX data 

 

 

Fig. 6 Temperature (Celsius) variation along the depth (m) of ocean 
for Day 157 of FLEX data 

 
As can be observed in Figs. 7 and 8, there is a difference 

between eddy viscosity and heat diffusivity of the two models. 
It can be recalled that earlier it was stated that though 
structurally these are the same with Canuto et al. [1], but there 
is a significant difference due to the calibration of the 
constants. 

 

 

Fig. 7 Variation of eddy viscosity (m2/s) along the depth (m) of the 
ocean 

 

 

Fig. 8 Variation of heat diffusivity (m2/s) along the depth (m) of the 
ocean 

2. Gotland Deep Experiment 

These simulations have been done for Central Eastern 
Gotland Sea of the Baltic Sea. Its geographical location is 
200E and 57.30 N. with the water depth being 250 m. Initial 
conditions for forcing and temperature were taken from 
measurements. The simulated temperature has been compared 
with data from COMBINE program. The entire environmental 
monitoring within HELCOM, and the Baltic marine 
environment is carried out under COMBINE program. These 
data have been used for simulating the Gotland Deep 
ecosystem dynamics for the years 1981-1991 [37]. 

Fig. 9 shows the representation of sea surface temperature 
throughout the year for Gotland Deep. The present model 
predictions of temperature profiles are closer to the observed 
data and are better than the model of Canuto et al. [1]. In Figs. 
10 and 11, the variation of temperature along the depth is 
presented. The present model seems to give better prediction 
of temperature. 

 

 

Fig. 9 Sea surface temperature (Celsius) variation throughout the year 
at Gotland deep 

 
Figs. 12 and 13 represent the heat diffusivity and eddy 

viscosity. As predicted and also shown in the previous case, 
the values of heat diffusivity and eddy viscosity differ from 
Canuto et al. [1]. This is because of the incorporation of the 
missing flow physics in the formulation of the pressure strain 
correlation in terms of dissipation anisotropy. 
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Fig. 10 Temperature (Celsius) variation (Day 217, 1986) along the 
depth (m) of the ocean for Gotland Deep data 

 

 

Fig. 11 Temperature (Celsius) variation for year 1987 along the depth 
(m) of the ocean 

 

 

Fig. 12 Variation of eddy viscosity (m2/s) along the depth (m) 
 

 

Fig 13: Variation of heat diffusivity (m2/s) along the depth (m) 

IX. CONCLUSION 

In the current paper, we have tried to derive a new formula 
for the pressure strain correlation using the same structure as 
Canuto et al. [1]. The new formula incorporates the anisotropy 
in dissipation tensor by making the dissipation tensor a linear 
function of Reynolds stress anisotropy. More complicated 
models will include a non-linear relation with anisotropy of 
Reynolds stress and is not included here. This anisotropization 
of turbulence seems to give better results for both the test case 
results of FLEX and Gotland Deep. An increase in critical 
Richardson number to 1.66 is observed which indicates that, in 
real scenarios, the turbulence does not cease till Ri reaches 
1.66. We feel that this new formulation for pressure strain 
correlation will improve the forecasts from ocean and 
atmospheric models and it is worthwhile looking into. 
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