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 
Abstract—This paper is aimed at creating an Automatic Java X-

Machine testing tool for software development. The nature of 
software development is changing; thus, the type of software testing 
tools required is also changing. Software is growing increasingly 
complex and, in part due to commercial impetus for faster software 
releases with new features and value, increasingly in danger of 
containing faults. These faults can incur huge cost for software 
development organisations and users; Cambridge Judge Business 
School’s research estimated the cost of software bugs to the global 
economy is $312 billion. Beyond the cost, faster software 
development methodologies and increasing expectations on 
developers to become testers is driving demand for faster, automated, 
and effective tools to prevent potential faults as early as possible in 
the software development lifecycle. Using X-Machine theory, this 
paper will explore a new tool to address software complexity, 
changing expectations on developers, faster development pressures 
and methodologies, with a view to reducing the huge cost of fixing 
software bugs. 
 

Keywords—Conformance testing, finite state machine, software 
testing, X-Machine.  

I. INTRODUCTION 

INITE state machines (FSMs) can be used as 
mathematical representations of the expected states 

present in a system [1]. FSMs form the basis of development 
methodologies and system specifications [2], being 
represented by state diagrams and state transition tables. FSMs 
can be further extended to use memory, or data, to form X-
Machines [1]. These concepts are evolving to enable software 
tests to be generated against a system specification which can 
help to establish the completeness, consistency, and 
correctness of an implemented system [3]. Given that software 
testing typically accounts for 50% of the development budget 
[4], with $2.2 trillion spend on IT annually in 2010 [5], 
effective testing tools have huge potential to reduce risk and 
deliver stronger return on investment. Cost tends to be orders 
of magnitude greater later into the development process. 
Referencing NIST, a 2008 IBM Whitepaper found the cost of 
fixing integration errors can be 10x the cost during design and 
architecture, and twice the cost of during implementation [6]. 
Moreover, most errors tend to be found during the integration 
phase (see Fig. 1). Beyond financial gain, Wong et al. [7] 
notes that “software faults in safety-critical systems have 
significant ramifications.” The aim of this research is to 
develop a software testing framework based on X-Machine 
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theory, which can be applied to Java classes to determine 
conformance to requirements, and address the challenges 
facing current software testing methods and approaches. These 
requirements will be provided in the form of XML 
specifications detailing the expected transitions and states of 
the Java class being tested. The paper will provide an analysis 
of the challenges that exist for existing testing tool, an 
overview of X-Machine theory, and review of the state of 
testing using X-Machine and FSM theory as it presently 
exists. The paper will then describe the proposed approach for 
applying X-Machine theory in a testing tool, and perform a 
critical review of this approach in the context of software 
testing.  

II. RELATED WORK 

Testing tools uncover errors with varying success and 
performance and face a range of continuing challenges 
including: 
 Incomplete error detection 
 Software complexity 
 Agile Testing 
 Automation trade-offs 
 Developer adoption 

The following sections will elaborate on these problems in 
the context of an X-Machine based conformance testing 
solution aimed at preventing errors beyond the software 
development phase. 

III. CURRENT SOFTWARE TESTING CHALLENGES 

A. Incomplete Error Detection 

“In general, it is impractical, often impossible, to find all 
the errors in a program” [9]. For example, unit testing is 
effective at testing individual methods within a component, 
but Holcombe [10] notes their ineffectiveness for detecting 
integration-related errors.  

While not an exhaustive test method, NIST suggest 
falsification testing (also known as conformance testing) as an 
alternative to prove an implementation under test (IUT) 
contains errors [5]. The purpose of conformance testing is to 
determine whether an IUT is correct, complete, and consistent 
with its specification [11]. If unexpected outputs occur, given 
the specified test inputs; the IUT does not conform and an 
error is detected. This method does not guarantee full error 
coverage, but it has the benefit of significantly reducing the 
likelihood of present errors because the IUT conforms to its 
specification. This may prove valuable in preventing a greater 
number of integration-stage bugs. 
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Fig. 1 Typical Cumulative Distribution of Error Detection [8] 
 
B. Software Complexity 

Increasing software complexity is causing “more software 
bugs, which often lead to execution failures with huge losses”, 
particularly because fault localisation can be difficult [7]. 
Faults can be uncovered by traditional low-level test writing 
and recording, such as unit testing, which “works fine when 
there are a small number of tests…but it breaks down as the 
number of tests grow” [12]. Object-oriented systems are 
increasing in complexity and scale, making testing a more 
difficult, costly, and incomplete task. Therefore, a simpler 
solution is required to validate increasingly complex systems.  

C. Agile Testing 

Market pressures have shifted the preferred software 
development lifecycle from rigid waterfall-style 
methodologies, which enforce staged testing to ensure 
conformance to specifications [13], to customer-centric agile 
methodologies which are flexible to changing specifications 
and emphasise finished products over rigid documentation and 
testing [14]. Agile software development has grown in 
popularity three-fold in the past decade [15].  

Although unit testing can help prevent errors during 
development, current integration testing examines “new 
functionality…once the implementation is done…From a lean 
perspective, preparing tests afterwards is wasteful.” [12]. 
Manual unit test writing can also prove costly. Future testing 
tools need to align with the agile development process. 

D. Automation Trade-Offs 

Although automated testing has benefits, the trade-off is test 
customisability and result reliability. Tools such as DSD-
Crasher or Daikon are designed to automatically infer a 

system’s intended behaviour and functionality given that 
“Explicit specifications require significant human effort” [16]. 
An absolute-automatic approach, however, can result in an 
unforeseeable number of false positives which the tester 
cannot rule out. Ruling out these false positives also takes 
significant human effort. The option of “adapting testing is 
required to determine effectiveness of test data” [17]. A 
balance must be struck. “For testing to be efficient, it must be 
automated as much as possible”, but with the necessary tester 
customisation which delivers appropriate and reliable results 
[1]. 

E. Developer Adoption 

Developers are becoming more responsible for testing. 
Research underpinning the Agitator testing tool argued it is 
“difficult for developers to switch modes from development 
activities – mostly constructive and focused – to testing 
activities – mostly destructive and exploratory” [18]. Crispin 
and Gregory [14] identify four developer-related barriers to 
automated testing including developer overreliance on quality 
assurance teams to detect faults, the “hump of pain” in 
learning new tools and code, the fears of testers with weaker 
programming backgrounds, and habitual comfort in sticking 
with familiar manual regression testing. Usability, learnability, 
performance, and overall design must be seamless for 
developer adoption of new testing tools [18]. 

IV. FSM & X-MACHINE BACKGROUND 

A. Finite State Machines (FSM) 

FSMs are a popular, simple way of describing a wide range 
of systems, including hardware. They have the advantage of 
being based on simple, dynamic models of computation, are 
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easily represented in diagrams and tables, and are relatively 
well-known – see working and faulty FSM representations in 
Figs. 2 and 3. 

Chow’s FSM testing method was effective in testing control 
structure correctness, but for tests involving a “data-
manipulation aspect… other testing approaches must be used” 
[19]. FSM testing also assumes “that not only the 
specification, but also the implementation can be modelled as 
an FSM” [11]. Moreover, the FSM characterisation set 
(Chow’s W method, used to distinguish between two pairs of 
states in machines) only includes the model inputs; not the 
transition outputs or any values carried in memory. Outputs 
are observed, which does not necessarily validate a correct 
transition. Ultimately, this means FSMs face limitations such 
as modelling non-deterministic behaviour or data 
manipulation, object-orientation complexity where 
components may communicate or call values and methods 
mid-transition, or testing systems that cannot be modelled as 
FSMs. 

B. Stream X-Machines (SXM) 

Laycock’s Stream X-Machines (also known as extended X-
Machines) were aimed at modelling data manipulation in 
memory [3]. SXM’s main advantage is the ability to almost 
completely model modern Turing machines in a “wide variety 
of situations in a unified manner and… [control] 
transformation and refinement of specifications” [2]. 
Furthermore, SXMs avoid the ‘state explosion’ problem in 
Statechart models, where the size of data variables radically 
exceeds the number of specified states, because the “states of 
the SXM equivalent of a state diagram coincide with the 
original states” [1]. 

C. Communicating X-Machines  

Beyond simple SXM modelling, complex system 
“modelling of concurrency and communication is made 
possible by invoking net-like models or by using machine 
product constructions of a suitable type” [2]. Communicating 
X-Machines have been proposed to model more complex 
systems, based upon a single CSXMS or a CSXMS composed 
of from several component CSXMSs which “give the software 
designer the freedom to choose the level of detail at which to 
apply the X-Machine model to any particular software 
system” [20]. The CSXMS enables the modelling of complex 
system behaviour such as “such as determinism, minimality 
and output distinguishability”. [20]. Balanescu et al.’s [20] 
port-based CSXMS was “not the only possible formulation”. 
While Barnard et al. [21], for example, implemented a port-
based system; Simons et al. [22] developed an Object Machine 
which better “describes the state changes and responses of an 
object triggered by the reception of message request”, as in 
object-oriented systems.  

V. OUR SOLUTION: AN SXM-BASED CONFORMANCE TESTING 

Our test draws Aguado and Cowling’s conformance test 
using SXMs to “determine whether an IUT conforms (is 
equivalent) to its specification [23]. 

This technique aims to find the same faults as in FSM 
testing, namely: 
 Missing states 
 Extra states 
 Missing Transitions 
 Extra Transitions 
 Mis-directed Transitions 
 Transitions with faulty-functions (input-output). 

 

 

Fig. 2 A simple X-Machine [10] 
 

 

Fig. 3 A faulty version of an X machine with an extra state, a missing 
transition and faulty transition label [10] 

 
“A significant advantage is that the same approach can be 

applied to each component of the systems if each [component] 
is specified as an SXM” [23]. Holcombe and Ipate’s [24] 
‘reductionist’ approach better suits agile development where 
systems are assembled from components. Their approach 
involves producing a test regime that completely reduces “the 
test problem for the system to one of looking at the test 
problem for the components or reduced parts” Holcombe [10]; 
as per the agile process. This enables greater system-level 
conformance testing throughout development to detect errors 
earlier in the process [10]. This approach should also help 
address the issue of increasing software complexity at a much 
more granular level of computational testing. 

Conformance testing should scale to deliver effective test 
results with larger and more complex systems, given “the 
larger and more varied the set of inputs is, the more 
confidence can be placed in an implementation whose testing 
generates no errors” [5]. Conformance testing of individual 
components, though “not a guarantee for interoperability, it is 
an essential step towards achieving interoperability” [5]. If 
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every component’s functionality conforms to specifications, 
the fully integrated system is more likely to successfully 
conform to specifications. A CSXMS conformance tool would 
arguably be the next step for a fuller integration conformance 
test during development [20]. 

Attractiveness for developers, automation and 
customisability depends to a large extent on the 
implementation of the testing tool. However, X-Machine 
specification-based theory should enable a substantially 
automated conformance testing tool with flexibility to 
accommodate a wider variety of specified system designs and 
implementations. 

VI. METHOD/FRAMEWORK 

The first iteration of the testing framework involves testing 
for missing transitions, extra transitions, and misdirected 
transitions. By testing in these areas, the framework will be 
able to test for conformance to specifications, both in terms of 
adherence to system designs and functional expectations of a 
class. 

A. Specifications 

The expected behaviour of the system is captured by 
specifying the transitions expected in the system with any 
inputs required (i.e. the methods or functions of the class), 
along with the state the system will initially be in, and the state 
expected at system completion. States are defined by values 
set in class variables. This can be represented in a similar way 
to state transition tables used with FSMs, with some 
modification to represent the X-Machine, such as the addition 
of a column to represent the transition, and the name of the 
class variable with its value in each state. Table I shows an 
example table representing a traffic light system. 
 

TABLE I 
EXAMPLE STATE TRANSITION TABLE FOR A TRAFFIC LIGHT SYSTEM 

Starting State Transition Finishing State 

color = green prepareToStop() color = amber 

color = amber stop() color = red 

color = red prepareToGo() color = amber 

color = amber go() color = green 

B. Missing Transitions 

To test for missing transitions, the expected transitions will 
be extracted from the specification and compared to the 
methods or functions present in the class. Any transitions 
present in the specification, yet not present in the system, will 
be classed as missing. 

Using Table I as a specification, a system with methods 
called prepareToStop(), stop(), pepareToGo(), and go() will 
pass all the tests. However, a system missing the 
prepareToStop() method would be a partial failure, as it does 
not conform to the specification. A system with none of the 
transitions specified would be a total failure. 

C. Extra Transitions 

Extra transitions will be methods or functions present in a 
system that are not present in the specification. Again, 

transitions are extracted from the specification and compared 
to the methods or functions present in the system. Any 
methods or functions that are not present in the specification 
will be classed as extra transitions. 

For the traffic light example, a class only containing the 
four methods in the specification will pass the test. However, 
if the class contains methods not specified in the transition, the 
test will fail as it does not conform to the specifications. 

D. Misdirected Transitions 

Misdirected transitions are those which do not put the 
system in the expected state at the end of the transition. States 
are defined by class variables and their values. In the example 
specification in Table I, the first state defined is color = green. 
This expects the system to have a class variable called “color”, 
which is given the value “green”. To run this test, the system 
is placed in the starting state for a transition. The transition is 
then run on the system, and the class variables tested to ensure 
they are as specified in the finishing state. This is repeated for 
all transitions in the specification. 

Using the traffic light example, for each transition test, the 
colour variable is assigned the value specified in the starting 
state. After calling the method described by the transition, the 
colour variable is interrogated to ensure the value is that 
specified in the finishing state. If the variable contains an 
incorrect value, the test is failed. 

VII. THE COMPLEX-MACHINE TOOL 

The CompleX-Machine Tool has been developed in Java to 
accept specifications and system files to test for missing 
transitions, extra transitions, and misdirected transitions. It 
utilizes JavaParser and Javassist to manage the parsing, 
interrogating, and running of the system files. 

A. Specifications 

Specifications are parsed from an XML file which is then 
converted in a model as described in Fig. 4. An XML Schema 
representing a well-formed specification file can be found in 
Appendix. Tests are generated based on the specification. 

B. Missing Transitions 

Missing transitions are identified by comparing a list of 
transitions from the specification to a list of methods extracted 
from the submitted system file, as parsed using JavaParser. 
Any transitions present in the specification but not present in 
the system are classed as failed tests. Transitions and methods 
are compared using the name of the transition or method, 
along with parameters required for the transition or method. 
For example, a specification requiring a transition called 
changeColor with a parameter of type String called colour, 
will look for a method signature matching changeColor(String 
color). For the purposes of this test, return types, access 
modifiers, and throws declarations are ignored. 

C. Extra Transitions 

Extra transitions are tested in a similar way to missing 
transitions, the difference being that that methods present in 
the system, yet not present in the specification, are classed as 
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failed tests. 

D. Misdirected Transitions 

To test misdirected transitions, the system file is 
instantiated using Javassist, so that the methods can be called 
and the class variables interrogated. Again, for the purposes of 
this tool, access modifiers are ignored. Once the class has been 
instantiated, for each transition, the class variables are set to 

those in the specification.  
The method is called on the object, and the class variables 

tested for equality to those defined in the finishing state of the 
specification. If the class variables do no match those 
specified, the test is classed as failed. 

 

 

 

Fig. 4 System model representing the test specifications 
 

 

Fig. 5 Java file conforming to the traffic light specification 
 

 

Fig. 6 Java class with some methods missing compared to the traffic 
light specification 

VIII. VALIDATION 

The tool has been validated for missing transitions, extra 
transitions, and misdirected transitions using test files 
representing a traffic light system, and a string manipulator. 
The XML specifications can be found in Appendix.A and 

Appendix.B, respectively. 
 

 

Fig. 7 Java class with all methods missing compared to the traffic 
light specification 

A. Missing Transitions 

To ensure that the tool could identify transitions present in 
both the specification and system file, a java file was created 
containing all the transitions expected of the Traffic Light 
specification (see Fig. 5). Upon running the test, the expected 
transitions were all present and all tests marked as passed. 

Two more tests were performed; one with two missing 
transitions (see Fig. 6) and the other with no transitions in the 
system (see Fig. 7). The transitions that had been removed 
from the java file were classed as failed tests, while those that 
remained were passed. By running these tests, we have been 
able to show that the tool can recognise which transitions 
should be present in the system and identify those that are 
missing. 

B. Extra Transitions 

The first part of this validation was similar to that of 
missing transitions. The file shown in Fig. 5 was again run 
against the traffic light specification to ensure that no 
transitions were marked as extra if they were present in the 
specification. This test was successful. From there, a further 
java file was created containing a method which was not 
defined in the specification (see Fig. 8). The tool identified the 
extraTransition() method as not being defined in the 
specification and correctly failed that test. The correct 
transitions all passed as expected. 
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Fig. 8 Java file containing a method not defined in the specification 

C. Misdirected Transitions 

The initial test of misdirected transitions used the traffic 
light specification and the java file used in both the missing 
and extra transitions tests. As this is a correct representation 
according to the specification, the transition tests all passed as 
expected. In order to ensure that misdirected transitions could 
be identified correctly, the java files in Figs. 9 and 10 were 
tested against the traffic light specification. The partially 
misdirected file successfully passed the two transitions which 
ended in the correct states, while failing those that did not. The 
file with completely incorrect transitions failed all the tests as 
expected. Further validation was performed using a file with a 
single method, as specified in Appendix.B. In this system, the 
finishing state is dependent on the starting state, rather than 
the transition called. The java file used for this test can be seen 
in Fig. 11. The tool could call the method and identify that the 
final state was correct, based on the starting state. As such, the 
tool can test for functional conformance, as well as design 
conformance. 

 

 

Fig. 9 Java file with some transitions misdirected 

 

Fig. 10 Java file with all transitions misdirected 
 

 

Fig. 11 Java File with a single transition 

IX. CONCLUSION 

The aim of this paper was to create a software testing tool 
using X-machine theory and address the challenges and 
limitations for current testing methods. Early research into 
testing using X-Machine theory identified that testing for 
states and transitions was key. The CompleX-Machine uses X-
Machine theory to test for extra transitions, missing 
transitions, and misdirected transitions. These tests have been 
validated with test cases using specific specification and 
system files, where if passed, are completing the transition 
tests correctly. Currently the system is not testing for states; 
however, this does not inhibit the application from displaying 
the benefits of testing using X-Machine theory. Using 
conformance testing reduces the possibility of errors as it is 
conforming to the specification. In the future, the state testing 
feature would need to be added to the application to 
completely test a system following the basis of the X-Machine 
model. Tests would be like the transition tests, looking for 
missing states or extra states. Additionally, allowing users to 
use different types of specification inputs would make the 
application far more flexible. For example, allowing users to 
upload a FSM or X-Machine diagram as the specification 
input, users could then draw out what they are visualizing. 
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APPENDIX 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema attributeFormDefault="unqualified" 
elementFormDefault="qualified" 
      xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:element name="specification"> 
  <xs:complexType> 
   <xs:element name="transitions"> 
    <xs:complexType> 
     <xs:element name="transition"> 
      <xs:complexType> 
       <xs:all> 
        <xs:element name="name" type="xs:string"/> 
        <xs:element name="startingState" maxOccurs="1" 
minOccurs="1"> 
         <xs:complexType> 
          <xs:group ref="state"/> 
         </xs:complexType> 
        </xs:element> 
        <xs:element name="finishingState" maxOccurs="1" 
minOccurs="1"> 
         <xs:complexType> 
          <xs:group ref="state"/>         </xs:complexType> 
        </xs:element> 
        <xs:element name="parameters" maxOccurs="1" 
minOccurs="0"> 
         <xs:complexType> 
          <xs:element name="parameter"> 
           <xs:complexType> 
            <xs:element name="name" type="xs:string"/> 
            <xs:element name="type" type="xs:string"/> 
           </xs:complexType> 
          </xs:element> 
         </xs:complexType> 
        </xs:element> 
       </xs:all> 
      </xs:complexType> 
     </xs:element> 
    </xs:complexType> 
   </xs:element> 
  </xs:complexType> 
 </xs:element> 
 
 <xs:group name="state"> 
  <xs:all> 
   <xs:element name="name" type="xs:string"/> 
   <xs:element name="variables"> 
    <xs:complexType> 
     <xs:element name="variable"> 
      <xs:complexType> 
       <xs:element name="name" type="xs:string"/> 
       <xs:element name="type" type="xs:string"/> 
       <xs:element name="value" type="xs:string"/> 
      </xs:complexType> 
     </xs:element> 
    </xs:complexType> 
   </xs:element> 
   <xs:element name="startingState" type="xs:boolean"/> 
  </xs:all> 
 </xs:group> 
</xs:schema> 

A. Validating Missing and Extra Transitions 
<specification xsi:noNamespaceSchemaLocation="specification.xsd" 
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
  <transitions> 

   <transition> 
     <name>prepareToStop</name> 
     <startingState> 
      <name>green</name> 
      <variables> 
        <variable> 
         <name>color</name> 
         <type>java.lang.String</type> 
         <value>green</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </startingState> 
     <finishingState> 
      <name>amber</name> 
      <variables> 
        <variable> 
         <name>color</name> 
         <type>java.lang.String</type> 
         <value>amber</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </finishingState> 
   </transition> 
   <transition> 
     <name>stop</name> 
     <startingState> 
      <name>amber</name> 
      <variables> 
        <variable> 
         <name>color</name> 
         <type>java.lang.String</type> 
         <value>amber</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </startingState> 
     <finishingState> 
      <name>red</name> 
      <variables> 
        <variable> 
         <name>color</name> 
         <type>java.lang.String</type> 
         <value>red</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </finishingState> 
   </transition> 
   <transition> 
     <name>prepareToGo</name> 
     <startingState> 
      <name>red</name> 
      <variables> 
        <variable> 
         <name>color</name> 
         <type>java.lang.String</type> 
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         <value>red</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </startingState> 
     <finishingState> 
      <name>amber</name> 
      <variables> 
        <variable> 
         <name>color</name> 
         <type>java.lang.String</type> 
         <value>amber</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </finishingState> 
   </transition> 
   <transition> 
     <name>go</name> 
     <startingState> 
      <name>amber</name> 
      <variables> 
        <variable> 
         <name>color</name> 
         <type>java.lang.String</type> 
         <value>amber</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </startingState> 
     <finishingState> 
      <name>green</name> 
      <variables> 
        <variable> 
         <name>color</name> 
         <type>java.lang.String</type> 
         <value>green</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </finishingState> 
   </transition> 
  </transitions> 
</specification> 

B. Validating Misdirected Transitions 
<specification xsi:noNamespaceSchemaLocation="specification.xsd" 
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
  <transitions> 
   <transition> 
     <name>convert</name> 
     <startingState> 
      <name>odd</name> 
      <variables> 
        <variable> 
         <name>value</name> 
         <type>java.lang.String</type> 
         <value>a</value> 

        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </startingState> 
     <finishingState> 
      <name>even</name> 
      <variables> 
        <variable> 
         <name>value</name> 
         <type>java.lang.String</type> 
         <value>aa</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </finishingState> 
   </transition> 
   <transition> 
     <name>convert</name> 
     <startingState> 
      <name>even</name> 
      <variables> 
        <variable> 
         <name>value</name> 
         <type>java.lang.String</type> 
         <value>aa</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </startingState> 
     <finishingState> 
      <name>odd</name> 
      <variables> 
        <variable> 
         <name>value</name> 
         <type>java.lang.String</type> 
         <value>a</value> 
        </variable> 
      </variables> 
      <startingState> 
        false 
      </startingState> 
     </finishingState> 
   </transition> 
  </transitions> 
</specificatio 

REFERENCES  
[1] F. Ipate, "Class testing from state diagrams using stream X-machine 

based methods", in 18th Australian Software Engineering Conference 
2007 (ASWEC’07), Melbourne, 2007, pp. 245-254. 

[2] M. Holcombe, "X-machines as a basis for dynamic system 
specification", Software Engineering Journal, vol. 3, no. 2, p. 69, 1988. 

[3] G. Laycock, "The Theory and Practice of Specification Based Software 
Testing", Ph.D, University of Sheffield, 1993. 

[4] H. Tahbildar, P. Borbora and K. G.P, "Teaching Automated Test Data 
Generation Tools for C, C++, and Java Programs", International Journal 
of Computer Science and Information Technology, vol. 5, no. 1, pp. 181-
195, 2013. 

[5] "What is this thing called Conformance?", NIST, 2010. (Online). 
Available: https://www.nist.gov/itl/ssd/information-systems-group/what-
thing-called-conformance. (Accessed: 19- Apr- 2017). 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

132

 

 

[6] Minimizing code defects to improve software quality and lower 
development costs, 1st ed. New York: IBM Corporation, 2017. 

[7] W. Wong, R. Gao, Y. Li, R. Abreu and F. Wotawa, "A Survey on 
Software Fault Localization", IEEE Transactions on Software 
Engineering, vol. 42, no. 8, pp. 707-740, 2016. 

[8] The Economic Impacts of Inadequate Infrastructure for Software 
Testing, 1st ed. National Institute of Standards and Technology, 2002. 

[9] G. Myers, The Art of Software Testing, 1st ed. New Jersey: John Wiley 
and Sons, Inc., 2004, p.9. 

[10] M. Holcombe, "Testing, testing, testing!", in Correct Systems – Building 
Business Process Solutions, 1st ed., M. Holcombe and F. Ipate, Ed. 
London: Springer-Verlag, 1998, pp. 61-92. 

[11] K. EI-Fakih, N. Yevtushenko and G. Bochmann, "FSM-based 
incremental conformance testing methods", IEEE Transactions on 
Software Engineering, vol. 30, no. 7, pp. 425-436, 2004. 

[12] R. Mugridge, R. Utting and D. Streader, "Evolving Web-Based Test 
Automation into Agile Business Specifications", Future Internet, vol. 3, 
no. 4, pp. 159-174, 2011. 

[13] A. Ahmed, "Software Requirements Management", in Software Project 
Management: A Process-Driven Approach, 1st ed., A. Amed, Ed. 
Florida: Taylor and Francis Group, 2017, pp. 145-157.  

[14] L. Crispin and J. Gregory, "Automation", in Agile Testing: A Practical 
Guide for Testers and Agile Teams, 1st ed., L. Crispin and J. Gregory, 
Ed. Boston: Pearson Education, 2009, pp. 255-271. 

[15] VersionOne Inc, "10th Annual State of Agile Report", VersionOne Inc, 
2016. 

[16] C. Csallner, Y. Smaragdakis, and T. Xie, “DSD-Crasher: A hybrid 
analysis tool for bug finding”, ACM Transactions on Software 
Engineering and Methodology (TOSEM), vol. 17, no. 2, pp. 245-254, 
2006. 

[17] H. Tahbildar and B. Kalita, "Automated Software Test Data Generation: 
Direction of Research", International Journal of Computer Science & 
Engineering Survey, vol. 2, no. 1, pp. 99-120, 2011. 

[18] M. Boshernitsan, M. Doong and A. Savoia, "From Daikon to Agitator: 
Lessons and challenges in building a commercial tool for developer 
testing", in Fifth International Symposium on Software Testing and 
Analysis, Portland, 2006. 

[19] T. Chow, "Testing Software Design Modeled by Finite-State Machines", 
IEEE Transactions on Software Engineering, vol. -4, no. 3, pp. 178-187, 
1978. 

[20] Balanescu, T., Cowling, A. J., Georgescu, H., Gheorghe, M., Holcombe, 
M. and Vertan, C, “Communicating stream X-Machines systems are no 
more than X-Machines”, in Journal of Universal Computer Science, vol. 
5, no. 9, pp. 494-507, 1999. 

[21] J. Barnard, J. Whitworth, and M. Woodward, “Communicating X-
Machines”, in Information and Software Technology, vol. 38, no. 6, pp. 
401-407, 1996 

[22] A. Simons, K. Bogdanov and M. Holcombe, "Complete functional 
testing using Object Machines", University of Sheffield, Sheffield, 2017. 

[23] J. Aguado and A.J. Cowling, “Foundations of the x-machine theory for 
testing”, University of Sheffield, Sheiffeild, 2017  

[24] M. Holcombe, P. Thomas and R. Paul, Correct Systems, 1st ed. London: 
Springer London, 1998, pp. 61-92. 

 
 

E. K. A. Ogunshile received the BEng(Hons), 
MSc(Eng), and Ph.D. degrees in Computer 
Science from the University of Sheffield, UK, 
in 2003, 2005, and 2011, respectively. Currently 
he is a Senior Lecturer in Computer Science at 
the University of the West of England, Bristol, 
UK. His research lies broadly in Software 
Engineering, Model-Driven Engineering, 
Object-oriented Programming, Verification & 

Testing and Cloud Computing. 


