
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

124


Abstract—This paper is aimed at creating an Automatic Java X-

Machine testing tool for software development. The nature of
software development is changing; thus, the type of software testing
tools required is also changing. Software is growing increasingly
complex and, in part due to commercial impetus for faster software
releases with new features and value, increasingly in danger of
containing faults. These faults can incur huge cost for software
development organisations and users; Cambridge Judge Business
School’s research estimated the cost of software bugs to the global
economy is $312 billion. Beyond the cost, faster software
development methodologies and increasing expectations on
developers to become testers is driving demand for faster, automated,
and effective tools to prevent potential faults as early as possible in
the software development lifecycle. Using X-Machine theory, this
paper will explore a new tool to address software complexity,
changing expectations on developers, faster development pressures
and methodologies, with a view to reducing the huge cost of fixing
software bugs.

Keywords—Conformance testing, finite state machine, software
testing, X-Machine.

I. INTRODUCTION

INITE state machines (FSMs) can be used as
mathematical representations of the expected states

present in a system [1]. FSMs form the basis of development
methodologies and system specifications [2], being
represented by state diagrams and state transition tables. FSMs
can be further extended to use memory, or data, to form X-
Machines [1]. These concepts are evolving to enable software
tests to be generated against a system specification which can
help to establish the completeness, consistency, and
correctness of an implemented system [3]. Given that software
testing typically accounts for 50% of the development budget
[4], with $2.2 trillion spend on IT annually in 2010 [5],
effective testing tools have huge potential to reduce risk and
deliver stronger return on investment. Cost tends to be orders
of magnitude greater later into the development process.
Referencing NIST, a 2008 IBM Whitepaper found the cost of
fixing integration errors can be 10x the cost during design and
architecture, and twice the cost of during implementation [6].
Moreover, most errors tend to be found during the integration
phase (see Fig. 1). Beyond financial gain, Wong et al. [7]
notes that “software faults in safety-critical systems have
significant ramifications.” The aim of this research is to
develop a software testing framework based on X-Machine

E. K. A. Ogunshile is a Senior Lecturer in Computer Science and Head of

V& V Research Unit of the Software Engineering Research Group (SERG) at
the University of the West of England (UWE), Bristol, UK, BS16 1QY (e-
mail: emmanuel.ogunshile@uwe.ac.uk).

theory, which can be applied to Java classes to determine
conformance to requirements, and address the challenges
facing current software testing methods and approaches. These
requirements will be provided in the form of XML
specifications detailing the expected transitions and states of
the Java class being tested. The paper will provide an analysis
of the challenges that exist for existing testing tool, an
overview of X-Machine theory, and review of the state of
testing using X-Machine and FSM theory as it presently
exists. The paper will then describe the proposed approach for
applying X-Machine theory in a testing tool, and perform a
critical review of this approach in the context of software
testing.

II. RELATED WORK

Testing tools uncover errors with varying success and
performance and face a range of continuing challenges
including:
 Incomplete error detection
 Software complexity
 Agile Testing
 Automation trade-offs
 Developer adoption

The following sections will elaborate on these problems in
the context of an X-Machine based conformance testing
solution aimed at preventing errors beyond the software
development phase.

III. CURRENT SOFTWARE TESTING CHALLENGES

A. Incomplete Error Detection

“In general, it is impractical, often impossible, to find all
the errors in a program” [9]. For example, unit testing is
effective at testing individual methods within a component,
but Holcombe [10] notes their ineffectiveness for detecting
integration-related errors.

While not an exhaustive test method, NIST suggest
falsification testing (also known as conformance testing) as an
alternative to prove an implementation under test (IUT)
contains errors [5]. The purpose of conformance testing is to
determine whether an IUT is correct, complete, and consistent
with its specification [11]. If unexpected outputs occur, given
the specified test inputs; the IUT does not conform and an
error is detected. This method does not guarantee full error
coverage, but it has the benefit of significantly reducing the
likelihood of present errors because the IUT conforms to its
specification. This may prove valuable in preventing a greater
number of integration-stage bugs.

E. K. A. Ogunshile

CompleX-Machine: An Automated Testing Tool
Using X-Machine Theory

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

125

Fig. 1 Typical Cumulative Distribution of Error Detection [8]

B. Software Complexity

Increasing software complexity is causing “more software
bugs, which often lead to execution failures with huge losses”,
particularly because fault localisation can be difficult [7].
Faults can be uncovered by traditional low-level test writing
and recording, such as unit testing, which “works fine when
there are a small number of tests…but it breaks down as the
number of tests grow” [12]. Object-oriented systems are
increasing in complexity and scale, making testing a more
difficult, costly, and incomplete task. Therefore, a simpler
solution is required to validate increasingly complex systems.

C. Agile Testing

Market pressures have shifted the preferred software
development lifecycle from rigid waterfall-style
methodologies, which enforce staged testing to ensure
conformance to specifications [13], to customer-centric agile
methodologies which are flexible to changing specifications
and emphasise finished products over rigid documentation and
testing [14]. Agile software development has grown in
popularity three-fold in the past decade [15].

Although unit testing can help prevent errors during
development, current integration testing examines “new
functionality…once the implementation is done…From a lean
perspective, preparing tests afterwards is wasteful.” [12].
Manual unit test writing can also prove costly. Future testing
tools need to align with the agile development process.

D. Automation Trade-Offs

Although automated testing has benefits, the trade-off is test
customisability and result reliability. Tools such as DSD-
Crasher or Daikon are designed to automatically infer a

system’s intended behaviour and functionality given that
“Explicit specifications require significant human effort” [16].
An absolute-automatic approach, however, can result in an
unforeseeable number of false positives which the tester
cannot rule out. Ruling out these false positives also takes
significant human effort. The option of “adapting testing is
required to determine effectiveness of test data” [17]. A
balance must be struck. “For testing to be efficient, it must be
automated as much as possible”, but with the necessary tester
customisation which delivers appropriate and reliable results
[1].

E. Developer Adoption

Developers are becoming more responsible for testing.
Research underpinning the Agitator testing tool argued it is
“difficult for developers to switch modes from development
activities – mostly constructive and focused – to testing
activities – mostly destructive and exploratory” [18]. Crispin
and Gregory [14] identify four developer-related barriers to
automated testing including developer overreliance on quality
assurance teams to detect faults, the “hump of pain” in
learning new tools and code, the fears of testers with weaker
programming backgrounds, and habitual comfort in sticking
with familiar manual regression testing. Usability, learnability,
performance, and overall design must be seamless for
developer adoption of new testing tools [18].

IV. FSM & X-MACHINE BACKGROUND

A. Finite State Machines (FSM)

FSMs are a popular, simple way of describing a wide range
of systems, including hardware. They have the advantage of
being based on simple, dynamic models of computation, are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

126

easily represented in diagrams and tables, and are relatively
well-known – see working and faulty FSM representations in
Figs. 2 and 3.

Chow’s FSM testing method was effective in testing control
structure correctness, but for tests involving a “data-
manipulation aspect… other testing approaches must be used”
[19]. FSM testing also assumes “that not only the
specification, but also the implementation can be modelled as
an FSM” [11]. Moreover, the FSM characterisation set
(Chow’s W method, used to distinguish between two pairs of
states in machines) only includes the model inputs; not the
transition outputs or any values carried in memory. Outputs
are observed, which does not necessarily validate a correct
transition. Ultimately, this means FSMs face limitations such
as modelling non-deterministic behaviour or data
manipulation, object-orientation complexity where
components may communicate or call values and methods
mid-transition, or testing systems that cannot be modelled as
FSMs.

B. Stream X-Machines (SXM)

Laycock’s Stream X-Machines (also known as extended X-
Machines) were aimed at modelling data manipulation in
memory [3]. SXM’s main advantage is the ability to almost
completely model modern Turing machines in a “wide variety
of situations in a unified manner and… [control]
transformation and refinement of specifications” [2].
Furthermore, SXMs avoid the ‘state explosion’ problem in
Statechart models, where the size of data variables radically
exceeds the number of specified states, because the “states of
the SXM equivalent of a state diagram coincide with the
original states” [1].

C. Communicating X-Machines

Beyond simple SXM modelling, complex system
“modelling of concurrency and communication is made
possible by invoking net-like models or by using machine
product constructions of a suitable type” [2]. Communicating
X-Machines have been proposed to model more complex
systems, based upon a single CSXMS or a CSXMS composed
of from several component CSXMSs which “give the software
designer the freedom to choose the level of detail at which to
apply the X-Machine model to any particular software
system” [20]. The CSXMS enables the modelling of complex
system behaviour such as “such as determinism, minimality
and output distinguishability”. [20]. Balanescu et al.’s [20]
port-based CSXMS was “not the only possible formulation”.
While Barnard et al. [21], for example, implemented a port-
based system; Simons et al. [22] developed an Object Machine
which better “describes the state changes and responses of an
object triggered by the reception of message request”, as in
object-oriented systems.

V. OUR SOLUTION: AN SXM-BASED CONFORMANCE TESTING

Our test draws Aguado and Cowling’s conformance test
using SXMs to “determine whether an IUT conforms (is
equivalent) to its specification [23].

This technique aims to find the same faults as in FSM
testing, namely:
 Missing states
 Extra states
 Missing Transitions
 Extra Transitions
 Mis-directed Transitions
 Transitions with faulty-functions (input-output).

Fig. 2 A simple X-Machine [10]

Fig. 3 A faulty version of an X machine with an extra state, a missing
transition and faulty transition label [10]

“A significant advantage is that the same approach can be

applied to each component of the systems if each [component]
is specified as an SXM” [23]. Holcombe and Ipate’s [24]
‘reductionist’ approach better suits agile development where
systems are assembled from components. Their approach
involves producing a test regime that completely reduces “the
test problem for the system to one of looking at the test
problem for the components or reduced parts” Holcombe [10];
as per the agile process. This enables greater system-level
conformance testing throughout development to detect errors
earlier in the process [10]. This approach should also help
address the issue of increasing software complexity at a much
more granular level of computational testing.

Conformance testing should scale to deliver effective test
results with larger and more complex systems, given “the
larger and more varied the set of inputs is, the more
confidence can be placed in an implementation whose testing
generates no errors” [5]. Conformance testing of individual
components, though “not a guarantee for interoperability, it is
an essential step towards achieving interoperability” [5]. If

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

127

every component’s functionality conforms to specifications,
the fully integrated system is more likely to successfully
conform to specifications. A CSXMS conformance tool would
arguably be the next step for a fuller integration conformance
test during development [20].

Attractiveness for developers, automation and
customisability depends to a large extent on the
implementation of the testing tool. However, X-Machine
specification-based theory should enable a substantially
automated conformance testing tool with flexibility to
accommodate a wider variety of specified system designs and
implementations.

VI. METHOD/FRAMEWORK

The first iteration of the testing framework involves testing
for missing transitions, extra transitions, and misdirected
transitions. By testing in these areas, the framework will be
able to test for conformance to specifications, both in terms of
adherence to system designs and functional expectations of a
class.

A. Specifications

The expected behaviour of the system is captured by
specifying the transitions expected in the system with any
inputs required (i.e. the methods or functions of the class),
along with the state the system will initially be in, and the state
expected at system completion. States are defined by values
set in class variables. This can be represented in a similar way
to state transition tables used with FSMs, with some
modification to represent the X-Machine, such as the addition
of a column to represent the transition, and the name of the
class variable with its value in each state. Table I shows an
example table representing a traffic light system.

TABLE I
EXAMPLE STATE TRANSITION TABLE FOR A TRAFFIC LIGHT SYSTEM

Starting State Transition Finishing State

color = green prepareToStop() color = amber

color = amber stop() color = red

color = red prepareToGo() color = amber

color = amber go() color = green

B. Missing Transitions

To test for missing transitions, the expected transitions will
be extracted from the specification and compared to the
methods or functions present in the class. Any transitions
present in the specification, yet not present in the system, will
be classed as missing.

Using Table I as a specification, a system with methods
called prepareToStop(), stop(), pepareToGo(), and go() will
pass all the tests. However, a system missing the
prepareToStop() method would be a partial failure, as it does
not conform to the specification. A system with none of the
transitions specified would be a total failure.

C. Extra Transitions

Extra transitions will be methods or functions present in a
system that are not present in the specification. Again,

transitions are extracted from the specification and compared
to the methods or functions present in the system. Any
methods or functions that are not present in the specification
will be classed as extra transitions.

For the traffic light example, a class only containing the
four methods in the specification will pass the test. However,
if the class contains methods not specified in the transition, the
test will fail as it does not conform to the specifications.

D. Misdirected Transitions

Misdirected transitions are those which do not put the
system in the expected state at the end of the transition. States
are defined by class variables and their values. In the example
specification in Table I, the first state defined is color = green.
This expects the system to have a class variable called “color”,
which is given the value “green”. To run this test, the system
is placed in the starting state for a transition. The transition is
then run on the system, and the class variables tested to ensure
they are as specified in the finishing state. This is repeated for
all transitions in the specification.

Using the traffic light example, for each transition test, the
colour variable is assigned the value specified in the starting
state. After calling the method described by the transition, the
colour variable is interrogated to ensure the value is that
specified in the finishing state. If the variable contains an
incorrect value, the test is failed.

VII. THE COMPLEX-MACHINE TOOL

The CompleX-Machine Tool has been developed in Java to
accept specifications and system files to test for missing
transitions, extra transitions, and misdirected transitions. It
utilizes JavaParser and Javassist to manage the parsing,
interrogating, and running of the system files.

A. Specifications

Specifications are parsed from an XML file which is then
converted in a model as described in Fig. 4. An XML Schema
representing a well-formed specification file can be found in
Appendix. Tests are generated based on the specification.

B. Missing Transitions

Missing transitions are identified by comparing a list of
transitions from the specification to a list of methods extracted
from the submitted system file, as parsed using JavaParser.
Any transitions present in the specification but not present in
the system are classed as failed tests. Transitions and methods
are compared using the name of the transition or method,
along with parameters required for the transition or method.
For example, a specification requiring a transition called
changeColor with a parameter of type String called colour,
will look for a method signature matching changeColor(String
color). For the purposes of this test, return types, access
modifiers, and throws declarations are ignored.

C. Extra Transitions

Extra transitions are tested in a similar way to missing
transitions, the difference being that that methods present in
the system, yet not present in the specification, are classed as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

128

failed tests.

D. Misdirected Transitions

To test misdirected transitions, the system file is
instantiated using Javassist, so that the methods can be called
and the class variables interrogated. Again, for the purposes of
this tool, access modifiers are ignored. Once the class has been
instantiated, for each transition, the class variables are set to

those in the specification.
The method is called on the object, and the class variables

tested for equality to those defined in the finishing state of the
specification. If the class variables do no match those
specified, the test is classed as failed.

Fig. 4 System model representing the test specifications

Fig. 5 Java file conforming to the traffic light specification

Fig. 6 Java class with some methods missing compared to the traffic
light specification

VIII. VALIDATION

The tool has been validated for missing transitions, extra
transitions, and misdirected transitions using test files
representing a traffic light system, and a string manipulator.
The XML specifications can be found in Appendix.A and

Appendix.B, respectively.

Fig. 7 Java class with all methods missing compared to the traffic
light specification

A. Missing Transitions

To ensure that the tool could identify transitions present in
both the specification and system file, a java file was created
containing all the transitions expected of the Traffic Light
specification (see Fig. 5). Upon running the test, the expected
transitions were all present and all tests marked as passed.

Two more tests were performed; one with two missing
transitions (see Fig. 6) and the other with no transitions in the
system (see Fig. 7). The transitions that had been removed
from the java file were classed as failed tests, while those that
remained were passed. By running these tests, we have been
able to show that the tool can recognise which transitions
should be present in the system and identify those that are
missing.

B. Extra Transitions

The first part of this validation was similar to that of
missing transitions. The file shown in Fig. 5 was again run
against the traffic light specification to ensure that no
transitions were marked as extra if they were present in the
specification. This test was successful. From there, a further
java file was created containing a method which was not
defined in the specification (see Fig. 8). The tool identified the
extraTransition() method as not being defined in the
specification and correctly failed that test. The correct
transitions all passed as expected.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

129

Fig. 8 Java file containing a method not defined in the specification

C. Misdirected Transitions

The initial test of misdirected transitions used the traffic
light specification and the java file used in both the missing
and extra transitions tests. As this is a correct representation
according to the specification, the transition tests all passed as
expected. In order to ensure that misdirected transitions could
be identified correctly, the java files in Figs. 9 and 10 were
tested against the traffic light specification. The partially
misdirected file successfully passed the two transitions which
ended in the correct states, while failing those that did not. The
file with completely incorrect transitions failed all the tests as
expected. Further validation was performed using a file with a
single method, as specified in Appendix.B. In this system, the
finishing state is dependent on the starting state, rather than
the transition called. The java file used for this test can be seen
in Fig. 11. The tool could call the method and identify that the
final state was correct, based on the starting state. As such, the
tool can test for functional conformance, as well as design
conformance.

Fig. 9 Java file with some transitions misdirected

Fig. 10 Java file with all transitions misdirected

Fig. 11 Java File with a single transition

IX. CONCLUSION

The aim of this paper was to create a software testing tool
using X-machine theory and address the challenges and
limitations for current testing methods. Early research into
testing using X-Machine theory identified that testing for
states and transitions was key. The CompleX-Machine uses X-
Machine theory to test for extra transitions, missing
transitions, and misdirected transitions. These tests have been
validated with test cases using specific specification and
system files, where if passed, are completing the transition
tests correctly. Currently the system is not testing for states;
however, this does not inhibit the application from displaying
the benefits of testing using X-Machine theory. Using
conformance testing reduces the possibility of errors as it is
conforming to the specification. In the future, the state testing
feature would need to be added to the application to
completely test a system following the basis of the X-Machine
model. Tests would be like the transition tests, looking for
missing states or extra states. Additionally, allowing users to
use different types of specification inputs would make the
application far more flexible. For example, allowing users to
upload a FSM or X-Machine diagram as the specification
input, users could then draw out what they are visualizing.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

130

APPENDIX

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="specification">
 <xs:complexType>
 <xs:element name="transitions">
 <xs:complexType>
 <xs:element name="transition">
 <xs:complexType>
 <xs:all>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="startingState" maxOccurs="1"
minOccurs="1">
 <xs:complexType>
 <xs:group ref="state"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="finishingState" maxOccurs="1"
minOccurs="1">
 <xs:complexType>
 <xs:group ref="state"/> </xs:complexType>
 </xs:element>
 <xs:element name="parameters" maxOccurs="1"
minOccurs="0">
 <xs:complexType>
 <xs:element name="parameter">
 <xs:complexType>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="type" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:complexType>
 </xs:element>
 </xs:complexType>
 </xs:element>

 <xs:group name="state">
 <xs:all>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="variables">
 <xs:complexType>
 <xs:element name="variable">
 <xs:complexType>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="type" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:complexType>
 </xs:element>
 <xs:element name="startingState" type="xs:boolean"/>
 </xs:all>
 </xs:group>
</xs:schema>

A. Validating Missing and Extra Transitions
<specification xsi:noNamespaceSchemaLocation="specification.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <transitions>

 <transition>
 <name>prepareToStop</name>
 <startingState>
 <name>green</name>
 <variables>
 <variable>
 <name>color</name>
 <type>java.lang.String</type>
 <value>green</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </startingState>
 <finishingState>
 <name>amber</name>
 <variables>
 <variable>
 <name>color</name>
 <type>java.lang.String</type>
 <value>amber</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </finishingState>
 </transition>
 <transition>
 <name>stop</name>
 <startingState>
 <name>amber</name>
 <variables>
 <variable>
 <name>color</name>
 <type>java.lang.String</type>
 <value>amber</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </startingState>
 <finishingState>
 <name>red</name>
 <variables>
 <variable>
 <name>color</name>
 <type>java.lang.String</type>
 <value>red</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </finishingState>
 </transition>
 <transition>
 <name>prepareToGo</name>
 <startingState>
 <name>red</name>
 <variables>
 <variable>
 <name>color</name>
 <type>java.lang.String</type>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

131

 <value>red</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </startingState>
 <finishingState>
 <name>amber</name>
 <variables>
 <variable>
 <name>color</name>
 <type>java.lang.String</type>
 <value>amber</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </finishingState>
 </transition>
 <transition>
 <name>go</name>
 <startingState>
 <name>amber</name>
 <variables>
 <variable>
 <name>color</name>
 <type>java.lang.String</type>
 <value>amber</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </startingState>
 <finishingState>
 <name>green</name>
 <variables>
 <variable>
 <name>color</name>
 <type>java.lang.String</type>
 <value>green</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </finishingState>
 </transition>
 </transitions>
</specification>

B. Validating Misdirected Transitions
<specification xsi:noNamespaceSchemaLocation="specification.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <transitions>
 <transition>
 <name>convert</name>
 <startingState>
 <name>odd</name>
 <variables>
 <variable>
 <name>value</name>
 <type>java.lang.String</type>
 <value>a</value>

 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </startingState>
 <finishingState>
 <name>even</name>
 <variables>
 <variable>
 <name>value</name>
 <type>java.lang.String</type>
 <value>aa</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </finishingState>
 </transition>
 <transition>
 <name>convert</name>
 <startingState>
 <name>even</name>
 <variables>
 <variable>
 <name>value</name>
 <type>java.lang.String</type>
 <value>aa</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </startingState>
 <finishingState>
 <name>odd</name>
 <variables>
 <variable>
 <name>value</name>
 <type>java.lang.String</type>
 <value>a</value>
 </variable>
 </variables>
 <startingState>
 false
 </startingState>
 </finishingState>
 </transition>
 </transitions>
</specificatio

REFERENCES
[1] F. Ipate, "Class testing from state diagrams using stream X-machine

based methods", in 18th Australian Software Engineering Conference
2007 (ASWEC’07), Melbourne, 2007, pp. 245-254.

[2] M. Holcombe, "X-machines as a basis for dynamic system
specification", Software Engineering Journal, vol. 3, no. 2, p. 69, 1988.

[3] G. Laycock, "The Theory and Practice of Specification Based Software
Testing", Ph.D, University of Sheffield, 1993.

[4] H. Tahbildar, P. Borbora and K. G.P, "Teaching Automated Test Data
Generation Tools for C, C++, and Java Programs", International Journal
of Computer Science and Information Technology, vol. 5, no. 1, pp. 181-
195, 2013.

[5] "What is this thing called Conformance?", NIST, 2010. (Online).
Available: https://www.nist.gov/itl/ssd/information-systems-group/what-
thing-called-conformance. (Accessed: 19- Apr- 2017).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

132

[6] Minimizing code defects to improve software quality and lower
development costs, 1st ed. New York: IBM Corporation, 2017.

[7] W. Wong, R. Gao, Y. Li, R. Abreu and F. Wotawa, "A Survey on
Software Fault Localization", IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707-740, 2016.

[8] The Economic Impacts of Inadequate Infrastructure for Software
Testing, 1st ed. National Institute of Standards and Technology, 2002.

[9] G. Myers, The Art of Software Testing, 1st ed. New Jersey: John Wiley
and Sons, Inc., 2004, p.9.

[10] M. Holcombe, "Testing, testing, testing!", in Correct Systems – Building
Business Process Solutions, 1st ed., M. Holcombe and F. Ipate, Ed.
London: Springer-Verlag, 1998, pp. 61-92.

[11] K. EI-Fakih, N. Yevtushenko and G. Bochmann, "FSM-based
incremental conformance testing methods", IEEE Transactions on
Software Engineering, vol. 30, no. 7, pp. 425-436, 2004.

[12] R. Mugridge, R. Utting and D. Streader, "Evolving Web-Based Test
Automation into Agile Business Specifications", Future Internet, vol. 3,
no. 4, pp. 159-174, 2011.

[13] A. Ahmed, "Software Requirements Management", in Software Project
Management: A Process-Driven Approach, 1st ed., A. Amed, Ed.
Florida: Taylor and Francis Group, 2017, pp. 145-157.

[14] L. Crispin and J. Gregory, "Automation", in Agile Testing: A Practical
Guide for Testers and Agile Teams, 1st ed., L. Crispin and J. Gregory,
Ed. Boston: Pearson Education, 2009, pp. 255-271.

[15] VersionOne Inc, "10th Annual State of Agile Report", VersionOne Inc,
2016.

[16] C. Csallner, Y. Smaragdakis, and T. Xie, “DSD-Crasher: A hybrid
analysis tool for bug finding”, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 17, no. 2, pp. 245-254,
2006.

[17] H. Tahbildar and B. Kalita, "Automated Software Test Data Generation:
Direction of Research", International Journal of Computer Science &
Engineering Survey, vol. 2, no. 1, pp. 99-120, 2011.

[18] M. Boshernitsan, M. Doong and A. Savoia, "From Daikon to Agitator:
Lessons and challenges in building a commercial tool for developer
testing", in Fifth International Symposium on Software Testing and
Analysis, Portland, 2006.

[19] T. Chow, "Testing Software Design Modeled by Finite-State Machines",
IEEE Transactions on Software Engineering, vol. -4, no. 3, pp. 178-187,
1978.

[20] Balanescu, T., Cowling, A. J., Georgescu, H., Gheorghe, M., Holcombe,
M. and Vertan, C, “Communicating stream X-Machines systems are no
more than X-Machines”, in Journal of Universal Computer Science, vol.
5, no. 9, pp. 494-507, 1999.

[21] J. Barnard, J. Whitworth, and M. Woodward, “Communicating X-
Machines”, in Information and Software Technology, vol. 38, no. 6, pp.
401-407, 1996

[22] A. Simons, K. Bogdanov and M. Holcombe, "Complete functional
testing using Object Machines", University of Sheffield, Sheffield, 2017.

[23] J. Aguado and A.J. Cowling, “Foundations of the x-machine theory for
testing”, University of Sheffield, Sheiffeild, 2017

[24] M. Holcombe, P. Thomas and R. Paul, Correct Systems, 1st ed. London:
Springer London, 1998, pp. 61-92.

E. K. A. Ogunshile received the BEng(Hons),
MSc(Eng), and Ph.D. degrees in Computer
Science from the University of Sheffield, UK,
in 2003, 2005, and 2011, respectively. Currently
he is a Senior Lecturer in Computer Science at
the University of the West of England, Bristol,
UK. His research lies broadly in Software
Engineering, Model-Driven Engineering,
Object-oriented Programming, Verification &

Testing and Cloud Computing.

