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 
Abstract—In this paper, a theoretical study on the forced vibration 

of one degree of freedom system equipped with inerter, working under 
load-type or displacement-type excitation, is presented. Differential 
equations of movement are solved under cosinusoidal excitation, and 
explicit relations for the magnitude, resonant magnitude, phase angle, 
resonant frequency, and critical frequency are obtained. Influence of 
the inertance and damping on these dynamic characteristics is clarified. 
From the obtained results, one concludes that the inerter increases the 
magnitude of vibration and the phase angle of the damped mechanical 
system. Moreover, the magnitude ratio and difference of phase angles 
are not depending on the actual type of excitation. Consequently, such 
kind of similitude allows for the comparison of various theoretical and 
experimental results, which can be broadly found in the literature. 

 
Keywords—One degree of freedom vibration, inerter, parallel 

connection, load-type excitation, displacement-type excitation. 

I. INTRODUCTION 

ESIGN process of hybrid and electrical vehicles requires 
analogies between the mechanical and electrical systems. 

Thus, the design method of the electro-mechanical equipment 
can be unified by associating to the force, velocity, spring, 
dashpot, inerter, kinetic energy, and potential energy of the 
mechanical network, the current, voltage, inductor, resistor, 
capacitor, electric energy, and magnetic energy of the electrical 
network [1]. On the other hand, similar to an inductor, which 
furnishes electro-magnetic coupling, the inerter provides 
inertial coupling into the mechanical system [2]. So, it seems 
that better understanding on the change in dynamical behavior 
of the mechanical network is required to properly define the 
electro-mechanical analogy. 

Previous studies indicate that the inerter is able to change the 
natural frequencies of vibration [2], [3], to provide nonlinear 
and/or apparent negative stiffness effects [4], etc. 

Recently, it was presented an extensive theoretical study on 
the free vibration of one degree of freedom system (1DOFS), 
consisted of a mass, which is suspended by an elastic element, 
connected in parallel with a dissipative element, and an inerter 
[5]. It was argued that inertance reduces the natural frequency, 
the damping ratio, and the logarithmic decrement of the system 
[5]. On the other hand, in the presence of the inerter, the 
amplitude of vibration was increased, this effect being 
generated by the larger kinetic energy, initially furnished into 
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the system [5]. It was then advanced the idea to control the 
natural damped frequency of the mechanical network by using 
an inerter of adjustable inertance [5]. This feature appears as 
similar to the impedance control, well-known for the electrical 
network, in which case, a capacitor of adjustable capacitance is 
used [6]-[8]. However, in order to extend the range of practical 
applications, behavior of the 1DOFS, using an inerter, and 
working under forced vibration, should be thoroughly clarified. 

Hence, in this work, the dynamic characteristics of 1DOFS, 
equipped with inerter, are theoretically investigated under the 
forced vibration produced by two types of excitations, and the 
influence of the inertance on the parameters of similitude is 
emphasized. 

II. VIBRATION MODEL OF 1DOFS, EQUIPPED WITH INERTER, 
AND WORKING UNDER TWO TYPES OF EXCITATIONS 

A. Forced Damped Vibration under Load-Type Excitation 

Fig. 1 shows the schematic view of the investigated 1DOFS, 
in the case of forced damped vibration produced by a load-type 
excitation. Mass element m  is suspended by an elastic element 
(spring of constant k ), linked in parallel with a dissipative 
element (dashpot of damping coefficient c ) and an inerter of 
apparent mass, or so-called inertance .b  Coordinate x  is 
measured from the static equilibrium position of the mass. 

 

 

Fig. 1 Schematic view of the damped 1DOFS under load-type 
excitation, in which the mass element is suspended by an elastic 

element, connected in parallel with a dissipative element and an inerter 
 
Mechanical energy is continuously supplied into the system 

by the cosinusoidal load-type excitation, and in such conditions, 
the so-called forced damped vibration is achieved. 
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For the 1DOFS from Fig. 1, in the absence of the inerter, the 
differential equation of movement can be written as [9]-[12]: 
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where the natural circular frequency 0,n  and the damping 

ratio 0  without inerter are given by: 
 

kmcmkn /5.0;/ 00,                   (2) 

 
In the presence of the inerter, the differential equation of 

movement can be rewritten as: 
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where the natural circular frequency n  and the damping ratio 

  with inerter are given by [5]: 
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From (4), one ascertains that the inerter, of dimensionless 

inertance   defined by (5), is able to reduce in the same 
manner both the natural frequency and the damping ratio of the 
1DOFS (see also [5]). 
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A solution that satisfies the differential equation (1) can be 

written as [8]-[12]: 
 

)sin()cos()( 00   tBtAtx            (6) 
 

where the unknown constants 00 , BA  can be obtained as: 
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in which the dimensionless circular frequency   is defined as: 

 

0,/ n                                 (8) 

 
In such circumstances, the variation of elongation x  versus 

time ,t  in the absence of the inerter, can be written as: 
 

)cos()( 00  tXtx                      (9) 
 

where 0X  is the amplitude: 
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and 0  is the phase angle: 
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In order to evaluate the magnification factor of the amplitude 
,0X  relative to the static maximal elongation ,/ kF  it is 

customarily to define the magnitude of vibration, as [9]-[12]: 
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Resonant magnitude rM ,0  can be found from the condition 

,0/0  M  which leads to the following expression for the 

dimensionless circular frequency at resonance: 
 

2
0,0 21  r                             (13) 

 
From (13), one observes that the resonant peak is obtained 

only under the condition ,2/20 0    in which 

circumstances, the resonant magnitude can be calculated as: 
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Results (13) and (14) are well-known in the literature 

[8]-[12]. However, it is useful to observe that a generalized 
expression, to estimate the resonant magnitude, can be written 
as: 
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Supplementary, a critical dimensionless circular frequency 

,,0 cr for which the unitary magnitude 10 M  is achieved, can 

be defined and calculated as follows: 
 

rcr ,0
2
0,0 2)21(2                     (16) 

 
Similarly, in the presence of the inerter into the 1DOFS, a 

solution that satisfies the differential equation (3) can be written 
as: 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:3, 2018

221

 

 

)sin()cos()(   tBtAtx              (17) 
 

where the unknown constants BA,  can be obtained as: 
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Then, the variation of elongation x  versus time ,t  in the 

presence of the inerter, can be written as: 
 

)cos()(  tXtx                       (19) 
 

where X  is the amplitude: 
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and   is the phase angle: 
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Similar to (12), the magnitude of vibration can be defined as: 
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and then, the resonant magnitude rM  can be found from the 

condition ,0/  M  which gives the following expression 
for the dimensionless circular frequency at resonance: 
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From (23), one observes that the resonant peak is obtained 

only under the condition ,2/)1(20 0    which can be 

rewritten as .12 2
0    In such circumstances, the resonant 

magnitude can be calculated as: 
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Again, it is useful to observe that a generalized expression to 

estimate the resonant magnitude can be written as: 
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Moreover, the critical dimensionless circular frequency ,cr  

for which the unitary magnitude 1M  is achieved, can be 
calculated as: 
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which is a result similar to (16). 

As expected, by imposing 0  in the results (20)-(26), 
derived when the 1DOFS is furnished with inerter, one regains 
the results (10)-(16), obtained in the absence of the inerter. 

In order to clarify the influence of inertance on the amplitude 
or magnitude of vibration, and on the phase angle, it is useful to 
define the amplitude ratio X  or magnitude ratio ,M  as: 
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and also the difference of phase angles as: 
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From (28), one observes that inertance augments the phase 

angle of forced damped vibration under load-type excitation. 
Since the partial derivative of the difference of phase angles 

versus   is positive: 
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one concludes that 0  monotonically augments against 

the dimensionless inertance. On the other hand, since the partial 
derivative  /)( 0  becomes nil for: 
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a mountain shape graph is likely to be found for the difference 
of phase angles versus the dimensionless circular frequency, 
where the peak is attained for opt  (see also Figs. 13-15). 

B. Forced Damped Vibration under Displacement-type 
Excitation 

Fig. 2 shows the schematic view of the investigated 1DOFS, 
in the case of forced damped vibration, which is generated by a 
displacement-type excitation. Compared to Fig. 1, the mass is 
not suspended, but supported by a suspension consisted of a 
spring, a dashpot, and an inerter, all connected in parallel. 

For the 1DOFS from Fig. 2, in the absence of the inerter, the 
differential equation of motion can be written as [9]-[12]: 
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where the excitation and the excitation velocity are given by: 
 

 

Fig. 2 Schematic view of the damped 1DOFS under displacement-type 
excitation, in which the mass element is supported by an elastic 

element, connected in parallel with a dissipative element and an inerter 
 

tYytYy  sin;cos                    (32) 
 
By substituting (32) in the lower part of (31), the equation of 

motion can be rewritten as: 
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In the presence of the inerter into the 1DOFS, similar to (3) 

and (31)-(33), the differential equation of movement can be 
written as follows: 
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A solution that satisfies the equation of motion (33) can be 

written as: 
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where the unknown constants 00 , DC  can be obtained as: 
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In such circumstances, the variation of elongation x  versus 

time ,t  in the absence of the inerter, can be written as: 
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where 0X  is the amplitude: 
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and 0  is the phase angle: 
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In order to evaluate the magnification factor of the amplitude 
,0X  relative to the excitation amplitude ,Y  it is customarily to 

define the magnitude of vibration, as [8]-[12]: 
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Resonant magnitude rM ,0  can be found from the condition 

,0/0  M  which leads to the following expression for the 

dimensionless circular frequency at resonance: 
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From (41), one observes that the resonant peak is achieved 

for any value of the damping ratio in the domain of .10 0    

In these circumstances, the resonant magnitude can be 
calculated with the same general expression (15) found in the 
case of load- type excitation, as follows: 
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In the case of displacement-type excitation, the critical 

dimensionless circular frequency cr,0  of the forced vibration, 

for which the unitary magnitude 10 M  is achieved, can be 

calculated as: 
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Thus, cr,0  displays a constant value, regardless the amount of 

inertance and/or damping introduced into the 1DOFS. 
Similarly, in the presence of the inerter, a solution that satisfies 
the differential equation (34) can be written as: 
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where the unknown constants DC,  can be obtained as: 
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Then, the variation of elongation x  versus time ,t  in the 
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presence of the inerter, can be written as: 
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where X  is the amplitude: 
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and   is the phase angle: 
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Similar to (40), the magnitude of vibration can be defined as: 
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and then, the resonant magnitude rM  can be found from the 

condition ,0/  M  which gives the following expression 
for the dimensionless circular frequency at resonance: 
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From (50), one observes that the resonant peak is obtained 

for any value of the damping ratio in the domain of .10 0    

In these circumstances, the resonant magnitude can be 
calculated with the same general expression (25), which was 
found in the case of load-type excitation, as follows: 
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For displacement-type excitation, in the presence of the 

inerter, the critical dimensionless circular frequency cr  of the 

forced vibration, for which the unitary magnitude 1M  is 
achieved, can be calculated as: 
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Compared to (43), expression (52) indicates that the critical 

frequency is not depending on the damping ratio, but it is 
decreasing at the augmentation of the dimensionless inertance. 

As expected, by imposing 0  in the results (47)-(52), 
attained when the 1DOFS is supplied with inerter, one regains 
the results (38)-(43), obtained in the absence of the inerter. 

In order to clarify the influence of inertance on the amplitude 
or magnitude of vibration, and on the phase angle, it is useful to 

define the amplitude ratio X  or magnitude ratio ,M  as: 
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and also the difference of phase angles as: 
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These expressions coincide with the magnitude ratio (27) 

and the difference of phase angles (28), which were obtained 
above, for the case of load-type excitation. 

In conclusion, for two different types of vibration tests, one 
performed under load-type excitation and the other under 
displacement-type excitation, the results obtained for the 
magnitude ratio and the difference of phase angles should be 
identical. Hence, these two parameters occur as similitude 
parameters between two different types of vibration tests 
conducted on the same 1DOFS, equipped with inerter. Based 
on this observation, suitable comparison can be carried out 
between various theoretical and experimental results, which are 
available in the extensive literature dedicated to the study of 
inerters and their dynamical effects. 

III. RESULTS AND DISCUSSIONS 

A. Forced Damped Vibration under Load-Type Excitation 

Fig. 3 shows the variation of the vibration magnitude versus 
the dimensionless circular frequency, obtained under load-type 
excitation in the absence of the inerter, for various values of the 

damping ratio 0 0.01, 0.1, 0.2, 0.5, ,2/2 and 1. Such well- 
known reference results [9]-[12], are used to emphasize below 
the dynamic effects produced by the presence of the inerter. 

Fig. 4 shows the variation of the vibration magnitude versus 
the dimensionless circular frequency, obtained under load-type 

excitation for a dimensionless inertance of ,2  and for 
various values of the damping ratio. Compared to Fig. 3, the 
resonant peak appears as higher but narrower, and shifted 

toward smaller values of .  Such change in the appearance of 
the resonant peak is produced by the reduction of damping ratio, 
predicted by (4), and by the reduction of resonant frequency, 

predicted by (23), at the augmentation of the inertance .  
In order to better emphasize the alteration of the resonant 

peak, Fig. 5 illustrates the variation of the magnitude versus the 
dimensionless circular frequency, obtained under load-type 
excitation for a fixed value of the damping ratio 0 0.1, and 

for several values of the dimensionless inertance  0, 0.5, 1, 
2, 3, and 10. 

Concerning the position of the resonant peak, Fig. 6 shows 
the variation of dimensionless circular frequency at resonance 

r  versus the dimensionless inertance, for various values of 

the damping ratio 0 0, 0.3, 0.4, 0.5, 0.6, ,2/2  0.8, 0.9, 

and 1. In the absence of the inerter (see on Fig. 6 the vertical 
line corresponding to ),0  the resonant peak occurs only 
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under the condition 2/20  (see also (13) and [9]-[12]). 

Similarly, in the presence of the inerter, resonant peak occurs 
only if the condition 12 2

0    is satisfied (see (23) and Fig. 

6 for 0 0.8, 0.9, and 1). For small damping ratios (e.g., 0, 0.3, 

0.4, 0.5 on Fig. 6), the resonant peak is gradually shifted toward 
smaller values of , at the inertance augmentation. However, 
for larger damping ratios, the resonant peak is firstly shifted 
toward larger, and then, toward smaller values of ,  at the 

inertance augmentation. Hence, position control of the resonant 
peak can be achieved by proper adjustment of the inertance. 

 

 

Fig. 3 Variation of the magnitude versus the dimensionless circular 
frequency, obtained under load-type excitation in the absence of the 

inerter, for various values of the damping ratio 
 

 

Fig. 4 Variation of the magnitude versus the dimensionless circular 
frequency, obtained under load-type excitation in the presence of the 

inerter, for various values of the damping ratio 
 

 

Fig. 5 Variation of the magnitude versus the dimensionless circular 
frequency, obtained under load-type excitation in the presence and 

absence of the inerter, for a fixed value of the damping ratio 
 

Fig. 7 presents the variation of dimensionless circular critical 
frequency cr  against the dimensionless inertance, for several 

values of the damping ratio. 
 

 

Fig. 6 Variation of the dimensionless circular frequency at resonance 
versus the dimensionless inertance, for various damping ratios 

 

 

Fig. 7 Variation of the dimensionless circular critical frequency versus 
the dimensionless inertance, for various values of the damping ratio 

 
Since, in the case of load-type excitation, the critical 

frequency can be obtained by simply multiplying the resonant 

frequency with a factor of 2  (see (16) and (26)), the shapes 
of the graphs shown by Fig. 7 and their interpretation are the 
same as for Fig. 6. 

In order to complete the analysis concerning the magnitude 
of vibration, Figs. 8-9 illustrate the variation of the magnitude 
ratio versus the dimensionless circular frequency. Thus, in Fig. 
8, the damping ratio is fixed to 0 0.1, and the dimensionless 

inertance is set to several values of  0, 0.5, 1, 2, 3, and 10. 
On the other hand, in Fig. 9 the dimensionless inertance is fixed 
to ,2  and the damping ratio is set to various values. As 
already pointed out, same results are obtained for both 
load-type and displacement-type excitations (see (27) and (53)). 
For smaller frequencies a maximum, i.e. a resonant peak, and 
for larger frequencies a minimum, i.e. an anti-resonant peak, 
can be observed. As expected, height of these peaks increases at 
augmentation of the inertance but decreases at augmentation of 
the damping ratio. 
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Fig. 8 Variation of the magnitude ratio versus the dimensionless 
circular frequency, for a fixed value of the damping ratio, and several 

values of the dimensionless inertance 
 

 

Fig. 9 Variation of the magnitude ratio versus the dimensionless 
circular frequency, for a fixed value of the dimensionless inertance, 

and several values of the damping ratio 
 

Fig. 10 presents the variation of the phase angle versus the 
dimensionless circular frequency, obtained under load-type 
excitation in the absence of the inerter, for various values of the 
damping ratio. One notes that the phase angle increases against 
the dimensionless circular frequency, but the variation pattern 
is depending on the actual damping ratio. However, regardless 
the amount of damping, a phase angle of 90 degrees is attained 
for a dimensionless circular frequency of 12/,0   (see (11)), 

this corresponding to an inflexion point common to all curves. 
Although Fig. 10 is common knowledge [9]-[12], it is given 
here to easily distinguish the peculiar effects produced by the 
presence of the inerter into the mechanical system. 

Thus, for comparison, Fig. 11 illustrates the variation of the 
phase angle versus the dimensionless circular frequency, found 
under load-type excitation in the presence of the inerter, for 
several values of the damping ratio. 

 

 

Fig. 10 Variation of the phase angle versus the dimensionless circular 
frequency, obtained under load-type excitation in the absence of the 

inerter, for various values of the damping ratio 
 

 

Fig. 11 Variation of the phase angle versus the dimensionless circular 
frequency, obtained under load-type excitation in the presence of the 

inerter, for various values of the damping ratio 
 

Although the shapes of the curves from Fig. 11 are similar to 
those shown by Fig. 10, the inflexion point, common to all 
curves, occurs as shifted toward a smaller dimensionless 

circular frequency of   1/12/  (see also (21)). 

In order to better understand the influence of inertance on the 
phase angle, Fig. 12 illustrates the variation of the phase angle 
against the dimensionless circular frequency, obtained under 
load-type excitation for a fixed value of the damping ratio 0
0.1, and for several values of the dimensionless inertance  0, 
0.5, 1, 2, 3, and 10. As expected from (28), for a given 
frequency and damping ratio, the phase angle increases at 
augmentation of the dimensionless inertance .  

This phenomenon can be better perceived by analyzing the 
change in the difference of phase angles .0  Thus, Fig. 13 

presents the variation of the difference of phase angles found 
for  0.5, 1, 2, 3, and 10, under a fixed damping ratio of 

0 0.5. Additionally, Figs. 14-15 show the variation of the 

difference of phase angles calculated for 0 0.01, 0.1, 0.2, 

0.5, ,2/2  and 1, under a fixed value for the dimensionless 
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inertance. 
 

 

Fig. 12 Variation of the phase angle versus the dimensionless circular 
frequency, obtained under load-type excitation in the presence and 

absence of the inerter, for a fixed value of the damping ratio 
 

 

Fig. 13 Variation of the difference of phase angles versus the 
dimensionless circular frequency, for a fixed value of the damping 

ratio and various values of the dimensionless inertance 
 

 

Fig. 14 Variation of the difference of phase angles versus the 
dimensionless circular frequency, for a fixed smaller value of the 
dimensionless inertance, and various values of the damping ratio 

 

Fig. 15 Variation of the difference of phase angles versus the 
dimensionless circular frequency, for a fixed larger value of the 
dimensionless inertance, and various values of the damping ratio 
 
Concretely, in Fig. 14, the dimensionless inertance is set to a 

smaller value of  0.5, and in Fig. 15, to a larger value of 
 3. All the curves shown by Figs. 13-15 display a mountain 

like shape against the dimensionless circular frequency. Height 
of the mountain peak increases at augmentation of the 
dimensionless inertance and reduction of the damping ratio. 
Higher inertance produces larger width of the peak, and also 
larger shift of the peak toward smaller frequencies. 

B. Forced Damped Vibration under Displacement-Type 
Excitation 

Fig. 16 presents the variation of the magnitude of vibration 
against the dimensionless circular frequency, obtained under 
displacement-type excitation in the absence of the inerter, for 
various values of the damping ratio 0 0.01, 0.1, 0.2, 0.5, 

,2/2 and 1. Such well-known reference results [9]-[12], are 
used to illustrate below the dynamic effects generated by the 
inerter. Thus, Fig. 17 presents the change of the magnitude of 
vibration versus the dimensionless circular frequency, obtained 
under displacement-type excitation for ,2  and for various 
values of the damping ratio. Compared to Fig. 16, the resonant 
peak appears as higher but narrower, and shifted toward smaller 
values of .  Similar to the case of load-type excitation (see 
Figs. 3 and 4), such change in the appearance of the resonant 
peak is produced by the reduction of damping ratio, predicted 
by (4).  

 

 

Fig. 16 Variation of the magnitude versus the dimensionless circular 
frequency, obtained under displacement-type excitation in the absence 

of the inerter, for various values of the damping ratio 
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Fig. 17 Variation of the magnitude versus the dimensionless circular 
frequency, obtained under displacement-type excitation in the 
presence of the inerter, for various values of the damping ratio 

 
Regardless the value of the damping ratio, curves from Figs. 

16 or 17 share a common point that corresponds to the 
dimensionless critical circular frequency (see (43), (52)), and to 
the unitary magnitude. This common point appears as shifted 
toward smaller frequencies on Fig. 17, since the critical 

frequency )1/(2  cr  is decreasing at the augmentation 

of the dimensionless inertance. 
In order to better emphasize the change of the resonant peak, 

Fig. 18 illustrates the variation of the magnitude versus the 
dimensionless circular frequency, gained under displacement- 
type excitation for a fixed value of the damping ratio 0 0.1, 

and for several values of the dimensionless inertance  0, 0.5, 
1, 2, 3, and 10. 

Concerning the location of the resonant peak, and position of 
the common critical point, Fig. 19 illustrates the variation of 
dimensionless circular frequency at resonance r  and 

dimensionless circular critical frequency cr  versus the 

dimensionless inertance, for various values of the damping 
ratio. As already mentioned, the resonant peak is achieved for 
any value of the damping ratio in the domain of .10 0    

In contrast with the behavior observed for the load-type 
excitation (see Figs. 6-7), regardless the value of the damping 
ratio, the resonant and critical frequencies are invariantly 
shifted toward lower frequencies due to the presence of the 
inerter into the 1DOFS. 

 

 

Fig. 18 Variation of the magnitude versus the dimensionless circular 
frequency, obtained under displacement-type excitation in the 
presence and absence of the inerter, for fixed damping ratio 

 

Fig. 19 Variation of the dimensionless circular frequency at resonance, 
and dimensionless circular critical frequency versus the dimensionless 

inertance, for various values of the damping ratios 
 

Fig. 20 presents the variation of the phase angle versus the 
dimensionless circular frequency, obtained under displacement 
excitation in the absence of the inerter, for various values of the 

damping ratio 0 0.01, 0.1, 0.2, 0.5, ,2/2 and 1. Such 

reference data [9]-[12], is necessary to discern below the 
peculiar effects produced by the presence of the inerter into the 
mechanical system. 

 

 

Fig. 20 Variation of the phase angle versus the dimensionless circular 
frequency, obtained under displacement-type excitation in the absence 

of the inerter, for various values of the damping ratio 
 

 

Fig. 21 Variation of the phase angle versus the dimensionless circular 
frequency, obtained under displacement-type excitation in the 
presence of the inerter, for various values of the damping ratio 
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Thus, for comparison, Fig. 21 presents the variation of the 
phase angle versus the dimensionless circular frequency, 
obtained under displacement-type excitation in the presence of 
the inerter, for the same values of the damping ratio as those 
used in Fig. 20. 

 

 

Fig. 22 Variation of the phase angle versus the dimensionless circular 
frequency, obtained under displacement-type excitation in the 
presence and absence of the inerter, for fixed damping ratio 

 
Additionally, Fig. 22 illustrates the variation of the phase 

angle against the dimensionless circular frequency, obtained 
under displacement excitation for a fixed value of the damping 
ratio 0 0.1, and for several values of the dimensionless 

inertance  0, 0.5, 1, 2, 3, and 10. As expected from (54), for 
a given frequency and damping ratio, the phase angle increases 
at the augmentation of the dimensionless inertance .  

Although the variation pattern of the phase angle observed 
for the load-type excitation (monotonically increases against 
the dimensionless circular frequency, see Figs. 10-12) is 
different from the variation pattern noticed for the 
displacement-type excitation (see Figs. 20-22), the difference 
of phase angles (see (28), (54)) is not affected by the kind of 
excitation applied to the 1DOFS. 

IV. CONCLUSIONS 

From the theoretical investigation of the proposed 1DOFS, 
supplied with inerter and working under load-type or 
displacement-type excitation, the following conclusions can be 
drawn: 
1) Regardless the kind of excitation applied to the studied 

1DOFS, due to the reduction of the damping ratio at the 
augmentation of the inertance, the resonant peak appeared 
as higher but narrower, and with shifted location against 
the dimensionless circular frequency. 

2) For displacement-type excitation, the shift of the resonant 
peak can be only toward smaller frequencies, but for load- 
type excitation, the resonant peak can be shifted both 
toward lower and higher frequencies. Thus, in the latter 
case, position control of the resonant peak can be achieved 
through the appropriate adjustment of the inertance. 

3) Regardless the type of excitation considered, the phase 
angle increased at augmentation of the dimensionless 

inertance, or at reduction of the damping ratio. 
4) Magnitude ratio and difference of phase angles displayed 

the same expressions, regardless the type of excitation. 
These two similitude parameters are unaffected by the type 
of vibration test conducted on the same 1DOFS, equipped 
with inerter. Using these parameters, proper comparison is 
possible between the various experimental and theoretical 
results, which are abundantly available in the literature 
regarding the dynamic behavior of inerters. 

5) Magnitude ratio shows for smaller frequencies a resonant 
peak, and for larger frequencies an anti-resonant peak. 
Height of these peaks increases if the damping is reduced, 
and/or inertance is augmented. 

6) Difference of phase angles displays a mountain like shape 
graph against the dimensionless circular frequency. Height 
of the mountain peak increases at augmentation of the 
inertance and/or reduction of the damping. 
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