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Abstract—Multiscale entropy (MSE) is an extensively used index 

to provide a general understanding of multiple complexity of 
physiologic mechanism of heart rate variability (HRV) that operates 
on a wide range of time scales. Accurate selection of 
electrocardiogram (ECG) sampling frequency is an essential concern 
for clinically significant HRV quantification; high ECG sampling rate 
increase memory requirements and processing time, whereas low 
sampling rate degrade signal quality and results in clinically 
misinterpreted HRV. In this work, the impact of ECG sampling 
frequency on MSE based HRV have been quantified. MSE measures 
are found to be sensitive to ECG sampling frequency and effect of 
sampling frequency will be a function of time scale. 
 

Keywords—ECG, heart rate variability, HRV, multiscale entropy, 
sampling frequency. 

I. INTRODUCTION 

RV is a reflector of the sympatho-vagal balance between 
sympathetic and parasympathetic mediators acting on the 

sino-atrial and atrio-ventricular nodes [1], [2]. HRV measures 
the variation between RR intervals and the oscillations 
between consecutive heart rates. The clinical consequence of 
HRV was appreciated by Hon and Lee in 1965 [3]. HRV is the 
result of interaction among complex feedback mechanisms in 
the cardiovascular system. Therefore, as the feedback 
mechanisms are degraded by diseases, the HRV diminishes. 
Nowadays, HRV has become a central topic in physiological 
signal analysis, serving as a vital non-invasive indicator of 
cardiovascular and autonomic system function, with direct 
connections to respiratory, central nervous and metabolic 
dynamics [4]-[6]. Variation in heart rate, HRV may be 
evaluated by time-domain, frequency-domain and non-linear 
analysis [7], [8]. 

Analysis of complex variations in heart rate has become an 
important non-invasive technique to study the cardiovascular 
control mechanism, sympathovagal interactions in 
physiological and pathological conditions [8], [9]. 
Cardiovascular control is governed by several regulatory 
mechanisms interacting across multiple temporal scales. 
Therefore, concomitant effect of these regulatory mechanisms, 
referred to as HRV, occurs over a large set of temporal scales 
[8]. MSE proposed by Costa et al. [9]-[11], is a widely used 
method to provide a general understanding of complexity of 
multiple physiologic control mechanisms occurs over a wide 
range of time scales. Although classical entropy and 
physiologic concepts like approximate entropy (ApEn) and 
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sample entropy (SampEn) have been capable in discriminating 
healthy and cardiac states [12]-[14], but these traditional 
methods are single scale-based approaches and could not 
measure the complexity of physiological systems at multiple 
time-scales. Whereas computation of MSE is essentially 
consists, elimination of fast temporal scales to focus slower 
time scales, coarse graining procedure to assess entropy and 
calculation of entropy rates [15]. 

Along with various technical and biological difficulties, 
data acquisition, memory considerations, and signal pre-
processing; the selection of optimal sampling rate is also a 
technical blockade in ECG signal processing [2]. The fast 
sampling rate may cause increase in processing time and 
storage memory requirements. On the other side, with low 
sampling rate there may be degradation in the ECG Signal 
quality and misinterpretation of HRV measures. The 
erroneous marking and detection of the R peak, alters the 
spectrum and produce clinically misinterpreted HRV results 
due to jitter generation at low sampling rate. This 
misinterpreted and inaccurate HRV quantification of RR 
tachograms may obscure critical issues and may impede rather 
than foster the advancement of medical applications. Sampling 
frequency of more than 250 Hz was recommended by the task 
force of the European Society of Cardiology and North 
American society of Pacing and Electrophysiology [2]. The 
resampling induced significant error in time domain HRV 
indices [16]. Hejjel et al. recommended that 1000 Hz ECG 
sampling frequency was required for accurate time domain 
HRV quantification even in low variability samples16. But, 
for high variability samples, a lower sampling rate may be 
adequate [16]. Ziemssen et al. have studied the influence of 
different ECG sampling frequencies on spectral and baroreflex 
parameters of EUROBAVAR data set [17]. When we analysis 
HRV by trigonometric regressive spectral parameters, ECG 
sampling frequencies induced significant effect on 
pathological subject’s HRV [17]. ECG sampling frequency of 
100 Hz in comparison to 500 Hz was required for spectral and 
baroreflex analysis [17]. According to Abboud and Barnea 
[18], 128 Hz is the adequate ECG sampling rate to give a 
sufficient enough signal to noise ratio of the RR interval time 
series. However, for cardiac subjects with lower HRV, at least 
1000 Hz ECG sampling frequency is required [18]. Errors in 
the computation of the ApEn and SampEn based complexity 
measures of HRV by ECG sampling frequency was 
investigated [19], [20]. The errors induced were clinically 
significant for low ECG sampling frequencies. 

Despite the Task Force recommendations [2] for accurate 
ECG sampling frequency for linear HRV parameters, a 
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systematic study to quantify the effect of sampling rate on 
MSE based HRV is the need of day for the widespread 
applications of complexity based non-linear HRV in clinical 
situation. In an effort to provide a contribution to clarify these 
issues, this study assessed and investigated:  
i) The influence of ECG sampling frequency on MSE based 

HRV; and, 
ii) The optimal sampling frequency for MSE measures of 

HRV.  

II. SUBJECT & METHODS 

Bio-signals obtained from physiological systems are mostly 
non-stationary, non-linear and complex signals. They may 
contain caveats of current and impending abnormalities. The 
reflectors may be occurring at all times or may present at 
random time scale. However, to study anomalies in 
voluminous data collected over several hours is strenuous and 
time consuming. ECG and HRV are the signals acquired from 
cardiovascular system to analyze the complex physiological 
interaction that occur in heart and vessels. Hence, many 
methods have been developed to analyze these signals and 
extract information about the complex cardiovascular system. 

A. Experimental Condition 

ECG signal have been acquired from ten young healthy 
subjects (age 31±7 years) having no history of any cardiac 
disorder. All the subjects were kept quiet in a natural 
environment and data were acquired in the supine condition. 
No subject was addicted to smoking, alcohol or drugs. The 
subjects were made to rest in supine condition for 10 minutes 
prior to data acquisition, to stabilize them to the laboratory 
environment. The subjects were allowed to normal breathing 
during the whole acquisition. 

ECG data was acquired in Lead-II configuration on 
Biopac® MP150 system. For each subject, ectopic-free 
normal RR intervals with data length N = 1000 were derived 
with 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 1500 Hz and 2000 Hz 
sampling frequencies. Thus in total, 60 ectopic-free RR 
interval time series were obtained. Prior to analysis, the ECG 
signals were processed to filter power line interference, 
muscle tremors, spikes and respiration noises. Many QRS 
detection algorithms [21], [22] have been proposed in 
literature and in the present work the RR interval time series 
were estimated by the Tompkins method proposed in [23] for 
its simple implementation and high detection accuracy (Fig. 
1). 

 

 

Fig. 1 QRS complex marking and R peak detection by Tompkins method 
 

B. Multiscale Complex Dynamics Properties and Estimator 

Since continuous interaction of cardiovascular system with 
other physiological systems results highly nonlinear HRV 
signal, a complex, chaotic and non stationary behavior is 
always expected. Entropy is an invariant quantity measuring 
the rate of generation of information in the context of 
nonlinear and complex time series analysis [14], [15]. 
Although conventional ApEn and SampEn based entropies are 
classical complexity measures but these measures are unable 
to detect the subtle but important complexity at higher 
temporal scales. 

 

1. Multiscale Entropy 

Costa et al. developed MSE for the multiscale analysis of 
physiologic time series [9], [10]. The computation of MSE 
essentially consists of elimination of fast temporal scales to 
focus on slower time scales, coarse graining procedure to 
assess entropy rates and calculation of entropy. For multiscale 
analysis, SampEn have been preferred to estimate entropy 
since SampEn is a refinement of the ApEn family of statistics 
[8]-[11]. The MSE method incorporates two procedures: 
1. For a physiological time series with N points data length, 

multiple coarse-grained time series are created by 
averaging a successively increasing number of data 
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samples within non-overlapping windows of increasing 
length, . Each element of the coarse-grained time series 
is calculated as:  
 

1 j  N/. 
 

where  represents the scale factor and length of each coarse-
grained time series is N/. 

For scale 1: the coarse-grained time series will simply be 
the original signal x1, x2...xN 

For scale 2:  
x x1 2

2 ,

x x3 4

2 ,...

N Nx x 1

2  
 
For Scale 3: 
 

x x x 1 2 3

3 , 

x x x 4 5 6

3  ,...

N N Nx x x  2 1

3  
 

2. For each coarse-grained time series, SampEn is calculated 
with predefined parameters m, the embedding dimension 
and r, a threshold, which is in effect a noise filter. The 
parameter m specifies the length of patterns and r is the 
tolerance threshold for accepting similarity between these 
patterns. SampEn is a “regularity statistic”. It “looks for 
patterns” in a time series and quantifies its degree of 
predictability or regularity.  

For each coarse grained time series u(i) the SampEn is 
calculated by forming m vectors X (1) to X (N-m+1) defined 
by 

 

        1,....1,  miuiuiuiX , 11  mNi , 
 

where the distance d[X(i),X(j)] between the vectors X(i) and 
X(j) as the maximum absolute difference between respective 
scalar components is calculated as: 
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In this study, m is fixed to 2 and r is considered as the 20% 
of the standard deviation of the datasets. 

III. RESULTS AND DISCUSSION 

Linear mathematical model does not match physiological 
system exclusively. Furthermore, the influences of undefined 
stimuli on physiological processes should be taken into 
consideration for HRV analysis. Therefore, appropriate 
approach for physiological heart rate time series analysis is 
fractal, chaotic and complexity based non-linear analysis. In 
cardiovascular system analysis, wide consensus has been 
reached that a decrease in the complexity is in most instances 
bounded to a pathological condition. 

This study aimed on non-linear method based on MSE 
analysis, capable of identifying complexity at temporal scales. 
We considered estimator applicable on data sets of about 1000 
RR intervals as they are suitable for the experimental 
protocols of HRV routinely used by medical practitioners. To 
investigate the influence of ECG sampling frequency and the 
scaling factor, MSE of 60 ectopic-free RR interval series 
having data length of N=1000 samples was computed. Table I 
demonstrates the effect of ECG sampling frequency variation 
on MSE at different scale.  

 
TABLE I 

EFFECT OF ECG SAMPLING FREQUENCY ON AVERAGE MSE OF TEN HEALTHY SUBJECTS 

Sampling frequency (Hz) 
Multiscale Entropy 

scale 1 scale 2 scale 3 scale 4 scale 5 scale 6 scale 7 scale 8 scale 9 scale 10 

125 Hz 1.5757 1.5692 1.5128 1.4486 1.4127 1.3309 1.3011 1.2889 1.2388 1.2263 

250 Hz 1.5869 1.5751 1.5209 1.4472 1.4124 1.3369 1.2975 1.2991 1.236 1.222 

500 Hz 1.6427 1.5929 1.5086 1.4402 1.4132 1.3214 1.2887 1.2895 1.2243 1.2206 

1000 Hz 1.6412 1.5969 1.5134 1.4426 1.4026 1.3239 1.2896 1.2808 1.2161 1.2172 

1500 Hz 1.6419 1.5912 1.5102 1.4389 1.4157 1.3211 1.2941 1.2879 1.2201 1.2155 

2000 Hz 1.6422 1.5919 1.5123 1.4359 1.4152 1.32 1.2943 1.2869 1.2189 1.2147 
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The impact of variation in ECG sampling rate on the MSE 
was evaluated by relative errors (REs) calculated by 
comparing MSE calculated from the RR interval time series 
derived from ECG with sampling frequency 2000 Hz. For 
MSE parameters {X1, X2, . . . Xn} obtained with a sampling 
frequency of 125 Hz, 250 Hz, 500 Hz, 1000 Hz and 1500 Hz 
and Xorigin obtained with ECG sampling frequency of 2000 

Hz, the relative errors, REk were calculated as |Xorigin− 
Xk|/Xorigin × 100 (%). For MSE measure at each sampling 
frequency, 50 error values were computed (Table II) and used 
for the statistical analysis. The correlation coefficients values 
for the increase in sampling frequency with decrease in REs of 
MSE at different scales are shown in Table III. 

 
TABLE II 

THE RELATIVE ERRORS IN MSES AT SAMPLING FREQUENCIES OF 125, 250, 500 1000 AND 1500 HZ WITH RESPECT TO MSE AT SAMPLING FREQUENCY OF 2000 

HZ 

Sampling frequency (Hz) 
Relative Error 

scale 1 scale 2 scale 3 scale 4 scale 5 scale 6 scale 7 scale 8 scale 9 scale 10 

125 Hz 4.0494 1.4260 0.0331 0.8845 0.1767 0.8258 0.5254 0.1554 1.6326 0.9550 

250 Hz 3.3674 1.0553 0.5687 0.7870 0.1979 1.2803 0.2472 0.9480 1.4029 0.6010 

500 Hz 0.0304 0.0628 0.2447 0.2995 0.1413 0.1061 0.4327 0.2020 0.4430 0.4857 

1000 Hz 0.0609 0.3141 0.0727 0.4666 0.8903 0.2955 0.3631 0.4740 0.2297 0.2058 

1500 Hz 0.0183 0.0440 0.1389 0.2089 0.0353 0.0833 0.0155 0.0777 0.0984 0.0659 

2000 Hz 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
TABLE III  

CORRELATION COEFFICIENTS BETWEEN INCREASE IN SAMPLING FREQUENCY AND DECREASE IN RES OF MSE BASED HRV 

Correlation coefficients 

scale 1 scale 2 scale 3 scale 4 scale 5 scale 6 scale 7 scale 8 scale 9 scale 10 

0.7440 0.7728 0.5080 0.8915 0.1689 0.7493 0.8487 0.5470 0.8625 0.9269 

 
For very low ECG sampling frequency of 125 Hz, the REs 

in MSE with reference to values at sampling frequency 2000 
Hz were approximately 4 and 0.95% for low time scale-1 and 
large time scale-10, respectively. At a medium ECG sampling 
frequency of 500 Hz, REs were 0.03 and 0.48%, whereas at 
high sampling frequency of 1500 Hz REs were 0.001% and 
0.06% for low time scale-1 and large time scale-10, 
respectively. Therefore, entropy measures of HRV at different 
time scales are found to be sensitive to ECG sampling 
frequency and time scales.  

IV. CONCLUSIONS 

Variation in MSE based HRV due to the ECG sampling 
frequency was quantified at different time scales. The 
significance change is found in MSE with variation in 
sampling frequency and scaling factor. The errors in entropy 
measures depend upon data length of RR interval time series. 
This erroneous quantification results a bias in entropy measure 
and clinically misinterpretation of HRV indices. The findings 
of the present work can be partly used as a reference for 
selection of optimal sampling frequency and the acceptable 
amount of error for the MSE based HRV analysis at different 
time scales. 
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