
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:1, 2018

12

Implementation of Quantum Rotation Gates Using
Controlled Non-Adiabatic Evolutions
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Abstract—Quantum gates are the basic building blocks in the
quantum circuits model. These gates can be implemented using
adiabatic or non adiabatic processes. Adiabatic models can be
controlled using auxiliary qubits, whereas non adiabatic models can
be simplified by using one single-shot implementation. In this paper,
the controlled adiabatic evolutions is combined with the single-shot
implementation to obtain quantum gates with controlled non adiabatic
evolutions. This is an important improvement which can speed the
implementation of quantum gates and reduce the errors due to the
long run in the adiabatic model. The robustness of our scheme to
different types of errors is also investigated.
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I. INTRODUCTION

QUANTUM algorithms are powerful algorithms and their

use allows one to outperform their classical counterparts.

These algorithms can be implemented using either the circuit

model [1] or the adiabatic quantum computation model

proposed by Farhi et al. [2]. The Quantum circuit model is

the most widely used model in quantum information and the

computational operations are made in a sequence by using

basic quantum gates. However, the advantage of the adiabatic

quantum computation model over the circuit model lies in

the robustness of the model against some types of errors.

Despite this advantage it has been show that the two models

are polynomially equivalent [3]. Since, the adiabatic model

is based on the adiabatic theorem [4], [5], the extensive

run time is a major flaw. This makes the model more

vulnerable to the external interaction with the environment. In

order to overcome this problem, the non adiabatic quantum

computation was proposed [6]–[9]. This model is robust

against decoherence and allows a high-speed realization of

quantum gates.

Arbitrary quantum gates can be constructed from one- and

two-qubit gates. In general, one-qubit gates is a φ-rotation

about an arbitrary axis. So, the implementation of arbitrary

quantum rotation gates are very important. In a recent study by

Xu et al. [10] it has been shown how to realize a non adiabatic

single quantum gate using a single shot implementation. This
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has been a great development compared to previous schemes

where more than one sequential gates were used to implement

a quantum rotation gate [6]–[8]. The proposed scheme uses

a three Λ system that is driven by two laser fields and an

arbitrary quantum gate can be obtained through the alteration

of the detuning, phase and amplitude of the driving laser

fields. A square pulses were selected to avoid trouble when

varying the frequencies and amplitudes of the lasers. Another

interesting approach to realize a single qubit gate was proposed

by Italy [11]. It uses a controlled adiabatic evolution which

is, so to speak, the circuit model of the adiabatic quantum

computation.

The main contribution of this paper is the combination

of single shot implementation with controlled adiabatic

evolution to attain the controlled non-adiabatic evolution.

In Sections II and III, we review the non adiabatic

single shot implementation [10] and the controlled adiabatic

evolution [11], respectively. In Section IV we propose our

model, the controlled non adiabatic evolution and investigate

the effect of errors on this model in Section V. Finally, we

summarize the results in Section VI.

II. NON ADIABATIC QUANTUM GATES IMPLEMENTATION

In this section we review the single-shot implementation

of quantum gates [10]. The model is shown in Fig. 1. A

three-level Λ system consists of two computational basis

{|0〉, |1〉} and an exited state |e〉 is driven by two square

pulses with the same detuning Δ. The first pulse with the Rabi

frequency Ω0 acts on the transition |0〉 ↔ |e〉 and the second

pulse with Rabi frequency Ω1 acts on the other transition

|1〉 ↔ |e〉. The transition |0〉 ↔ |1〉 is a forbidden transition.

In order to implement a quantum gate, the detuning and the

Rabi frequencies are chosen as follows.

Δ = −2Ω sin γ, (1)

Ω0 = Ω cosα cos γ, (2)

Ω1 = Ωeiβ sinα cos γ, (3)

where, Ω is the norm of the vector [Δ/2,Ω0,Ω1] and α, β, and

γ are arbitrary parameters. Different values of these parameters

lead to different quantum rotation gates. The Hamiltonian of

the system can be now written as

H = −Δ|e〉〈e|+
1∑

j=0

[Ωj |j〉〈e|+H.c.] . (4)

This Hamiltonian can be simplified to

H = Ωsin γI +Ω(cos γ σx + sin γ σz) , (5)
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Fig. 1 Three level Λ system used to implement quantum rotation gates with
just one-shot implementation

where, I is the identity matrix, the Pauli spins σx = |e〉〈b|+
|b〉〈e| and σz = |e〉〈e| − |b〉〈b| with |b〉 = cosα|0〉 +
eiβ sinα|1〉. If the duration of the evolution is T = π/Ω, it is

easy to obtain the evolution operator at T (the Hamiltonian is

time independent). So, in the basis {|e〉, |b〉, |d〉} the evolution

operator can be written in a matrix form as

U(T ) =

⎛
⎝ e−iφ 0 0

0 e−iφ 0
0 0 1

⎞
⎠ , (6)

where the state |d〉 = sinα|0〉 − eiβ cosα|0〉 is normal to the

state |b〉. As (6) shows, the state |d〉 is decoupled from all

the other states. Since our computational basis is {|0〉, |1〉},

restricting to this logical subspace, the evolution operator is

then equivalent to

U(T ) ≡ e−iφ
2 (|b〉〈b|−|d〉〈d|). (7)

This evolution operator is simply a φ-rotation gate around the

axis determined by the two states |b〉 and |d〉.

III. CONTROLLED ADIABATIC EVOLUTIONS

In this section we review the controlled adiabatic evolutions

model proposed in [11]. This model is an important scheme

that can be used to rotate any unknown state |ψ1〉 by any angle

φ about any arbitrary axis |n〉. It consists of two qubits. The

first qubit is initially in the unknown state and the second one

is an auxiliary qubit. The Hamiltonian is given by the tensor

product

H(t) = |n〉〈n| ⊗H0(t) + |n⊥〉〈n⊥| ⊗Hφ(t), (8)

where H0(t) and Hφ(t) are the adiabatic evolution

Hamiltonians. They are acting on their respective subspaces

spanned by the states |n〉 and its orthogonal state |n⊥〉. They

are time-dependent Hamiltonians and take the form

Hφ(t) = − cos θ(t)σz − sin θ(t)(cosφσx + sinφσy),(9)

H0(t) = − cos θ(t)σz − sin θ(t)σx, (10)

where, the time-depend is through the angle θ(t) which we

assume it is a linear function of time, θ = θf t/T . The

parameter θf is fixed and it is the value of the angle θ at the

end of the evolution time T . This evolution time is assumed

to be large enough in order to maintain the evolution of the

system adiabatic. It is worth to mention that both Hamiltonians

have two eigenvalues ±1.

In the absence of any losses, the evolution of the system is

governed by the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (11)

To find the solution of (11), the state |ψ(t)〉 is written as a

superposition of its projections on the states |n〉 and |n⊥〉

|ψ(t)〉 = |n〉 |ψn(t)〉+ |n⊥〉 |ψn⊥(t)〉. (12)

This decomposition leads to two decoupled first order

differential equations

i
∂

∂ t
|ψn(t)〉 = H0|ψn(t)〉, (13)

i
∂

∂ t
|ψn⊥(t)〉 = Hφ|ψn⊥(t)〉. (14)

Let the auxiliary state be in the state |0〉. The initial state can

be written as

|ψ(0)〉 = (α|n〉+ β|n⊥〉)|0〉, (15)

which can be written as ψ(0)〉 = |n〉(α|0〉) + |n⊥〉(β|0〉),
where α and β are arbitrary numbers such that |α|2+|β|2 = 1.

Keeping in mind that the evolution is adiabatic, the system

evolves to the the final state

|ψ(tf )〉 = cos(θf/2) (α |n〉+ β|n⊥〉) |0〉
+sin(θf/2)

(
α |n〉+ eiφβ|n⊥〉

)
|1〉. (16)

When the final angle is chosen to be θf = π, the first qubit

will be a rotation of the initial unknown state by an angle φ
around the state |n〉, whereas, the auxiliary state will be with

probability one in the state |1〉.

IV. CONTROLLED NON ADIABATIC EVOLUTIONS

The adiabatic evolutions require long time run. In order to

shorten this time, the non adiabatic evolution was proposed.

In this section, we are ready to combine the two scheme, the

non adiabatic single-shot implementation with the controlled

evolutions. This will be an important improvement of the

previous schemes, since it solve the problem of long time run

which in turn improve the robustness against decoherence.

The Hamiltonian of the system is similar to that of the

controlled adiabatic evolutions [11]. It is given by

H(t) = |n〉〈n| ⊗H0(t) + |n⊥〉〈n⊥| ⊗Hφ(t). (17)

However, the Hamiltonians do not depend on time, unlike

the controlled adiabatic evolutions. They are chosen almost

identical to the single-shot implementation Hamiltonians, (5),

such that

Hφ = Ω(cosφ− sinφ)σx +Ω(cosφ+ sinφ)σy, (18)

H0 = Hφ=0 = Ω(σx + σy) . (19)
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If the initial state of the first qubit is in unknown state, |ψ1〉 =
α|n〉 + β|n⊥〉, and the auxiliary qubit in the state |0〉, then,

the state at later time t can be obtained from (11). Thus,

|ψ(t)〉 = cos
(√

2Ω t
)
(α|n〉+ β|n⊥〉) |0〉

+e−iπ/4 sin
(√

2Ω t
) (

α|n〉+ eiφβ|n⊥〉
)
|1〉.

(20)

If the evolution time is chosen to be T = π√
8Ω

, then the

system ends up in the state

|ψ(T )〉 =
(
α|n〉+ βeiφ|n⊥〉

)
|1〉, (21)

where we have omitted the global phase. This means that the

first qubit evolves to a rotated state by an angle φ around

the axis determined by the state |n〉. This rotated state is

simply the rotation of the unknown state |ψ1〉. In addition

to that, the auxiliary qubit ends up in the state |1〉. Since

the Hamiltonian (17) acts differently on the two subspaces

spanned by |n〉 and its orthogonal state |n⊥〉, the adiabatic

evolution of the auxiliary state evolves also differently and in

parallel on these subspaces [11]. This is of cause due to the

adiabatic theorem [4], [5] which states that if the Hamiltonian

evolves slowly with respect to the characteristic time of the

system, the state of the system is kept close to an instantaneous

eigenvalue at later time. To show this parallel evolutions we

choose two quantum gates, the NOT gate and square NOT

gate. The NOT gate is simply the Pauli-X gate which is given

in matrix form by

σx =

[
0 1
1 0

]
, (22)

and it is a rotation of φ = π around the x-axis, i.e,.

|n〉 = 1√
2
(|0〉+ |1〉). The square root of NOT gate denoted

by
√

NOT gate is represented by the matrix

√
σx =

1

2

[
1 + i 1− i
1− i 1 + i

]
, (23)

and it is a rotation of φ = π/2 around the x-axis. Fig. 2a

shows the parallel evolutions of the auxiliary state initially in

|0〉 for the NOT gate. At the end of the evolution T = π/
√
8,

the auxiliary state ends up in |1〉. It is clear that the auxiliary

qubit follows two different parallel paths on the Bloch sphere.

The angle between the two longitudinal paths is π. Similarly,

Fig. 2b illustrates the evolution of the auxiliary qubit for the√
NOT gate following two different longitudinal paths. The

angle between these paths is π/2.

V. ANALYSIS OF CONTROLLED NON ADIABATIC

EVOLUTIONS MODEL

Our Model described above is an ideal model. There is

always interaction with the environment. So, our model is

subject to different types of decoherence which cause an

imperfect implementation of quantum rotation gates. In this

section we focus on pulse area error and decoherence. The

pulse area error is due to the imperfect control of the pulses

and the decoherence is due to either the decay of the excited

state or dephasing.

A. Pulse Area Error
The pulse area error occurs in case there is an inaccurate

control in Ω which is the only relevant parameter. In this case,

the fidelity at the end of the evolution time, t = T can be easily

obtained and it is given by

F =

√
1

2

(
1 + cos

(
πξ

Ω

))
, (24)

where ξ is the error in the value of Ω. The fidelity is the same

for all rotation gates and does not depend on the initial state

of the first qubit. For small values ξ � 1, the fidelity is a

quadratic function of ξ and it is given by

F ≈ 1− 1

8

(
πξ

Ω

)2

. (25)

So, we have lim
Ω→∞

F = 1. Thus, Increasing the Rabi frequency

Ω leads to increasing the fidelity and also shorten the time run.

B. Dephasing
The effect of the decoherence can be studied by replacing

the Schrödinger equation (11) by the the Lindblad master

equation [12], [13]

dρ

dt
= −i [H, ρ]

+
1

2

∑
i

(
2CiρC

†
i − C†

iCiρ− ρC†
iCi

)
, (26)

where ρ is the density operator, H is the Hamiltonian operator

given by (17), and Ci are the Lindblad operators associated

with different types of decoherence. We will focus on two

important operators, C =
√
2κ|1〉〈0| and C =

√
2κσz .

For simplicity we assume that both qubits have the same

type of decoherence with the same rate κ. To compute

the fidelity we can use either the master equation (26) or

the quantum trajectory approach [14]–[17]. The quantum

trajectory approach unravels the master equation so that it can

show the evolution of an individual trajectory. This is very

important if we are interested in the relative phase between

the two paths followed by the auxiliary qubit.
The numerical computations of the fidelities are obtained

from the master equation (26) using 5000 initial random states

uniformly distributed on the Bloch sphere

|ψ(0)〉 =
(√

u|0〉+ ei2πv
√
1− u2|1〉

)
|0〉, (27)

where, u and v are two random numbers uniformly distributed

over the unit interval [0, 1].
Figs. 3 and 4 show the maximum, the minimum, and the

average fidelities as a function of the rate κ for the NOT

gate where the common Lindblad operator C =
√
2κ|1〉〈0|

and C =
√
2κσz . In case when C =

√
2κσz , there is no

big deviation between the fidelities for different initial states.

However, there is a large deviation when C =
√
2κ|1〉〈0|. This

indicates that the fidelity depends on the initial state of the

unknown state. We have also plot the fidelity as a function

of Ω. Fig. 5 shows that for large values of Ω the fidelity

approaches 1. So, this means that increasing the value of the

Rabi frequency compensate the errors due to dephasing and

area pulse error.
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(a) For the NOT gate. The rotation angle is φ = π (b) For the
√

NOT gate. The rotation angle is φ = π/2.

Fig. 2 The evolution of the auxiliary qubit follows two different longitudinal paths on the Bloch sphere. The parameters are: Ω = 1, |n〉 = 1√
2
(|0〉+ |1〉)

and the evolution time T = π/
√
8
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(a) The Linddblad operator Ci =
√
2κ|1〉〈0|
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(b) The Linddblad operator Ci =
√
2κσz

Fig. 3 The fidelity for the NOT gate as function of κ. The maximum (solid line), the minimum (dashed line) and the average (doted line) fidelities. The
value of the Rabi frequency is Ω = 1
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(a) The Linddblad operator Ci =
√
2κ|1〉〈0|
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(b) The Linddblad operator Ci =
√
2κσz

Fig. 4 The fidelity for the
√

NOT gate as function of κ. The maximum (solid line), the minimum (dashed line) and the average (doted line) fidelities. The
value of of the Rabi frequency is Ω = 1.

VI. CONCLUSION

In the field of quantum computing, non-adiabatic and

adiabatic schemes can be used to implement any quantum

gate. Rotation gates are very important gates and can be

implemented using both schemes. Non-adiabatic schemes

established an increasing attention for its robustness against

certain errors. Nevertheless, all previous studies demonstrated

that with two or more sequentially implemented gates, a
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(b) For the
√

NOT gate

Fig. 5 Fidelity for the NOT and
√

NOT gates as a function of the Rabi frequency Ω. The Lindblad operators are Ci =
√
2κσz and κ = 0.001. The

maximum (solid line), the minimum (dashed line) and the average (doted line) fidelities

general one-qubit gate can be obtained and constructed.

In recent studies, it has been demonstrated that with non

adiabatic evolution a gate can be realized using single shot

implementation, and on another study it demonstrated an

implementation of a quantum gate using controlled adiabatic

evolution. In this paper, we have combined the two approaches

and obtain what is called controlled non adiabatic evolutions.

Our approach is important improvement over the previous

schemes. Our focus is on the NOT and
√

NOT gates but it

can be used for any rotation gate. We have also discussed the

robustness of our model against the pulse area error and the

dephasing. We Have calculated the maximum, minimum, and

average fidelities for 5000 initial states uniformly distributed

on the Block sphere. The run time which is given by pi/
√
8Ω

and can be chosen as small as desired by increasing the value

of the Rabi frequency. This will shorten the time run as well

as make the fidelity goes to unity.
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