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Abstract—This aims of this paper is to forecast the electricity spot
prices. First, we focus on modeling the conditional mean of the series
so we adopt a generalized fractional K -factor Gegenbauer process
(K -factor GARMA). Secondly, the residual from the K -factor
GARMA model has used as a proxy for the conditional variance; these
residuals were predicted using two different approaches. In the first
approach, a local linear wavelet neural network model (LLWNN) has
developed to predict the conditional variance using the Back
Propagation learning algorithms. In the second approach, the
Gegenbauer generalized autoregressive conditional heteroscedasticity
process (G-GARCH) has adopted, and the parameters of the K -factor

GARMA-G-GARCH model has estimated using the wavelet
methodology based on the discrete wavelet packet transform (DWPT)

approach. The empirical results have shown that the K -factor
GARMA-G-GARCH model outperform the hybrid K -factor

GARMA-LLWNN model, and find it is more appropriate for
forecasts.

Keywords—K -factor, GARMA, LLWNN, G-GARCH,

electricity price, forecasting.

L.INTRODUCTION

N power markets, price analysis has become an important

topic for all its participants. Background information about
the electricity price is crucial for risk management. More
precisely, it represents an advantage for a market player facing
competition. In fact, forecasting electricity prices at different
periods is valuable for all industry stakeholders for cash flow
analysis, financial procurement, and capital budgeting,
regulatory rule making, and integrated resource planning.

In this vein, both producers and consumers rely on price
forecasting information to put forward their corresponding
bidding strategies. If a producer has, an accurate price forecast,
he can develop a bidding strategy in order to maximize his
profit. On the other hand, if an accurate price forecast is
available, a consumer can make a plan to minimize his own
electricity cost. Hence, the players benefit is greatly affected
by the accuracy of price forecast.

However, the behavior of electricity prices differs from
other commodity markets. The most obvious of these
differences is that electricity is a non-storable merchandize.
Therefore, the demand and supply of electricity are highly
inelastic and very sensitive to business cycles and weathers,
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and so relatively, small changes in load or generation in a
matter of hours or minutes can cause huge changes in price.

Moreover, electricity prices present some specific
characteristics such as high frequency, multiple seasonality (on
annual, weekly, and daily levels), non-stationary behavior, [1]-
[3], high volatility, hard nonlinear behavior, long memory,
calendar effect, high percentage of unusual prices, mean
reversion, price spikes and limited information to the market
participants. Hence, these behaviors may affect the prices
dramatically. In this respect, there is no other similar market
[4]. Thus, we cannot rely on models developed for financial
markets or other commodity markets. In this framework, due
to the complexity of the electricity market, the electricity price
forecasting has been the most challenging task. This has also
motivated the researchers to develop intelligent and efficient
approaches in order to forecast the prices that all stakeholders
in the market can benefit out of it.

In this paper, we are interested in resolving the issues of
modeling and forecasting the features of the electricity prices,
notably, the existing of the seasonal long memory behavior in
the conditional mean and the conditional variance.

In fact, most of the existing studies use models that permit
the modelling of one or two features but not more. Specifically
they do not model the long memory behavior inside the
seasonality in both the conditional mean and the conditional
variance. Recall that the long memory models introduced by
[5], [6] permit to model an infinite cycle, which is too
restrictive for the electricity prices. One of the main
characteristics of the high frequencies data sets is the presence
of volatility clustering and leptokurtosis, as soon as persistence
and cyclical patterns in the conditional mean of the series
combined with conditional heteroscedasticity. All these
characteristics have been presented inside electricity spot
prices. Thus, dynamic modelling of means and variances
appears essential for this kind of data sets. In this paper, we
propose a new approach, which permit to take into account
mainly all these features.

The novelty of our proposed method is its capacity to model
the seasonal long memory behavior simultaneously in the
conditional mean and in the conditional variance of electricity
spot price, using a generalized long memory model called K -
factor GARMA-G-GARCH. In addition, we adopt a wavelet
estimation approach, which allows us to guarantee a
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parsimonious model with the greater accuracy. More precisely,
the methodology of our proposed model consists into two
steps; in the first step, the K -factor GARMA model proposed
by [7] is adopted to model the conditional mean in the time
series. The choice of this model is motivated by the ability to
take account simultaneously of long/short-term dependence
and seasonal fluctuations at different frequency. The main
feature of the k -factor GARMA model is that it allows larger
diversity in the covariance structure of a variable witnessed by
both the autocorrelation function and the spectral density
function, which present K singularities.

Nevertheless, this approach focuses only on modeling the
conditional mean, assuming that the residuals are white noises
with a constant variance. However, it’s well-recognized in the
empirical studies that this hypothesis is not verified, and the
residuals are rather characterized by a time varying variance.
To reproduce these patterns, we include in the second step the
G-GARCH model, recently introduced by [8] in order to
estimate the volatility, since this model is allows taking into
account the long memory phenomenon and seasonality effect
in conditional variance. Hence, we obtain the so-called K -
factor GARMA-G-GARCH model.

Then, for a comparison purpose, we use a second approach
named the local linear wavelet neural network (LLWNN)
model, proposed by [9], as a nonlinear non-parametric method
to estimate the conditional variance, so we obtain a hybrid K -
factor GARMA-LLWNN model. Hence, we can to benefit the
power of these two approaches (parametric and non-
parametric methods) in forecasting both conditional mean and
conditional variance of electricity prices for the Nord Pool
market.

This paper provides two contributions. The main one
consists in modeling the seasonal long memory behavior of
electricity prices simultaneously in the conditional mean and
in the conditional variance. For this purpose, we develop a
generalized K -factor GARMA-G-GARCH process, which
allows for seasonal long-memory behavior associated with Kk

-frequency. In fact, previous studies extend the K -factor
GARMA model with the classic GARCH model or the
FIGARCH model, and ignore the periodic long memory
behavior when modeling the volatility. Concerning the
parameters estimation of this model, we adopt an estimation
method in the wavelet domain based on the maximal overlap
discrete wavelet packet transform (DWPT) proposed by [10].

Our second purpose is to show the performance of the
proposed generalized long memory model (the K -factor
GARMA-G-GARCH) by comparing it with the hybrid K -
factor GARMA-LLWNN model, in order to prove the
usefulness of modeling the seasonal long memory in both
conditional mean and conditional variance to improve the
forecasting accuracy of the electricity price.

The log-return of electricity price for the Nord Pool market
is used in this paper in order to show the appropriateness and
effectiveness of the proposed model to time series forecasting.
The remaining part of the study is organized as follows;

Section II presents a brief review of the literature. Section III
presents the econometric methodology; which includes the
basic concepts of the k -factor GARMA model, the LLWNN
model based BP learning algorithm, and illustrate the
methodology describing the building of the hybrid Kk -factor
GARMA-LLWNN model and the K -factor GARMA-G-
GARCH model with the wavelet- based estimation procedure.
Section IV deals with the empirical framework, where the
predictive performance of the proposed K -factor GARMA-G-
GARCH model is compared with the hybrid K -factor
GARMA-LLWNN model, and Section V wrap up the
conclusions.

II.LITERATURE REVIEWS

For the electricity market, an appropriate forecast model
should consider the features related to the time series of the
electricity. In this framework, important methods have been
developed and applied for electricity price forecasting from
different modeling families. Broadly two methods: the first
approach is the statistical or econometric time series models,
which considered as parametric tools, and the second approach
is the soft computing models, which are considered as non-
parametric tools. These two approaches are found to have been
applied.

In statistical models, auto regressive integrated moving
average ARIMA [11], has been used extensively. However,
these models do not allow taking into account the long memory
behavior characterizing the electricity prices. To overcome this
limitation [5] and [6] introduced the Fractional Autoregressive
Moving Average (FARMA) model. Recent works have
applied these methods for the electricity prices [2], [12]. In the
frequency domain, these models present a peak for very low
frequencies near the zero frequency. Hence, it is noteworthy
that ARFIMA processes do not allow to take into account the
cyclical behavior or persistent periodic in the data. To
overcome this insufficiency, [13] introduced a second
generation of the long-memory model denoted a generalized
long-memory or Gegenbauer Autoregressive Moving Average
(GARMA) model that has been developed to model,
simultaneously, the presence of persistence and seasonality in
the data. Such a model displays a hyperbolic decay of the
autocorrelation function at seasonal lags rather than the slow
linear decay characterizing the seasonal differencing model
(SARIMA). On the other hand, in the frequency domain, this
model displays a spectral density that is not necessarily
unbounded at the origin, as in the case of the ARFIMA model,

but anywhere at a given frequency A along the interval [0, T 1
This frequency named Gegenbauer frequency or G-frequency.
The GARMA model exhibits a long-memory periodic
behavior at only one frequency A, thus implying just one
persistent cyclical component. Recently, [7] generalizes the
single frequency GARMA model to the so-called K -factor

GARMA model that allows the spectral density function to be
not necessarily located at one frequency but associated with a
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finite number K of frequencies in [0,7[], known as the

Gegenbauer frequencies or G-frequencies. The main feature of
this Kk -factor GARMA model is that it allows for more
diversity in the covariance structure of a variable witnessed
through both the autocorrelation function and the spectral
density function, which presents K singularities.

The Kk -factor GARMA model applied by several authors to
reproduce the seasonal patterns as well as the persistent effects
in the stock markets [14]-[16] and Urban transport traffic in
Paris area [17]. Despite the compatibility of this model with
the characteristics of electricity prices, few applications are
oriented in the electricity market [18]-[20].

However, the K -factor GARMA model exhibits two main
shortcomings. The first is that it does not handle the nonlinear
deterministic trend. [21] proves that omitting the deterministic
trend in the fractional integration model leads to a serious bias
and high variability in the fractional integration parameter. The
second is that it focuses only on modeling the conditional
mean, assuming hence that the residuals are white noise with
constant variance over time. In practice, this latter assumption
is not verified, and the residuals are rather characterized by a
time-varying variance.

To reproduce these patterns, two approaches have been
considered in the literature: the parametric models such as
using GARCH or FIGARCH processes [22], [23], and the non-
parametric methods like the neuronal nets for instance.

In the first category, [24] include the GARCH class of
models proposed by [25], [26]. Hence, the obtained model
called the k -factor GARMA-GARCH process, which allows
for long-memory behaviour associated with K -frequency and
include a GARCH-type model to describe time varying
volatility. In addition, [27] propose the K -factor GARMA-
FIGARCH to reproduce the long-range dependence behaviour
in the conditional variance of the exchange rate. Recently, [14]
proposed a new class of semiparametric generalized long-
memory models with FIAPARCH errors that extends the K -
factor GARMA model to include nonlinear deterministic trend
and allows for time-varying volatility, in some MENA stock
markets, using an estimation approach based wavelet theory.

Nevertheless, these models are not fully satisfactory when
modelling volatility of intra-daily financial returns series. One
important characteristic of such data is the strong evidence of
cyclical patterns in the volatility of the series. In fact, the
periodic pattern appears as a persistent cyclical behaviour on
the autocorrelation functions with oscillations decaying very
slowly. Some pronounced peaks at one or more non-zero
frequencies in the periodogram are also observed. The
empirical evidence so far accumulated emphasises the
importance of taking into consideration the periodic dynamics
of volatility for a correct modelling. In order to model the
empirical evidences of seasonal long memory behaviour in the
volatility, [28], [29] proposed new type of GARCH models
characterised by periodic long memory behaviour. The
suggested category of models introduces generalised periodic
long-memory filters, based on Gegenbauer polynomials, into

the equation of standard GARCH model which describ the
time-varying volatility. These models, called periodic long-
memory GARCH (PLM-GARCH), and generalized long
memory GARCH (G-GARCH), this model generalize the
FIGARCH and FIEGARCH models, by introducing a reaches
dynamics in the conditional variance. The filter used for G-
GARCH specfications is the most general and allows the
modelling of quite complex seasonal long memory behaviours.
In the literature, the generalized long memory GARCH models
(or G-GARCH) is used to estimate the financial time series
such as the exchange rate by means of Monte Carlo
simulations [28], [30]. Few studies apply this approach for the
electricity spot price. To exemplify, [31] propose a new
approach dealing with the stationary K -factor Gegenbauer
process with Asymmetric Power GARCH noise under
conditional Student-t distribution. This model called
GGk — APARCH model is used to model electricity spot
prices coming from some European and American electricity
markets. With reference of forecasting criteria, this model
shows very good results compared with models using
heteroscedastic asymmetric errors.

We can conclude that in the literature of generalized long
memory models, the authors use either the K -factor GARMA
model, or the G-GARCH model to estimate the conditional
mean and the conditional variance of the time series,
respectively. However, none of them considers the existing of
the long rang periodic behaviour in both the conditional mean
and the conditional variance. In this paper, in order to provide
robust forecasts for spot electricity prices, we propose a new
approach based on dual generalized long memory process,
which allows taking into account many stylized facts observed
on the electricity spot prices, in particular stochastic volatility,
long memory and periodic behaviours.

Concerning the estimation of the parameter’s K -frequency
GARMA process, [7], [13] considered the time-domain
maximum likelihood method. [10] proposed an alternative
estimation method in the wavelet domain based on the
maximal overlap discrete wavelet packet transform (DWPT).
Compared to Fourier analysis, the strength of the wavelet
approach lies in its ability to localize simultaneously a process
in both time and frequency [32], [33].

In the second category, in order to grapple with the
limitations of the parametric models and explain both the
nonlinear patterns and time-varying variance that exist in real
cases, several nonlinear, non-parametric models have been
suggested. In this context, [9] proposed a local linear wavelet
neural network (LLWNN). This model replaces the connection
weights between the hidden layer units and output units by a
local linear model. Thus, it requires only smaller wavelets for
a given problem than the case of wavelet neural networks. In
addition, this local capacity offers certain advantages such as
the efficiency and transparency of the learning structure. The
LLWNN model has been used for the electricity price
forecasting, [34]-[36].

In fact, both the k -factor GARMA models, as a powerful
statistical method, and the LLWNN model, as an advanced Al
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method, have achieved successes in their own nonlinear
parametric and nonparametric domains respectively. However,
none of them is a universal model that is suitable for all
circumstances. In other words, a time series is often complex
in nature and a single model may not be able to capture the
different patterns in the same way, so no method is the greatest
for all situations. Thus, using hybrid models or combining
several models has become a common practice in order to
overcome the limitations of model’s components and improve
the forecasting accuracy. In general, the statistical methods
help in dealing with voluminous datasets and neural network
handle the non-linearity.

In the literature, different combination techniques have been
proposed in order to overcome the deficiencies of single
models. The basic idea of the model combination in
forecasting is to use each model’s unique feature in order to
capture different patterns in the data. The difference between
these combination techniques can be described using
terminology developed for the classification and neural
network literature [37]. Hybrid models can be homogeneous,
such as using differently configured neural networks [38], [39].
It can be heterogeneous, with both linear and nonlinear models
[40]. In a competitive architecture, the objective is to represent
different patterns in the time series by building an appropriate
module that including different parts of the time series, and to
be able to switch control to the most appropriate [40], [41]. In
a cooperative modular combination, the aim is to combine
models to build a complete picture from a number of partial
solutions [37]. The hybrid techniques that decompose a time
series into its linear and nonlinear form are one of the most
popular hybrid models categories, which have been shown to
be successful for single models [42]-[46].

To sum up, in the literature, different combination technique
has been proposed to overcome the limitation of single model
by means of hybrid models, which uses the strength of
different methods in order to model the different feature
existing in the data, and thus enhance the forecasting results.
However, the mentioned hybrid methods combine models that
are not able to capture some features of the electricity time
series, such as the seasonal long memory behavior, non-
linearity, etc. In order to grapple with the limitation of such
models, we combine in this study the Kk -factor GARMA
model with the LLWNN in order to use each model’s unique
strength and thus, to capture different patterns in the electricity
time series.

[II.LECONOMETRIC METHODOLOGIES

A The k-Factor GARMA Model

The Kk -frequency GARMA model, proposed by [7],
generalizes the ARFIMA [5], [6] model allowing periodic or
quasi-periodic movement in the data. The multiple frequency
GARMA model is defined as follows;

ST -2y, L+ Y™ (y, ) = O(L)e, (1)

i=1

where @(L) and O(L) are the polynomials of the delay
operator L such that all the roots of ®(Z) and ®(2) lie

outside the unit circle. The parameters V,,; provide

i
information about periodic movement in the conditional mean

(m), &; is a white noise perturbation sequence with variance
| =1,2,...k s dmi are

long memory parameters of the conditional mean indicating
how slowly the autocorrelations are damped, /¢ is the mean

2 . o
o}, K is a finite integer, |V,

of the process, A . =cos'(v,;), 1=12,...k denote the

Gegenbauer frequencies (G -frequencies).
The GARMA model with K -frequency is stationary when

= l,anddm,i <1/4,the

model exhibits a long memory whend ;, >0. The main

<1,andd ; <1/2 orwhen\v .

‘Vm,i

characteristic of model is given by the presence of the
Gegenbauer polynomial:

K
P.(L) =] -2v,,L-L)* 2)
i=0

This polynomial maybe considered a generalized long-
memory filter that models the long-memory periodic behavior

at K +1different frequencies. When thinking of the 1 ; as

the driving frequencies of a cyclical pattern of length S | and
k—l—l:[S/ 2]+1, where [] stands for the integer part. To

highlight the contribution of P(L) at frequencies A, =0 and

/1m = 7T , equation (2) can be written as:
k+1

Pm(L) :(I - L)dm,o(l + L)dm”kl(E)H(I _2Vm,i L _ LZ)dm.J (3)
i=l

where 1(E)=1 if S is even, and zero otherwise and
k+l=[S/2]+l—|(E). For a GARMA model with a single

frequency, when V,, = 1, the model is reduced to an ARFIMA
(p, d, g) model, and when V,, =1 andd =1/ 2, the process

is an ARIMA model. Finally, Whendm =0, we get a

stationary ARMA model.
[47] determines the spectral density function and shows that

for dm > Othe spectral density function has a pole at
An = cos™' (V,,), which varies in the interval [O, ﬂ']. It is

important to note that when|vm| <1, the spectral density

function is bounded at the origin for GARMA processes, and
thus does not suffer from many problems associated with
ARFIMA models.
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B. A Local Linear Wavelet Neural Network (LLWNN)
Model

[9] propose a local linear wavelet neural network (LLWNN)
model for time series forecasting, and they have shown that
this model has more accuracy than the traditional WNN. In
local linear wavelet neural network (LLWNN) the number of
neurons in the hidden layer is equal to the number of inputs and
the connection weights between the hidden layer units and
output units are replaced by a local linear model. Remind that
in the wavelet transform theory the wavelets are in the
following form:

@ :{(/’i = ‘ai‘fl/zgo(x%bi) :a,,b, eR"ie Z} 4)
X = (X5 Xqyeues Xp)s
a, =(a;,,8,,.--a,), ®)
b, =(b,.b;,,...b,).

Families of functions that have been generated by a unique
function @(X) by the operations of dilation and translation of

@(X) ; which is located in both time space and frequency
and bi

are named scale and translation parameters, respectively. The
set X represents the inputs to the WNN model. In the standard
form of WNN, the output of a WNN is given by:

space, called a mother wavelet and the parameters @,

a2 X=Dh

f(X)zzwi¢i(X)=Zwi|ai| o(

) (©

. . . sth .
where ¢, is the activation function of wavelets of the it unit

of the hidden layer and @; is the weight connection of the i"

unit of the hidden layer to the output layer unit. Note that for
the n-dimensional input space, the basis function of the
multivariate wavelet can be computed by the product of n
unique wavelet basis functions as follows:

P(X) = Hco(xi) )

Obviously, the location of the i™ units of the hidden layer

has been determined by the scale parameter @; and the

translation parameter bi : According to previous research, the

two parameters can either be predetermined by the basis of the
Wavelet transformation theory or be determined by a learning
algorithm. Note that WNN is a kind of neural network in the
sense that wavelets represent the basic functions. One
limitation of the WNN is that for problems of large dimensions
many units of hidden layers are needed. In order to take
advantage of the local capacity of the basic wavelet functions

while minimizing the number of hidden units, here we propose
another type of WNN.

In the locally linear wavelet neural network (LLWNN) the
number of neurons in the hidden layer is equal to the number
of inputs and the connection weights between the hidden layer
units and the output units are replaced by a local linear model.

In the literature of LLWNN it is known that the local linear
model provides a more parsimonious interpolation in a large
dimension space and thus provides it with the ability of time
series prediction. This local capacity of the LLWNN model
offers some advantages such as the efficiency and transparency
of the learning structure.

The architecture of the proposed LLWNN is shown in the
Fig. 1, and its output from the output layer is given by:

M

y= Z(a’io +0, X+ + @ X )P (X)
i

12y

p(—) (®)
a

M
= Z:(a)iO + o, X, +...+a)inxn)‘ai‘
i=1

where X = [Xp Xy, .,Xn], instead the simple weight @

(locally constant model), a linear model has introduced:

U, =W, + @, X, +...+ @, X, ©®)

The linear models , i=12,...m) are determined by the

associated locally active wavelet functions ¢ (x) and (

i=12,...,M), thus U; is locally significant. The motivations of

introducing local linear models in WNN are as follows: (1)
local linear models were studied in some neuro-fuzzy systems
and showed good performance, and (2) local linear models
could provide a more parsimonious interpolation in large
spaces when modeling samples are dispersed. The scale and
translation parameters of the locally linear model are randomly
initialized at the beginning and are optimized by a learning
algorithm. In this paper, we adopt the Back Propagation (BP)
algorithm in order to optimize the parameters of the LLWN
model.

C. The Back Propagation-Learning Algorithm for Training
the LLWNN Model

The backward propagation of errors or back propagation, is
classified as a supervised learning algorithm commonly used in
training neural networks in general, in combination with an
optimization method such as gradient descent.

The backpropagation algorithm minimizes the objective
function by adjusting the connection weights employed to
develop the models. The gradient of the cost function is
calculated according to that particular weight parameter, and
then the parameters are updated by means of the negative
gradient. The learning rate is a fundamental factor in the
backpropagation algorithm. The network learns very slowly if
the learning rate is too low, contrariwise, the weights and the
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objective function will diverge if this rate is too high.
Therefore, an optimum value must be selected to guarantee
global convergence, which tends to be a difficult task to
achieve. If there are several local and global optima for the
objective function, a variable learning rate will do better [48].

Input layer

Hidden layer

Since the backpropagation requires a known and desired
output for each value of input in order to determine the loss
function gradient, for that reason it is usually considered as a
supervised learning method.

Wavelet funchon

Fig. 1 Local Linear Neural Wavelet Network Architecture

The equations of the backpropagation algorithm are
described briefly below. The objective function to minimize is
given as:

1
E= E[yt =@, (X) =, PR (X) —...— @, 1P, (X, P, (X) —

@ 0 ()0 PR (X) ...y, PR (X)] (10)

where Y, is the desired value, @(X)is the active wavelet
function, @, , denote the connection weight, p is the number
of input (i=1,2,...p)and | is the number of the hidden units
(j=1,2,...1). The weight is updated from i™ to the (i+D"

iteration, that is from @, to @, is given by:

)

oE
W, =0, + Ao, = o, +[ra—‘J,
t

Denote that I’ is the learning rate adopted in the LLWNN

model where a— for all weights are described by the
w

following equations:

oE

1
:wi0+r*e*( *(xf+x§+...+x§)
ow, ' 2

(12)

*exp(—((x, —¢,)* + (X, —¢)’ +o+ (X, -¢)%)

| output layer
pTmTTmEmm e mm———— _1
Wiy WG + E+ WX, E E
' B
| i
Wy WX + ot WX, ' —E. ¥
: i E >
: IE
' V| B
Wi + W +. '*,:.“'-'.?x.‘ i
Vj#0;
aa—E:a)Lj +r*e*(1j*(xf + X+ +x§)
o, 2 (13)
*exp(—((% =€) + (X, =€) +...+ (X, =€) ") *X;
1
;E:a)l,0+r*e*(}*(xf +x22+...+x;)
@y 2 (14)
*exp(—((X, _Ci)2 +(X, _Ci)2 +..+ (Xp _Ci)z))
1
—— =@, +r¥e* — [*(xX+x2+..+ X
dwy, @ b+ 2 (15)
*exp(—((X =)’ + (X, —C)” +...+ (X, —C)*)*X,
aE:a)ZO+r*e*(lj*(xf +X; +...+x§)
aa)z‘o ’ 2 (16)
*exp(—((% =) + (X%, —C)* +...+ (X, — )*))
1
= =@, +r¥e*| | *(xF+xi+.. + X
dw,, (2) e

*exp(—((X, _Ci)2 +(%, — Ci)2 +...t (Xp _Ci)z))* X

The other weights are also updated in the same way (Fig. 2).

D. Hybrid k-Factor GARMA-LLWNN Model

Both theoretical and empirical results suggested that the
combination of different models can be an effective tool to
improve the predictive performance of each model, especially
when the combined models are very different. In the literature,
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several combination techniques have been presented, such as
the traditional hybrid model of [42], [43], [49]. These methods
use the ARIMA model as a linear model and the multi-layer
perceptron neural network to model the non-linear component.
Although, these methods have shown, empirically, their
effectiveness, insofar as they can be an effective way of
improving the accuracy of predictions made by one of the
methods used separately, these models are critical.

| E Tt Bayer I Hiddawm layer
: i
H
Y Ty S
i
£ :
-..;t_' i - -
il T L P AR S
L | | =
= $ b
= "
i :
Wy W s

T

Sigral Propagation Direction

Indeed, these methods exploited ARIMA modeling to
predict the linear trend in the data, but predictions using the

ARI MA( p.d, q) model have not always proved to be very
effective. The main criticism mainly concerns the modeling of
short-term relationships only (short memory), while ignoring

the seasonal effect and the presence of long memory that
characterizes most financial and economic series.

Network performance evaluation

Evaluation results conform
to the requirements?

Calculate forward and reverse
BITOr

'

1 Adjust the newral network weight
value and threshald value

Lovear trasgler fumction

Memory the neural network weight
wilue , threshold value and output

Y

Fig. 2 Local Linear Wavelet Neural Network Model based Back Propagation Algorithm

To overcome this limitation, the K -factor GARMA model
offers greater flexibility in modeling simultaneous short and
long-term behavior of a seasonal time series.

On the other hand, the hybrid methods existing in the
literature neglected the modeling of volatility, a phenomenon
that characterizes most financial series. In reality, a good
forecast must take into account the time varying variance.
Thus, the LLWNN approach has been proposed to take into
account the time varying of conditional variance. The choice
of LLWNN in our hybrid model is motivated by the wavelet
decomposition and its local linear modeling ability.

Furthermore, the previous hybrid models assume that the
nonlinear relations are only exist in the residuals and the two
components (linear and nonlinear) must be modeled
separately, they assume that there are no nonlinear relations in
the averages since they are always estimated using a linear
model in the first step.

To overcome this limitation, we use the K -factor GARMA
model to estimate the nonlinear components in the data, and
then we model the residuals using an LLWNN model to
predict the volatility. In other words, the first step consists in
modeling the conditional mean using a non-linear parametric

model (K -factor GARMA). However, residuals are important

in forecasting time series; they may contain some information
that is able to improve forecasting performance. Thus, in the
second step, the residuals resulting from the first step will be
treated according to a local linear wavelet neural network
LLWNN.

In our hybrid method, we have combined two models that
have different characteristics in order to model the different
features existing in the data, thus we adopt a combination of
parametric and nonparametric models.

In conclusion, the proposed hybrid model exploits the
originality and the strength of the K -factor GARMA model as
well as the LLWNN model to detect the different features
existing in the data to benefit the complementary
characteristics of the models, which compose them. Thus, the
proposed hybrid model can be an efficient way giving a more
general and accurate model than other hybrid models.

E. The k-Factor GARMA-G-GARCH Model

The K-factor GARMA model is a powerful method in
modeling the conditional mean of the time series.
Nevertheless, this model assumes that the conditional variance
is constant over time. In the empirical studies, it is well
recognized that many time series often exhibit volatility

2313



International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:11, No:9, 2017

clustering, where time series exhibit both high and low periods
of volatility. To reproduce these patterns, we extended the K -
factor GARMA described above by inserting a fractional filter
in the conditional variance equation. For this reason, we
propose the K -factor GARMA-G-GARCH model that is able
to capture both seasonality and long memory dependence in
the conditional mean and in the conditional variance.

Recently, [28], [29] introduced new GARCH-type models
characterized by long memory and seasonality behavior, in
order to model the empirical evidences of long memory
behavior in the volatility of intra-daily financial returns. These
models, named generalized long memory GARCH or
Gegenbauer-GARCH (G-GARCH), generalize the FIGARCH
and FIEGARCH models by introducing a seasonal long
memory in the conditional variance.

In fact, it is also taken into account the periodic long
memory patterns in the conditional variances, associated to
zero and non-zero frequencies of the power spectrum.
Furthermore, to overcome the constraints of non-linear
coefficients for the positivity of the variance, the authors
propose to model the log-conditional variances. Therefore, G-
GARCH nests some traditional specifications of long memory
GARCH when adjusted to modeling log-variances.

The fundamental idea of this model is to include the
generalized long-memory process into the equation describing
the evolution of conditional variance in a GARCH framework.
This is why this new class of models is called Gegenbauer-
GARCH (G-GARCH). Thus, we consider the following k-
factor GARMA process with G-GARCH type innovations to
take into account the presence of a time varying conditional
variance:

Yi =t + & =l + 0L, (13)

where (4, is the conditional mean of Y, modeling using the

following K -factor GARMA model:

DO -2 L+ L) (3, - )= 0Lz, (19)

i=1

g/, ~N(©,07) (20)

where Gtz is the conditional variance, |t_l being the

information up to time t—1, Z, is an i.i.d random variable

with zero mean and unitary variance.
To specify the dynamics of the conditional variance, the

starting point is the dynamics of 512 We assume that gf follow

a K -factor GARMA model, which describes a cyclical pattern
of length S :

{U —L)f (1 + L)d“'(E’ﬁ(l =2, L+ )™ }W(L)ef

i=1

=y+[1-BWL)]4 @1

P, (L (L)el =y +[1 - B(L)]9, (22)

q ) P )
where y/(L)zl—Zy/iL' and ﬁ(L)zl—ZﬁiL'are

2
t

is a martingale difference, dv,o = dv /2, I(E)=1if S is

even and zero otherwise. With this assumption, the
corresponding GARCH-type dynamics for conditional
variance is given by;

suitable polynomials in the lag operator L and 9, = &7 — &

Utz = 7/+ﬁ(|-)0-t2 + {I _ﬁ(L)—[(I — L)dv"’(| + L)dv‘kI(E)

H (1 =2v, L+ )™ Ty (L)l (23)

This implies that in the G-GARCH framework of each
frequency has been modeled by means of a specific long-

memory parameter dv’i (differencing parameter of the

conditional variance). When dv’0 = dv,1 =...=d,,, all the

vk
involved frequencies have the same degree of memory.

Model (23) may provide, in particular cases, most of the
existing GARCH models. For example, standard GARCH
models (included seasonal GARCH [50] can be obtained by

puttingd,; =0, 1=0...k. Similarly, the FIGARCH

model is equivalentto S =1 and0<d, , <1.

It is interesting to mention that generalized long-memory
filters, in principle, may be applied to any category of GARCH
structure. Nonetheless, due to the constraints needed for
conditional variance positivity, G-GARCH models are not
always feasible, for this reason, [28] proposed to model the
logarithm of the conditional variances. Therefore, a practical
computing solution is to apply the filter to a generalized log-
GARCH model. This means beginning from the expression:

P,(Ly (L) -7]=y+[1- L], @9

where PV(L) is the generalized long memory filter introduced
into a GARCH structure, 4, = In( gtz) -7 —In( 0'5) is a
martingale difference andz = E [(ln( 2[2 ))] . The expected 7
value depends on the distribution of the idiosyncratic shock
and ensures that ugt is a martingale difference, given that
In(g}) =1In(c})+In(z}) . Under the Gaussian assumption

7 =—1.27. The expression for conditional variance implied by
(23).
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In(o?) = 7+ ALY In(?) +[1 = ALY =P (L (L)] )
*[in(e2) - ]

Since we are modeling In(o,) instead ofg., no

constraints for variance positivity are necessary. A further
approach of bypassing the problem of parameter constraints is
to adopt EGARCH versions of our model. The proposed model
lies between the FIGARCH and the FIEGARCH
representations. For the last model, the Stationarity of the

covariance implies a memory parameter Ode <0.5.

Differently, the covariance Stationarity of FIGARCH model is
not obvious and is discussed in [51]-[53], among others. The
uncertainty on covariance stationarity existence extends to our
model which, despite the dynamic formulation of the log-
variance, is closer to the FIGARCH case rather than to the
exponential model.

F. Wavelet-Based Estimation Procedure

Concerning the estimation of the K-factor GARMA-G-
GARCH model, we adopt an estimation procedure based on
the wavelets following the methodology proposed by [10].
The advantage of this approach lies in its ability to
simultaneously locate a process in both time and scale. At high
frequencies, the wavelet has small centralized low scales,
which allow it to focus on short-term phenomena. At low
frequencies, the wavelet has a large time supports allowing it
to identify long-term behavior. By moving from low to high
frequencies, wavelets identify jumps and peaks [32], [33].
The discrete wavelet packet transform (DWPT) [10] is a
generalization of the discrete wavelet transform DWT that
splits the whole frequency band |o, 1/2] into individual and

regularly spaced intervals.
For a given temporal series X of dyadic length N =27, the
jth level of DWPT is an orthonormal transform giving a
vector of dimension N of wavelet packet coefficients
W, W, 5,0 W )" Where each Wy 0 =0,...27 —1, has
STEP 1. Modeling and

Forecasting the conditional mean
Waveler Estimation Approach

N;=N /21 dimension and it is associated with the frequency
interval «; =[nr2 (n+1ys2i7].
Let {hl }:01 and {g, }::01 be the Daubechies wavelet and

scaling filters respectively. Starting with the recursion
X =W, , were the t™ elements of Wj’n have calculated by the

following steps of filtering:

Wine = Z un,IWj—l,[n/2],(2t+l—|)mod N, 2 (26)

t=0,...,N; -1

un,l :{ﬁl
|

It is notable that the collection of doublets (], N) (also
called nodes) is known as a wavelet packet tree and will be
denoted  byT ={(j,n): j=0...3;n=0...2" -1} An

orthonormal basis B — T is obtained when a collection of
DWPT coefficient vectors yield a disjoint and there is no
overlapping complete covering of the frequency range

if nmod4=0o0u3
if nmod4=1o0u 2 (27)

[0, 1/ 2] called a “disjoint dyadic decomposition”. Hence, in
matrix notation, a vector of DWPT coefficients has obtained
via Wy =W, X where W, an orthonormal N x N matrix is

defining the DWPT through the basis B .

In this paper, to identify the "best base" B , from all possible
orthonormal partitions, we use statistical white noise tests
named the portmanteau test, following the method of [24]. A
Similarly to the MODWPT, the step of the down sampling
relative to the DWPT can be also removed by means of a
variant of this transform identified as the MODWPT that

depend on rescaled versions of the filter U | presented above.

STEP 2: Modeling and
Forecasting the
conditional variance

Forecasting Results

(DWPT)
Y2 Gy
LLWNN Hybrid k-factor
~ Model ™ GarvaLIwNN [T
Y, + Ex/v
o=
Time series k-factor GARMA Comparative
Model Approach
- YO,
| Y, +é&,
GIGARCH K-factor GARMA- | | E |
Model GIGARCH

Fig. 3 A schematic representation of the adopted econometric methodology

2315



International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:11, No:9, 2017

IV.EMPIRICAL RESULTS

A. The Nord Pool Electricity Market: Data description and
Preliminary study

The Nordic electricity market known as Nord Pool market
is a stock market affected to the electricity product. This stock
market was created in 1992. It includes the three
Scandinavian countries: Norway, Sweden and Denmark plus
Finland. The spot price is the equilibrium price, and is
calculated as the equilibrium point for every 24 hours. It is the
unique price throughout the north region, and is determined
when the supply and demand curves intersect.

The methodology proposed in this research is tested on
hourly spot prices on the Nord Pool electricity market,
covering the period between the 1% of January 2015 and 31 of
December 2015, in total N =8761 hourly observations,
illustrated in Fig. 4. This data was extracted from the official
website of Nord Pool market. In this section, we analyze the
spot price electricity series on the Nord Pool market, in order
to study their statistical and econometric features. In most
cases, the econometricians consider the logarithm of their
series because the use of the difference logarithm sometimes
makes the series stationary and allows modeling returns series.
For this reason, we use the series of log-returns spot price
(noted RSP).

1 T

0.8 |- b

06

0.4

0.2

0

-0.2

Spot Price (Euro/MWh)

-0.4

-0.6 - b

-0.8 [ b

4 . | 1 1 | | | L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (Hours)

Fig. 4 Hourly spot price for NordPool electricity market

Fig. 4 shows the time evolution of log-return spot price
(RSP) indicates that this series seems stationary. This
hypothesis can also be supported by the unit root tests (ADF,
PP and KPSS). In addition, the series presents a clustering of
volatility since periods of low volatility are followed by
periods of high volatility. This is a sign of the presence of the
ARCH effect in the series.

As shown in Fig. 5, for the return spot price electricity series,
the spectral density, traced by the periodogram, shows peaks
at equidistant frequencies, which proves the presence of
several seasonalities in the conditional mean.

The summary descriptive statistics of the Nord Pool log-
returns are reported in Table I. The standard deviation is quite
small, while the estimated measure of Skewness indicating a
non-symmetric distribution. Moreover, the large value of the

kurtosis statistic suggests that the underlying data are
leptokurtic. This significant departure from normality is also
confirmed by the large value of the Jarque-Bera (JB) test.
Hence, the electricity spot price series (RSP) is not normally
distributed.

Periodogram
0751
0501
025
‘ R AR ‘ .
0.0 03 10

Fig. 5 Nord Pool ACF & Periodogram

TABLE I
DESCRIPTIVE STATISTICS OF THE SPOT PRICES TIME SERIES (LOG-RETURNS)

The Nord Pool log-returns
Mean -6.24-107°

Standard deviation 0.0835
Skewness 0.8838
(0.000)
. 20.285%**
Kurtosis (0.000)
Jarque-Bera 110197
(0.000) ***

Note: levels of significance indicated between squared brackets. ***
denotes significance at 1% level.

TABLE II
ADF, PP, KPSS UNIT ROOT TESTING RESULTS FOR NORD POOL LOG-
RETURNS
Model (3) Model (1)
With an intercept . MOd‘?I @ Without an
With an intercept X
and a trend intercept
-50.2201*** -50.2230%** -101.3755%**
ADF Test (0.000) (0.000) (0.000)
-101.8959%** -101.8214%**
PP Test (0.000) (0.000) -
KPSS Test 0.0363 0.04104 -

Note: *** indicate rejection of the null hypothesis at the 1-percent level.
ADF and PP: Critical values in the model (3): -3.95 (1%), -3.41 (5%), -3.12
(10%). Critical values in the model (2): -3.43 (1%), -2.86 (5%), -2.56 (10%).
Critical values in the model (1): -2.56 (1%), -1.94 (5%, -1.62 (10%). KPSS:
Critical values in the model (3): 0.216 (1%), 0.146 (5%), 0.119 (10%). Critical
values in the model (2): -0.739 (1%), -0.463 (5%), -0.347 (10%)

We tested for stationarity by performing unit root tests,
namely, the augmented Dickey-Fuller (ADF), the Phillips-
Perron (PP) and Kwiatkowski, Phillips, Schmidt, and Shin
(KPSS) tests, to the Nord Pool log-returns time series. The
results reported in Table II indicate that the Nord Pool log-
returns time series is significant to reject the hypothesis of non-
stationarity. Thus, this series is stationary and suitable for
subsequent tests in this study. Using the GPH [54] and LW
[55] statistics, we test for the long-range dependence presence
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in the conditional mean. Corresponding results shown in Table

III indicate evidence of long memory.

TABLE III
RESULTS OF GPH AND LW LONG- RANGE DEPENDENCE TESTS IN THE CONDITIONAL MEAN
GPH LW
Bandwidth a Standard error p-value d Standard error p-value
T% o4 -0.2347 0.0718 0.001 -0.236 0.0515 0.000
Rsp T% 55 -0.3632 0.0440 0.000 -0.417 0.0328 0.000
T=8760 T97 _s75 -0.3389 0.0273 0.000 20.328 0.0208 0.000
T 1405 -0.3810 0.0172 0.000 -0.594 0.0132 0.000
B. The Estimation Results The seasonality can be easily observed in the frequency
TABLEIV domain A, ;=1/T; where A is the frequency of the
ESTIMATION OF THE K -FACTOR GARMA MODEL: A WAVELET BASED i 4 Tis th iod of litv. As sh h
APPROACH seasonality and T is the period o seasona ity. As shown the
Parameters  k-factor GARMA model estimation spectral densities, rgpl;esented by perl.odograrp (figure 5), are
A 0.0357%** unbounded at equidistant frequencies, which proves the
@ (0.000) presence of several seasonalities. They show special peaks at
® - frequencies A, =0.1295 (T= 7.72~8 hours ~1/3 day),
CT 0.2657*** ~
m.1 (0.000) Am, =0.0882 (T=11.5~12 hours ~1/2 day), and
a 0.1238*** n
m.2 (0.000) An; =0.0479 (T=20.87 hours = 1 day), as shown in Table
o 0.0873%* ’ . o . S
dm’3 (0.000) IV, that corresponding to cycles with third daily, semi-daily
i 0.1295%%* and daily periods, respectively.
m.1 (0.000) In the second step, the squared log-returns are used as a
y) , 0.0882 *** proxy of the corresponding volatility. Long memory tests are
m (0.000) performed for the resulted time series. As reported in Table V,
5 0.0479*** BT
/1m’3 0.000) the results of the GPH and LW indicate the presence of long

Note: *** indicate rejection of the null hypothesis at the 1-percent level.

memory in the conditional variance.

TABLE V
RESULTS OF GPH AND LW LONG RANGE DEPENDENCE TESTS IN THE CONDITIONAL VARIANCE
GPH LW

Bandwidth . 2
anawt f Standard error p-value 5 Standard error p-value
TO5 o4 -0.0701 0.0718 03293 -0.1164 0.0515 0.0240
RSP T% 53 -0.9439 0.0440 00000 -0.7501 0.0328 0.0000
T=8760 T% 575 -1.0848 0.02737 0.0000  -0.7834 0.02085 0.0000
T8 145 0.5481 0.01723 0.0000 14457 0.01324 0.0000

As shown in Fig. 6, the periodogram of the K -factor
GARMA residuals, the spectral density is unbounded at
equidistant frequencies that indicates the presence of several
seasonalities. Which requires the use of some seasonal long
memory G-GARCH method to model such processes.

The residuals from the K -factor GARMA are modelled
using two different approaches in order to preserve the best
estimation model. In the first approach, we adopt the G-
GARCH model in order to estimate the seasonal long memory
behaviour in the conditional variance. The estimation results
reported in Table VI. The spectral densities, represented by
periodogram (Fig. 6), are unbounded at equidistant
frequencies, which proves presence of several seasonalities.

They show special peaks at frequencies /iv’l =0.0178
(T=56h, 17min = 2days)and A, , = 0.0416 (T=24h.038min

=~ 1 day), as shown in Table VI, that corresponding to cycles
with two day and daily periods, respectively.

In the second approach, residuals resulting from the K -
factor GARMA modeling are considered as the input of the
LLWNN, and shaped through the network in order to estimate
the conditional variance. For the purpose of avoiding the
possibility of coupling among different input and to accelerate
convergence, all the inputs are normalized within a range of
[0, 1] using the most commonly used data smoothing method

before applying it to the network.
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y Yorg = Yamin 28) where Yo, is the normalized value, y,, is the original value,
norm
Yiax = Ymin Yinin and Y, .. are the minimum and maximum values of the
corresponding residuals data.
1.0
0.5
0.0 —
Q.51
1 1 1 1
o 5 10 15 20
= Pericdogram
=
s0f-
25t
0 1 ]
ok 0.5 1.0
Fig. 6 Residuals ACF & Periodogram
TABLE VI
ESTIMATION RESULTS OF THE G-GARCH MODEL The datasets is divided into three successive parts as follows:
Parameters G-GARCH modiistlmatlon (a) A sample of 200 observations to initialize the network
v 0-1341 training, (b) a training set and (c) a test set the forecasting
A 0.1652%** experiment is performed over the test set using an iterative
B 0.0004* forecasting scheme, the model are forecasting for 6, 12, 24, 48
Y : and 72 hours ahead. Details of the datasets are given in the Fig.
d 0.2492%%* 7.
vl In order to find the best neural network architecture, at the
3 0.1295%** beginning the parameters are randomly initialized. Thereafter,
d g gthep y
V.2 A using the back-propagation algorithm (BP) these parameters
A, 0.0178**  (36h,17min 7~ 2days) are updated in order to minimize the error between the output
3 0.0416%%*  (24h.038min ~ 1 day) values and the .real values during th; tra1n1ng of the network.
v,2 Table VII provides the summary of information related to the
Note: *** indicate rejection of the null hypothesis at the 1-percent level. network architecture.
01/01/2015 09/01/2015 2R e as 72 ags1202015
"t
Initialization sa.mpfe.' Training sample: 8483 observations Test sampie ©
200 observations 72 observations
Fig. 7 Details of datasets
C. Forecasting Results: A Comparative Approach forecasting is basically an out-of-sample problem, we prefer to

This section is devoted to the evaluation of the estimated  apply out-of-sample criteria. Accordingly, five different

models in a multi-step-ahead forecasting task. Since periods (6 hours, 12 hours, one day, two days and tree days,
ahead forecasting) were selected in aim to insure the quality
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and the robustness of modeling and forecasting results. In order
to evaluate the forecasting accuracy, we apply three evaluation
criteria, namely, the out-of-sample R? of [56], the mean
absolute percentage error (MAPE) and the logarithmic loss
function (LL). given respectively by:

N ~
Z(th - yt,Hh )2

where N is the number of observations, N — tl is the number
of observations for predictive performance, Y, is the log-
return series through period t+h, Y . 18 the predictive log-

return series of the predictive horizon h at time t and Vi 18

the historical average forecast.

R>=1-| , (29) TABLE VII
N _ ) LLWNN BASED BP ALGORITHM ARCHITECTURE
Z ( yt+h - yt,1+h ) Number of hidden layer 10
=t Learning rate 0.5
1 N ‘(y b= y " ) Layer Activation function Wavelet Function
MAPE = S LR 100, (30) Learning Algorithm Back Propagation (BP) Learning Algorithm
N — t] t=t, ‘ yt+h
~ 2
< Yiten
LL=——>"| Log| === | |. GD
N - t1 t=t Yien
TABLE VII
OUT OF SAMPLE FORECASTS RESULTS
Models Criterion h =6 h =12 h =24 h =48 h =72
h R? 0,9428 0.6040 0.9977 0.9528 0.9889
Limgﬁlgg_ MAPE 0.9178% 4.4437% 0.5719% 2.0084% 0.9902%
LL 1.122x10™* 0.0021 5.734x107° 5.824x107* 1.556x10™*
The k£ GARMA R? 0.9993 0.9998 0.9997 0.9976 0.9981
e k-factor - o o o o o
G-GARCH model MAPE 0.1564% 0.0653% 0.2376% 0.9983% 0.9568%
LL 4.328x10°° 1.109x10°° 6.567x10°° 1.437x10™ 1.172x10°™

In order to evaluate the prediction performance of the
proposed hybrid methodology, this paper has taken into
account two approaches: the hybrid K -factor GARMA-
LLWNN model trained using the Backpropagation algorithm,
and the K -factor GARMA-G-GARCH model. And five-time
horizons; 6 hours, 12 hours, one day, 2 days and 3 days ahead
forecasting, using the R?, the MAPE and the LL out of sample
criteria, the forecast evaluation results are reported in Table
VIL Figs. 9-13 show that the K -factor GARMA-LLWNN
model predictions values for all the five horizons are very close
to the real values. The forecasting results (Table VIII) shows
that the K -factor GARMA-G-GARCH model outperforms the
hybrid model in terms of prediction accuracy. Indeed, k -
factor GARMA-G-GARCH model prediction errors are the
smallest for all evaluation criteria and for all forecast time
horizons.

original data used for training

o

°

WMMWW‘WWWWWWW M

network output versus original output during training

This can be explained by the fact that the K -factor
GARMA-G-GARCH model takes into account the seasonal
long-memory in both the conditional mean and the conditional
variance, making this model a robust tool that can deal with the
features of the electricity prices and thus provide the best
forecasting results. On the other hand, despite its capacity as a
nonlinear, nonparametric model, and its particularity by having
a wavelet activation function and local linearity, the LLWNN
model is unable to detect, model and predict the seasonality in
the data. Since, when it is compared with the G-GRACH
model, this last one provides prediction that is more accurate.
This is explained by the ability of the G-GARCH model in
modeling the seasonal long memory in the conditional
variance. This also proves the importance of taking into
account the seasonal long memory behavior to enhance
forecasting accuracy [57].

rmse plot wrt iterations during trainng

network output
original output

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 o 10 20 30 40 50 60 70 8 90 100

Fig. 8 LLWNN Training with BP algorithm results (residuals of k -factor GARMA modeling)
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network output versus original during testing
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Fig. 9 Three days (72 hours) ahead prediction during testing (residuals of k -factor GARMA modeling)

network output versus original during testing
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Fig. 10 Two days (48 hours) ahead prediction during testing (residuals of K -factor GARMA modeling)
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Fig. 11 One day (24 hours) ahead prediction during testing (residuals of K -factor GARMA modeling)

network output versus original during testing
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Fig. 12 Semi daily (12 hours) prediction during testing (residuals of K -factor GARMA modeling)
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network output versus original during testing

original output
network output
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Fig. 13 6 hours ahead prediction during testing (residuals of K -factor GARMA modeling)

V.CONCLUSIONS

In power markets, price forecasting has become an
important topic for all its participants. Background information
about the electricity price is crucial for risk management. It
may represent an advantage for a market player facing
competition.

However, the behavior of electricity prices differs from that
of other commodity markets. The most obvious of these
differences is that electricity is a non-storable merchandize.

Moreover, electricity prices show some particular
characteristics such as high frequency, non-stationary
behavior, multiple seasonality, high volatility, hard nonlinear
behavior and long memory, which may affect the prices
dramatically. Thus, we cannot rely on models developed for
financial markets or other commodity markets. In this
framework, due to the complexity of the electricity market, the
electricity price forecasting has been the most challenging task.
In this vein, this paper focuses on resolving the issues of
modeling and forecasting the features of the electricity prices,
notably the existing of the seasonal long memory behavior in
both the conditional mean and the conditional variance.

For this purpose, we focus on the modeling of the
conditional mean, we adopt a generalized fractional model
with K -factor of Gegenbauer (k -factor GARMA).
Thereafter, in order to model and predict the conditional
variance we adopt two different approaches; firstly, the local
linear wavelet neural network (LLWNN) based BP algorithm
is adopted to model and predict the conditional variance
(applied to the residual of K-factor GARMA model).
Secondly, the G-GARCH model is applied to the residual of
the K -factor GARMA, so we estimate a K -factor GARMA-
G-GARCH model and we use an estimation approach based
on the discrete wavelet transform (DWPT). The R? | the mean
absolute percentage error (MAPE) and the logarithmic loss
function (LL) are used as a performance criteria to evaluate the
prediction ability of each model. Forecasting results show that
the predictive performance of K -factor GARMA-G-GARCH
model provides evidence of the power compared to the hybrid
parametric and non-parametric K -factor GARMA-LLWNN
model. Therefore, this model leads to an improved
performance. It can be an effective way in the forecasting task,

especially when higher forecasting accuracy is needed.
Obtained results are very interesting in the meaning that it was
always difficult to accomplish such precision when forecasting

electricity spot prices. This highlights the importance of the K

-factor  GARMA-G-GARCH methodology as a robust
forecasting method.
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