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Identification of LTI Autonomous All Pole System
Using Eigenvector Algorithm

Sudipta Majumdar

Abstract—This paper presents a method for identification

of a linear time invariant (LTI) autonomous all pole system

using singular value decomposition. The novelty of this paper

is two fold: First, MUSIC algorithm for estimating complex

frequencies from real measurements is proposed. Secondly,

using the proposed algorithm, we can identify the coefficients

of differential equation that determines the LTI system by

switching off our input signal. For this purpose, we need only

to switch off the input, apply our complex MUSIC algorithm

and determine the coefficients as symmetric polynomials in the

complex frequencies. This method can be applied to unstable

system and has higher resolution as compared to time series

solution when, noisy data are used. The classical performance

bound, Cramer Rao bound (CRB), has been used as a basis for

performance comparison of the proposed method for multiple

poles estimation in noisy exponential signal.

Keywords—MUSIC algorithm, Cramer Rao bound,

frequency estimation.

I. INTRODUCTION

POLE estimation of noisy exponential signal
appears in many areas such as radar

signal processing, sonar signal processing,
communication, speech signal processing etc.
Frequency estimation has also applications in
power quality assessment. Different parametric and
nonparametric methods have been used for pole
and frequency estimation [1]-[3]. A comparison
of different nonparametric methods such as
spectral filtering, which is a block processing
nonparametric approach, Fast Fourier transform
(FFT), interpolated FFT, short time Fourier
transform, chirp Z transform, wavelet transform,
Hilbert transform, least squares sine fitting has
been done in [4]. The nonparametric methods
involve forming a weighted periodogram or the
time series data and have very poor resolution
owing to the time-frequency uncertainty principle
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applicable to finite record data length, however,
their computational complexity is very small.
Least squares method (LS), linear prediction
(LP) and the maximum likelihood (ML) methods
have been used for frequency estimation for
different applications [5]-[7]. We proposed MUSIC
algorithm for complex frequency estimation. The
advantage of using the MUSIC algorithm over
the ML estimation is that the latter cannot be
implemented in closed form i.e. search algorithms
are required for estimation, while, no such search
algorithm is required for the MUSIC algorithm [8].
To implement MUSIC, O(N3) multiplications must
be performed for determining the eigenvectors of
the (N × N) correlation matrix. In the time series
algorithm, again a set of linear equations must
be solved for obtaining the autoregressive (AR)
coefficients and this is O(p3), if, p×p is the size of
the correlation matrix or equivalently p is the length
of AR polynomial. However, after obtaining the
AR coefficients, the complex frequencies must be
determined by rooting the AR polynomial and this
involves a Newton Raphson iteration [9]. Further,
AR models do not remove noise and hence, their
resolution is poor as compared with the MUSIC
method, which removes noise as the minimum
eigenvector of the correlation matrix. Thus, the
MUSIC method has higher resolution than the time
series method, but, also has higher complexity
(N > p ⇒ O(N3) > O(p3)). The MUSIC
method has lower resolution and accuracy than
the ML method, but lesser complexity [10]-[11].
Reference [12] proposed a method for estimating
the frequency of a complex sinusoid in complex
white Gaussian noise. The method attains the
Cramer Rao bound down to lower signal to noise
ratio values. [13] proposed an improved eigen
decomposition based algorithm which shows that
the frequency can be alternatively estimated from
a set of estimates of ejω. It has better performance
because more estimates of each frequency are
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available to average out the numerical error. This
paper presents a method for identification of an all
pole system defined by a linear differential equation
with constant coefficients. Single and two sinusoids
frequency estimation has been proposed by [12],
[13], but the method presented in this paper can be
used for multiple frequency estimation.

II. PROPOSED METHOD

With x(t) as the input process and y(t) as the
output, the system is defined by,

dpy(t)

dtp
+a1

dp−1y(t)

dtp−1
+....+ap−1

dy(t)

dt
+apy(t) = x(t)

(1)
Identification of this system from input data

amounts to eliminating the coefficients a1, a2,...,ap.
One way is to take discrete measurements of the
input process, approximate the differential equation
by a difference equation and estimate a1, a2,
...,an by a time domain least squares method.
If the sampling rate is 1/T and measurements
y[n] = y(nT ), x[n] = x(nT ) are taken, then
dy(t)/dt is replaced by Δ/T , where Δ is the finite
difference operator, i.e. Δy[n] = y[n] − y[n − 1].
The time domain least squares method amounts to
minimizing

∑
(T−pΔpy[n] + a1T

−p+1Δp−1y[n] +
....+ ap−1T

−1Δy[n] + apy[n]− x[n])2 with respect
to a1, a2, ...., ap. This is rather inaccurate due to
discretization, depends on measuring both input -
output data and is also computationally expensive.
In this paper, we propose an algorithm for
estimating a1, a2,....,ap using high resolution eigen
space method and using only measurements on the
output data. To do so, we note that if x(t) = 0,
then the output at time t is given by y(t) =∑p

k=1 Ake
skt, where, s1, s2, ...., sp are the roots

of the polynomial A(s) = sp + a1sp−1 + .... +
ap−1s + ap. Assuming that s1, s2,....,sp are all
distinct, then a1, a2,...ap are symmetric functions
of the poles s1, s2,...,sp related by

∏p
k=1(s− sk) =

sp + a1sp−1 + .....ap−1s + ap. Thus, for example,
a1 = −∑p

k=1 sk, a2 =
∑

1≤k<m≤p sksm, ap−1 =
(−1)p−1

∑
1≤i1<i2<...<ip−1≤p si1 ...sip−1

and ap = (−1)p
∏p

i=1 si. The Ak’s are completely
determined by the initial conditions, y(k)(0), where,
0 ≤ k ≤ p− 1;

y(k)(0) =

p∑

r=1

skrArfor0 ≤ k ≤ p− 1 (2)

or,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(0)

y
′
(0)

y
′′
(0)
.
.
.

y(p)(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1.. 1
s1 s2 s3 s4.. sp
s21 s22 s23 s24.. s2p
.
.
.

sp−1
1 sp−1

2 sp−1
3 sp−1

4 .. sp−1
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

A3

.

.

.
Ap

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3)

The Van-Der-Monde matrix is inverted to solve
(A1, A2, ...., Ap)

T . Now, suppose we give several initial

conditions, say, (yr(0), y
′
r(0), ...., y

p−1
r (0))

M

r=1. Then corresponding

to the rth set of initial conditions , let A
(r)
m be the amplitude of

esmt in yr(t), the output is given by

yr(t) =

p∑
m=1

A(r)
m esmtfor, 1 ≤ r ≤ M (4)

We collect N samples of the outputs for each set of initial conditions
at the rate of 1/T .

yr = [yr(0), yr(T ), yr(2T ), ..., yr((N − 1)T )]T (5)

Arranging yr as column of an N ×M matrix Y .

Y = [y1,y2, ....,yM] =

p∑
m=1

e(sm)[A
(1)
1 ,A

(2)
2 , ....,A(M)

p ] (6)

or equivalently,
Y = E(s)A (7)

where,
E(s) = [e(s1), ......, e(sp)] ∈ C

N×p

e(sk) = [eskt1 , eskt2 , ..., esktN ]T

and
A = [A1

T ,A2
T , ...,Ap

T ]

and
Ak

T = [Ak1 , Ak2 , ..., AkM ]

N,M � p taken, so that it is possible to assume that rank(E(s)) =
p = rank(A). Here (A) is an unknown matrix, s is an unknown
parameter vector, Y is known NXM matrix with rank (Y ) = p.

III. THE MUSIC ESTIMATOR

Estimation of poles using MUSIC algorithm is based on the eigen
decomposition of the autocorrelation matrix into two subspaces, a
signal subspace and noise subspace. Using the following signal model

X = Y +W (8)

where, W is white Gaussian noise. We form the autocorrelation
matrix as

R = E(X†X) = E[(E(s)AA†E†(s)) + σ2
wI] (9)

Then R is an M ×M positive semi definite matrix of rank p. AA†

is a p × p positive definite matrix. σ2
W is the noise variance. X†

denotes conjugate transpose of X . The eigen structure of R is of the
form

R = UDU† + σ2
wI (10)

where, D = diag[λ1, λ2, ......, λp, λmin, λmin, ....., λmin] ∈
R

M×M , and λ1 > λ2 > ..... > λp > λmin are the eigen values
of R. It has p eigen values greater than λmin and (M − p) eigen
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values are λmin . Also λ1 > λ2 > ..... > λp > λmin. U is a unitary
matrix. Its column is denoted by

U = [u1,u2, .......,uM] (11)

and

U†U = I (12)

i.e.

u†
αuβ = δαβ (13)

Thus,

R =

p∑
α=1

λαuαu
†
α (14)

{u1,u2, ....,up} are the signal eigen vectors while
{up+1, ....,uM} are the noise eigen vectors. Thus,

span(u1, .....,up) = span(up+1, ......,uM)⊥ (15)

span(E(s)) = span(e(s1), ....., e(sp)) (16)

It follows that the function

PMUSIC =
1∑M

α=p+1 |u†
αe(s)|2

=

1

e†(s)e(s)−∑p
α=1 |u†

αe(s)|2
(17)

peaks precisely, when s ∈ {s1, ...., sp}.

IV. CRAMER RAO BOUND

The CRB [14] appear on main diagonal of the inverse of the Fisher
information matrix (FIM) J . The (i, j)th element of FIM is given by

Ji,j = −E{[∂lnp(x | θ)
∂θi

]
∗
[
∂lnp(x | θ)

∂θj
]} (18)

where, p(x | θ) denotes the conditional probability density function,
x is the data vector and θ is the parameter vector. The Cramer Rao
bound gives a lower bound on the variance of estimator assuming
zero bias. For an unbiased estimator, the total mean square error
(MSE) depends only on the variance. Therefore, the lower bound on
the variance is directly related to a lower bound of the total mean
square error. But, in the case of bias estimators, MSE is the sum of
variance and the squared norm of the bias. If θ̂ is an estimate of θ,
then the Cramer Rao inequality for unbiased estimator states that

var(θ̂) > J−1. var denotes variance. For biased estimator,

var(θ̂) = (1 +B′(θ)J−1), where

B′ = ∂B/∂θ

If (θ̂)) is an estimate of θ, then the mean square error (MSE) for
biased estimator [15] states that

E[(θ̂)− θ][(θ̂)− θ]T ] ≥ (I +B′(θ))J(θ)−1(I +B′(θ))T (19)

where,

B(θ) = E[(θ̂)− θ]

So, for biased estimators, we have,
var(θ̂) = E[(θ̂ − E(θ̂))(θ̂ − E(θ̂))T ]
= E[(θ̂ − θ)(θ̂ − θ)T ]−B(θ)B(θ)T

≥ (I +B′(θ))J(θ)−1(I +B′(θ))T −B(θ)B(θ)T (20)

V. SIMULATIONS AND RESULTS

The proposed method has been applied to two different examples.
First example consists of two real poles s1 = 1 and s2 = −2. Second
example consists of two complex poles. s1c = 1+ i and s2c = 1− i.
N=10 time samples has been used for simulation. In measurements,
the performance of an unbiased estimator after bias correction is of
interest, rather than the performance of the original biased estimator
as bias often occur in practice. So, the performance of MUSIC
estimator has been compared for unbiased case and unbiased case
after bias correction. The CRB has been calculated for first and
second example in Appendix I and Appendix II respectively. The

SNR for either sinusoid is defined as 10log10
A2

1
σ2
w

. MSE between the

estimated frequency and actual frequency has been plotted. For each
SNR, the MSE of estimation has been obtained from 30 realizations.
In each case, the CRB is shown by red color.
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Fig. 1 Comparison of MSE of unbiased estimator and unbiased
estimator after bias correction with CRB for s1. Red color shows

CRB. Green and yellow color shows MSE for unbiased and biased
estimators
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Fig. 2 Comparison of MSE of unbiased estimator and unbiased
estimator after bias correction with CRB for s2. Red color shows

CRB. Green and yellow color shows MSE for unbiased and biased
estimators

VI. CONCLUSIONS

MUSIC estimation is suboptimal compared to Maximum
Likelihood (ML) operator, which is optimal. ML method creates
highly nonlinear equations, which can be solved using approximation
schemes like gradient search method. ML method can not be
implemented in the closed form for parameter estimation. The
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Fig. 3 Comparison of MSE of unbiased estimator and unbiased
estimator after bias correction with CRB for s1c. Red color shows
CRB. Green and yellow color shows MSE for unbiased and biased

estimators
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Fig. 4 Comparison of MSE of unbiased estimator and unbiased
estimator after bias correction with CRB for s2c. Red color shows
CRB. Green and yellow color shows MSE for unbiased and biased

estimators

proposed method can be used for multiple complex frequency
estimation from real measurements only. Further, the method requires
only the output data for estimation. Also the CRB of two real
and two complex frequency estimation have been derived from N
time samples. Due to importance of the performance of an unbiased
estimator, after bias correction in measurements as bias often occur
in practice, we compared both cases with CRB.

VII. APPENDIX A1

The signal consisting of two exponentials in white Gaussian noise
with zero mean and σ2 variance.

X(t) = A1e
s1t +A2e

s2t + w (21)

where A1 and A2 are signal amplitudes and s1 and s2 are poles.
Discretization of this equation using t = nΔ gives,

(X(nΔ))N−1
n=0 = X = A1e(s1) +A2e(s2) + w (22)

where Δ is the step size. w is the complex white Gaussian noise
then the probability density function of x is

p(x | s1, s2) = exp(− 1

2σ2
|| x −A1e(s1)−A2e(s2) ||2) (23)
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Fig. 5 Comparison of MSE of unbiased estimator and unbiased
estimator after bias correction with CRB for s1. Red color shows

CRB. Green and yellow color shows MSE for unbiased and biased
estimators
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Fig. 6 Comparison of MSE of unbiased estimator and unbiased
estimator after bias correction with CRB for s2. Red color shows

CRB. Green and yellow color shows MSE for unbiased and biased
estimators

e(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
esΔ

e2sΔ

.

.

.

e(N−1)sΔ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

Or,

−logp =
1

2σ2
|| x −A1e(s1)−A2e(s2) ||2

=
1

σ2
(x −A1e(s1)−A2e(s2))∗(x −A1e(s1)−A2e(s2)) (25)

so that the Fisher Information matrix is

J1(s1, s2) = −E

(
( ∂

2lnp(X|s1,s2)
∂s1∂s1

) ( ∂
2lnp(X|s1,s2)

∂s1∂s2
)

( ∂
2lnp(X|s1,s2)

∂s2∂s1
) ( ∂

2lnp(X|s1,s2)
∂s2∂s2

)

)
(26)

where,

J1(1, 1) =
1

σ2
[2A2

1 | e′(s1) |2] (27)

where e′(s1) = de(s1)
dt
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Fig. 7 Comparison of MSE of unbiased estimator and unbiased
estimator after bias correction with CRB for s1c. Red color shows
CRB. Green and yellow color shows MSE for unbiased and biased

estimators

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

50

SNR(dB)

M
S
E
(d
B
)

Fig. 8 Comparison of MSE of unbiased estimator and unbiased
estimator after bias correction with CRB for s2c. Red color shows
CRB. Green and yellow color shows MSE for unbiased and biased

estimators

J1(1, 2) =
1

σ2
[A1A2e′T (s1)e′(s2) +A1A2e′T (s2)e′(s1)] (28)

where e′T (s1) represents transpose of e′(s1)

J1(2, 1) =
1

σ2
[A2e′T (s1)e′(s2) +A1A2e′T (s2)e′(s1)] (29)

J1(2, 2) =
1

σ2
[2A2

2 | e′(s2) |2] (30)

e′(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
ΔesΔ

2Δe2sΔ

.

.

.

(N − 1)Δe(N−1)sΔ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

VIII. APPENDIX A2
For complex poles, we used

si = sRi + jsIi i = 1, 2 (32)

X = E(s)A+ w (33)

where w is white Gaussian noise. The probability density function
of X is

p(X | θ) = exp(
1

2σ2
‖ X − E(s)A ‖)2 (34)

where θ = (sR1 , sI1 , sR2 , sI2)

ln p(X | θ) = 1

2σ2
(X − E(s)A)∗(X − E(s)A) (35)

The Fisher Information Matrix for this is given

J2 = −E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∂2lnp(X|θ)
∂sR1

∂sR1
) (

∂2lnp(X|θ)
∂sR1

∂sI1
) (

∂2lnp(X|θ)
∂sR1

∂sR2
) (

∂2lnp(X|θ)
∂sR1

∂sI2
)

(
∂2lnp(X|θ)
∂sI1

∂sR1
) (

∂2lnp(X|θ)
∂sI1

∂sI1
) (

∂2lnp(X|θ)
∂sI1

∂sR2
) (

∂2lnp(X|θ)
∂sI1

∂sI2
)

(
∂2lnp(X|θ)
∂sR2

∂sR1
) (

∂2lnp(X|θ)
∂sR2

∂sI1
) (

∂2lnp(X|θ)
∂sR2

∂sR2
) (

∂2lnp(X|θ)
∂sR2

∂sI2
)

(
∂2lnp(X|θ)
∂sI2

∂sR1
) (

∂2lnp(X|θ)
∂sI2

∂sI1
) (

∂2lnp(X|θ)
∂sI2

∂sR2
) (

∂2lnp(X|θ)
∂sI2

∂sI2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(36)

where,

∂2p(X | θ)
∂sR1

∂sR1

=
1

σ2
[4A1A1e(s1)

∗
D

2e(s1)+A1A2e(s1)
∗
D

2e(s2)+A1A2e(s2)
∗
D

2e(s1)

−2Re{A1A2e(s2)
∗
D

2e(s1) + A1A1e(s1)
∗
D

2e(s1)}] (37)

∂2p(X | θ)
∂sR1∂sI1

= 2Im
1

σ2
[{A1A2e(s1)∗D2e(s2)}

−Re{jA1A1e(s1)∗D2e(s1)+jA1A2e(s2)∗D2e(s1)}]
(38)

∂2p(X | θ)
∂sR1∂sR2

=
1

σ2
[A1A2e(s1)∗D2e(s2) +A1A2e(s1)∗D2e(s2)]

(39)

∂2p(X | θ)
∂sR1∂sI2

= −2Im
1

σ2
[{A1A2e(s1)∗D2e(s1)}]

(40)

∂2p(X | θ)
∂sI1∂sR1

=
∂2p(X | θ)
∂sR1∂sI1

(41)

∂2p(X | θ)
∂sI1∂sI1

=
1

σ2
[−A1A2e(s1)∗D2e(s2)−A1A2e(s2)∗D2e(s1)

+2Re{A1A1e(s1)∗D2e(s1) +A1A2e(s2)∗D2e(s1)}] (42)

∂2p(X | θ)
∂sI1∂sR2

= −2Im
1

σ2
[{jA1A2e(s2)∗D2e(s1)}]

(43)
∂2p(X | θ)
∂sI1∂sI2

=
1

σ2
[A1A2e(s1)∗D2e(s2) +A1A2e(s2)∗D2e(s1)

+2Re{A1A2e(s1)∗D2e(s2) +A2A2e(s2)∗D2e(s2)}] (44)

∂2p(X | θ)
∂sR2∂sR1

=
∂2p(X)

∂sR2∂sR1

(45)

∂2p(X | θ)
∂sR2∂sI1

=
∂2p(X | θ)
∂sI1∂sR2

(46)
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∂2p(X | θ)
∂sR2∂sR2

=
1

σ2
[A1A2e(s1)∗D2e(s2) +A1A2e(s2)∗D2e(s1)

+4A2A2e(s2)∗D2e(s2)

−2Re{A1A2e(s1)∗D2e(s2) +A2A2e(s2)∗D2e(s2)}] (47)

∂2p(X | θ)
∂sR2∂sI2

= 2Im
1

σ2
[{A1A2e(s1)∗D2e(s2)}]

(48)

∂2p(X | θ)
∂sI2∂sR1

=
∂2p(X | θ)
∂sR1∂sI2

(49)

∂2p(X | θ)
∂sI2∂sI1

=
∂2p(X)

∂sI1∂sI2
(50)

∂2p(X | θ)
∂sI2∂sR2

=
∂2p(X | θ)
∂sR2∂sI2

(51)

∂2p(X | θ)
∂sI2∂sI2

= − 1

σ2
[A1A2e(s1)∗D2e(s2)−A1A2e(s2)∗D2e(s1)

+2Re{A1A2e(s1)∗D2e(s2) +A2A2e(s2)∗D2e(s2)}] (52)
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