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 
Abstract—This paper presents an implementation of a 

configurable UART-to-Ethernet converter using an ARM-based 32-bit 
microcontroller as well as a dedicated configuration program running 
on a PC for configuring the operating parameters of the converter. The 
program was written in Python. Various parameters pertaining to the 
operation of the converter can be modified by the configuration 
program through the Ethernet interface of the converter. The converter 
supports 3 representative asynchronous serial communication 
protocols, RS-232, RS-422, and RS-485 and supports 3 network 
modes, TCP/IP server, TCP/IP client, and UDP client. The TCP/IP and 
UDP protocols were implemented on the microcontroller using an 
open source TCP/IP protocol stack called lwIP (A lightweight TCP/IP) 
and FreeRTOS, a free real-time operating system for embedded 
systems. Due to the use of a real-time operating system, the firmware 
of the converter was implemented as a multi-thread application and as 
a result becomes more modular and easier to develop. The converter 
can provide a seamless bridge between a serial port and an Ethernet 
port, thereby allowing existing legacy apparatuses with no Ethernet 
connectivity to communicate using the Ethernet protocol. 
 

Keywords—Converter, embedded systems, Ethernet, lwIP, 
UART.  

I. INTRODUCTION 

HOUGH Ethernet communication is very common in a 
variety of devices ranging from tiny embedded devices to 

high-performance personal computers, plenty of legacy devices 
with no Ethernet connectivity are still in use in many fields. 
Such legacy devices are usually equipped with traditional serial 
communication interfaces such as RS-232 or RS-485. To 
enable existing legacy devices with such an interface to connect 
to an Ethernet network, it is required to upgrade the 
communication interface of the legacy devices. This may cause 
both considerable cost and time or be technically impossible. 
UART-to-Ethernet converters are devices for converting 
TCP/UDP packets into asynchronous serial data and vice versa. 
These devices can help solve the problem without the need for 
modifying the existing legacy devices. The UART-to-Ethernet 
converter bridges seamlessly asynchronous serial ports of the 
legacy devices and the Ethernet network. 

An implementation of a serial-to-Ethernet converter was 
described in [1], wherein the converter was implemented using 
an ARM-based 32-bit microcontroller STM32F107 and a 
TCP/IP protocol stack called lwIP (A lightweight TCP/IP). The 
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STM32F107 is a connectivity line microcontroller equipped 
with an Ethernet peripheral that supports both the media 
independent interface (MII) and the reduced media independent 
interface (RMII) [2]. lwIP is an open source TCP/IP stack 
designed for embedded systems having limited resources [3]. 
The converter described in [1] supports 3 asynchronous serial 
communication protocols, RS-232, RS-422, and RS-485 and 3 
different network modes, TCP/IP server, TCP/IP client, and 
UDP client. Fig. 1 shows the picture of the converter introduced 
in [1]. 

 

 

Fig. 1 The picture of the converter introduced in [1] 
 
The lwIP supports well-known protocols such as IP, ICMP, 

UDP, TCP, DHCP, and ARP required for the implementation 
of the converter [2]. It provides both a basic raw API and a 
high-level sequential API that requires a real-time operation 
system (RTOS) [4]. The firmware for the converter developed 
in [1] was implemented as a callback-based application by 
adopting the raw API. The raw API provides better execution 
speed and less memory usage than the high-level API but adds 
software complexity. This paper describes another 
implementation of the serial-to-Ethernet converter introduced 
in [1] using the high-level sequential API, which leads to 
simpler and more modular firmware but requires an operating 
system. We adopted a real-time operating system named 
FreeRTOS. FreeRTOS is a free real-time operating system 
designed to be small enough to run on a microcontroller having 
limited memory space. It has been ported to a variety of 
commercial microcontrollers [5]. Because FreeRTOS supports 
multi-thread operations, the firmware of the converter was 
implemented as a multi-thread application, which makes the 
firmware more modular and the development of the firmware 
much easier. 

II. CONFIGURATION OF OPERATING PARAMETERS 

The converter has many operating parameters that decide the 
operation of the converter. The parameters can be configured 
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by the user using a dedicated configuration program running on 
a PC. The user-configurable operating parameters include the 
following: 
 Converter’s IP address, subnet mask, and gateway’s IP 

address 
 Network mode: TCP/IP server, TCP/IP client, and UDP 

client 
 Port number to which other TCP/IP clients connect when 

the converter acts as a TCP/IP server 
 Server’s IP address and port number when the converter 

acts as a TCP/IP client 
 Server’s IP address and port number when the converter 

acts as a UDP client 

 Serial communication parameters: Baud rate, data bits, 
stop bits, and parity 

 Size of serial data to send as a single packet over the 
Ethernet connection (SOD) 

 Timer’s fire interval for determining the boundary between 
two groups of serial data (TFI) 

The parameters, SOD and the TFI, are described in detail in 
[1] and thus omitted here.  

Fig. 2 shows a screen snapshot of the dedicated configuration 
program running on a PC, where the configuration program 
shows the operating parameters of a converter after receiving 
them from the converter. 

 

 

Fig. 2 A screen snapshot of the configuration program 
 

As described in [1], the configuration program was written in 
Python using a graphic library called PyQT [6]-[9] and built 
into a standalone executable. Since the configuration program 
communicates with the converter using the UDP protocol, it is 
necessary to connect the converter to the same network as the 
PC on which the program is running to configure the converter. 
Alternatively, the PC and the converter can be connected 
directly using an Ethernet cable. It is not necessary for the user 
to know the IP address of the converter beforehand. Once the 
connection between the converter and the PC has been 
established, the configuration program is capable of reading the 
aforementioned operating parameters including the IP address 
of the converter from the converter and then modifying all the 
parameters. 

Since the IP address of the converter is not known to the 
configuration program, the program communicates with the 
converter by exchanging UDP broadcast messages using a 
predefined format and port number. If more than one converter 
exists on the network, the configuration program receives 
multiple responses from all the converters but can identify each 
converter because the response from each converter includes its 
own MAC address. The configuration program shows MAC 
addresses on the left side as shown in Fig. 2. By selecting a 
specific MAC address, the user can see all the operating 
parameters of the converter associated with the selected MAC 
address and then modify them. On the microcontroller side, the 

task for transmitting/receiving the operating parameters to/from 
the configuration program and storing the operating parameters 
received from the configuration program in the flash memory 
of the microcontroller is handled by an RTOS thread created for 
this purpose, which will be described in detail in the following 
section.  

III. THE FIRMWARE STRUCTURE 

Fig. 3 shows the operation model of the lwIP when working 
with an RTOS. 

 

 

Fig. 3 lwIP operation model with an RTOS 
 
The TCP/IP stack and the application run in separate threads. 

The application thread is created by the user and handles 
application-level tasks such as a HTTP server or a TCP/IP 
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client. The application thread communicates with the TCP/IP 
stack through sequential API calls for inter-thread 
communications [4]. The API calls are blocking calls, which 
indicates that the application thread is blocked after an API call 
until a desired response from the TCP/IP stack is received. An 
additional thread, the network interface thread, gets any 
received packets from driver buffers and provides them to the 
TCP/IP stack thread using an RTOS mailbox. The packet 
reception from the Ethernet is interrupt-driven. Once a packet is 
received, the network interface thread is notified of the 
reception through an RTOS semaphore. Though the operation 
of the application thread relies heavily on the underlying 
network interface thread and Ethernet ISR, the application 
thread does not have to know about them in detail. All the 
complicated tasks related to the network interface thread and 
the ISR are handled by the lwIP itself. The application thread 
therefore can simply communicate with the TCP/IP stack 
thread through sequential API calls without worrying about 
anything else. 

Fig. 4 shows the application threads for the implementation 
of the parameter configuration and the three network modes 
supported by the converter. 

 

 

Fig. 4 Application threads 
 

 

Fig. 5 Flowchart of the task done after power-up 
 

The application is composed of four threads: Configuration 
thread, TCP/IP server thread, TCP/IP client thread, and UDP/IP 
client thread. After power-up, the configuration thread is 
always created and run but only one among the other three 
threads is created and run. When powered, one thread is chosen 
depending on the current network mode of the converter. Only 
the chosen thread is created and runs. If the user modifies the 
operating parameters of the converter and stores them, the 
whole parameters are overwritten without regard to the number 
of modified parameters and then the converter reboots. As a 
result, only the thread associated with the current network 
mode is created and run, thereby preventing the memory from 

being wasted. 
Fig. 5 shows the flowchart of the task conducted after 

power-up. After power-up, a thread called the start thread is 
created first and then the RTOS kernel starts. The start thread 
does not start running until the kernel starts. After the kernel 
starts, the start thread initializes the lwIP and then creates the 
configuration thread. When the lwIP is initialized, all the 
system threads including the TCP/IP thread are created 
internally. After creating the configuration thread, the start 
thread creates one among the aforementioned three threads 
depending upon the current network mode.  

The configuration thread handles the communication 
between the microcontroller and the configuration program 
running on the PC and storing received parameters in the flash 
memory of the microcontroller. Fig. 6 shows the flowchart of 
the task done by the configuration thread. 

 

 

Fig. 6 Flowchart of the task done by the configuration thread 
 

After creating a new connection identifier and biding the 
UDP connection to a predefined port on any IP address, the 
configuration threads blocked until a UDP packet is received on 
the port. As soon as a UDP packet sent from the configuration 
program is received on the port, the configuration thread gets 
unblocked and then analyzes the received packet and conducts 
the required operations.  

If the received packet is a query for operating parameters, the 
configuration thread reads the current operating parameters of 
the converter from the flash memory of the microcontroller and 
transmits them as a UDP broadcast packet after appending the 
converter’s unique MAC address to the operating parameters. 
When the configuration program transmits a command for 
storing operating parameters to a converter, the configuration 
program includes the parameters to store in the command. If the 
received packet is a command for strong operating parameters, 
the configuration thread stores the operating parameters 
contained in the received packet in the flash memory and resets 
the microcontroller. 

As described earlier, only one thread is created and runs 
depending on the current network mode. Basically all of these 
threads work in a similar manner. After conducting necessary 
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initialization, these threads start an infinite loop in which API 
function calls are made. The API function calls are blocking 
calls which may block the caller. The TCP/IP server thread is 
blocked after entering a listening mode until it receives a 
request for connection from a TCP/IP client. The TCP/IP client 
thread makes a request for connection to a TCP/IP server and is 
blocked until it is accepted by the TCP/IP server. Likewise, 
these threads are blocked while waiting for a packet to arrive. 

The tasks conducted after the threads are unblocked are quite 
similar to those conducted in the raw API implementation 
described in [1]. The way by which events are handled, 
however, differs completely. In the raw API implementation, 
the application layer communicates with the lwIP using event 
callback functions. These callback functions, therefore, must be 
registered before starting the communication process. If an 
event occurs, the registered callback function associated with 
the event is called automatically. In other words, the events are 
handled indirectly by the callback functions and therefore the 
code for processing the events is not shown in the main infinite 
loop. In the sequential API implementation using an RTOS, in 
contrast the application thread communicates with the lwIP 
through sequential API calls. It is thus more direct than the raw 
API implementation. 

IV. CONCLUSION 

The paper presented an implementation of a configurable 
UART-to-Ethernet converter using the lwIP and a real-time 
operating system named freeRTOS. Unlike the previous 
version, we adopted the high-level sequential API provided by 
the lwIP with the aid of freeRTOS. Compared to the raw API, 
the sequential API leads to a simpler implementation and less 
development time but results in more memory footprint and 
lower execution speed. The performance of the raw API 
implementation seems slightly better than its sequential API 
counterpart but the difference does not seem remarkable. The 
performance of the sequential API implementation is 
satisfactory as well.  
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