
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:12, 2017

1235


Abstract—This paper presents an implementation of a

configurable UART-to-Ethernet converter using an ARM-based 32-bit
microcontroller as well as a dedicated configuration program running
on a PC for configuring the operating parameters of the converter. The
program was written in Python. Various parameters pertaining to the
operation of the converter can be modified by the configuration
program through the Ethernet interface of the converter. The converter
supports 3 representative asynchronous serial communication
protocols, RS-232, RS-422, and RS-485 and supports 3 network
modes, TCP/IP server, TCP/IP client, and UDP client. The TCP/IP and
UDP protocols were implemented on the microcontroller using an
open source TCP/IP protocol stack called lwIP (A lightweight TCP/IP)
and FreeRTOS, a free real-time operating system for embedded
systems. Due to the use of a real-time operating system, the firmware
of the converter was implemented as a multi-thread application and as
a result becomes more modular and easier to develop. The converter
can provide a seamless bridge between a serial port and an Ethernet
port, thereby allowing existing legacy apparatuses with no Ethernet
connectivity to communicate using the Ethernet protocol.

Keywords—Converter, embedded systems, Ethernet, lwIP,
UART.

I. INTRODUCTION

HOUGH Ethernet communication is very common in a
variety of devices ranging from tiny embedded devices to

high-performance personal computers, plenty of legacy devices
with no Ethernet connectivity are still in use in many fields.
Such legacy devices are usually equipped with traditional serial
communication interfaces such as RS-232 or RS-485. To
enable existing legacy devices with such an interface to connect
to an Ethernet network, it is required to upgrade the
communication interface of the legacy devices. This may cause
both considerable cost and time or be technically impossible.
UART-to-Ethernet converters are devices for converting
TCP/UDP packets into asynchronous serial data and vice versa.
These devices can help solve the problem without the need for
modifying the existing legacy devices. The UART-to-Ethernet
converter bridges seamlessly asynchronous serial ports of the
legacy devices and the Ethernet network.

An implementation of a serial-to-Ethernet converter was
described in [1], wherein the converter was implemented using
an ARM-based 32-bit microcontroller STM32F107 and a
TCP/IP protocol stack called lwIP (A lightweight TCP/IP). The

J. Moon is with the Department of Electrical Engineering,

Gangneung-Wonju National University, Gangneung, Gangwondo, South
Korea (e-mail: itsmoon@gwnu.ac.kr).

M. Yoon is with the Department of Precision Mechanical Engineering,
Gangneung-Wonju National University, Wonju, Gangwondo, South Korea
(e-mail: mgyoon@gwnu.ac.kr).

STM32F107 is a connectivity line microcontroller equipped
with an Ethernet peripheral that supports both the media
independent interface (MII) and the reduced media independent
interface (RMII) [2]. lwIP is an open source TCP/IP stack
designed for embedded systems having limited resources [3].
The converter described in [1] supports 3 asynchronous serial
communication protocols, RS-232, RS-422, and RS-485 and 3
different network modes, TCP/IP server, TCP/IP client, and
UDP client. Fig. 1 shows the picture of the converter introduced
in [1].

Fig. 1 The picture of the converter introduced in [1]

The lwIP supports well-known protocols such as IP, ICMP,

UDP, TCP, DHCP, and ARP required for the implementation
of the converter [2]. It provides both a basic raw API and a
high-level sequential API that requires a real-time operation
system (RTOS) [4]. The firmware for the converter developed
in [1] was implemented as a callback-based application by
adopting the raw API. The raw API provides better execution
speed and less memory usage than the high-level API but adds
software complexity. This paper describes another
implementation of the serial-to-Ethernet converter introduced
in [1] using the high-level sequential API, which leads to
simpler and more modular firmware but requires an operating
system. We adopted a real-time operating system named
FreeRTOS. FreeRTOS is a free real-time operating system
designed to be small enough to run on a microcontroller having
limited memory space. It has been ported to a variety of
commercial microcontrollers [5]. Because FreeRTOS supports
multi-thread operations, the firmware of the converter was
implemented as a multi-thread application, which makes the
firmware more modular and the development of the firmware
much easier.

II. CONFIGURATION OF OPERATING PARAMETERS

The converter has many operating parameters that decide the
operation of the converter. The parameters can be configured

An Implementation of a Configurable
UART-to-Ethernet Converter

Jungho Moon, Myunggon Yoon

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:12, 2017

1236

by the user using a dedicated configuration program running on
a PC. The user-configurable operating parameters include the
following:
 Converter’s IP address, subnet mask, and gateway’s IP

address
 Network mode: TCP/IP server, TCP/IP client, and UDP

client
 Port number to which other TCP/IP clients connect when

the converter acts as a TCP/IP server
 Server’s IP address and port number when the converter

acts as a TCP/IP client
 Server’s IP address and port number when the converter

acts as a UDP client

 Serial communication parameters: Baud rate, data bits,
stop bits, and parity

 Size of serial data to send as a single packet over the
Ethernet connection (SOD)

 Timer’s fire interval for determining the boundary between
two groups of serial data (TFI)

The parameters, SOD and the TFI, are described in detail in
[1] and thus omitted here.

Fig. 2 shows a screen snapshot of the dedicated configuration
program running on a PC, where the configuration program
shows the operating parameters of a converter after receiving
them from the converter.

Fig. 2 A screen snapshot of the configuration program

As described in [1], the configuration program was written in
Python using a graphic library called PyQT [6]-[9] and built
into a standalone executable. Since the configuration program
communicates with the converter using the UDP protocol, it is
necessary to connect the converter to the same network as the
PC on which the program is running to configure the converter.
Alternatively, the PC and the converter can be connected
directly using an Ethernet cable. It is not necessary for the user
to know the IP address of the converter beforehand. Once the
connection between the converter and the PC has been
established, the configuration program is capable of reading the
aforementioned operating parameters including the IP address
of the converter from the converter and then modifying all the
parameters.

Since the IP address of the converter is not known to the
configuration program, the program communicates with the
converter by exchanging UDP broadcast messages using a
predefined format and port number. If more than one converter
exists on the network, the configuration program receives
multiple responses from all the converters but can identify each
converter because the response from each converter includes its
own MAC address. The configuration program shows MAC
addresses on the left side as shown in Fig. 2. By selecting a
specific MAC address, the user can see all the operating
parameters of the converter associated with the selected MAC
address and then modify them. On the microcontroller side, the

task for transmitting/receiving the operating parameters to/from
the configuration program and storing the operating parameters
received from the configuration program in the flash memory
of the microcontroller is handled by an RTOS thread created for
this purpose, which will be described in detail in the following
section.

III. THE FIRMWARE STRUCTURE

Fig. 3 shows the operation model of the lwIP when working
with an RTOS.

Fig. 3 lwIP operation model with an RTOS

The TCP/IP stack and the application run in separate threads.

The application thread is created by the user and handles
application-level tasks such as a HTTP server or a TCP/IP

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:12, 2017

1237

client. The application thread communicates with the TCP/IP
stack through sequential API calls for inter-thread
communications [4]. The API calls are blocking calls, which
indicates that the application thread is blocked after an API call
until a desired response from the TCP/IP stack is received. An
additional thread, the network interface thread, gets any
received packets from driver buffers and provides them to the
TCP/IP stack thread using an RTOS mailbox. The packet
reception from the Ethernet is interrupt-driven. Once a packet is
received, the network interface thread is notified of the
reception through an RTOS semaphore. Though the operation
of the application thread relies heavily on the underlying
network interface thread and Ethernet ISR, the application
thread does not have to know about them in detail. All the
complicated tasks related to the network interface thread and
the ISR are handled by the lwIP itself. The application thread
therefore can simply communicate with the TCP/IP stack
thread through sequential API calls without worrying about
anything else.

Fig. 4 shows the application threads for the implementation
of the parameter configuration and the three network modes
supported by the converter.

Fig. 4 Application threads

Fig. 5 Flowchart of the task done after power-up

The application is composed of four threads: Configuration
thread, TCP/IP server thread, TCP/IP client thread, and UDP/IP
client thread. After power-up, the configuration thread is
always created and run but only one among the other three
threads is created and run. When powered, one thread is chosen
depending on the current network mode of the converter. Only
the chosen thread is created and runs. If the user modifies the
operating parameters of the converter and stores them, the
whole parameters are overwritten without regard to the number
of modified parameters and then the converter reboots. As a
result, only the thread associated with the current network
mode is created and run, thereby preventing the memory from

being wasted.
Fig. 5 shows the flowchart of the task conducted after

power-up. After power-up, a thread called the start thread is
created first and then the RTOS kernel starts. The start thread
does not start running until the kernel starts. After the kernel
starts, the start thread initializes the lwIP and then creates the
configuration thread. When the lwIP is initialized, all the
system threads including the TCP/IP thread are created
internally. After creating the configuration thread, the start
thread creates one among the aforementioned three threads
depending upon the current network mode.

The configuration thread handles the communication
between the microcontroller and the configuration program
running on the PC and storing received parameters in the flash
memory of the microcontroller. Fig. 6 shows the flowchart of
the task done by the configuration thread.

Fig. 6 Flowchart of the task done by the configuration thread

After creating a new connection identifier and biding the
UDP connection to a predefined port on any IP address, the
configuration threads blocked until a UDP packet is received on
the port. As soon as a UDP packet sent from the configuration
program is received on the port, the configuration thread gets
unblocked and then analyzes the received packet and conducts
the required operations.

If the received packet is a query for operating parameters, the
configuration thread reads the current operating parameters of
the converter from the flash memory of the microcontroller and
transmits them as a UDP broadcast packet after appending the
converter’s unique MAC address to the operating parameters.
When the configuration program transmits a command for
storing operating parameters to a converter, the configuration
program includes the parameters to store in the command. If the
received packet is a command for strong operating parameters,
the configuration thread stores the operating parameters
contained in the received packet in the flash memory and resets
the microcontroller.

As described earlier, only one thread is created and runs
depending on the current network mode. Basically all of these
threads work in a similar manner. After conducting necessary

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:12, 2017

1238

initialization, these threads start an infinite loop in which API
function calls are made. The API function calls are blocking
calls which may block the caller. The TCP/IP server thread is
blocked after entering a listening mode until it receives a
request for connection from a TCP/IP client. The TCP/IP client
thread makes a request for connection to a TCP/IP server and is
blocked until it is accepted by the TCP/IP server. Likewise,
these threads are blocked while waiting for a packet to arrive.

The tasks conducted after the threads are unblocked are quite
similar to those conducted in the raw API implementation
described in [1]. The way by which events are handled,
however, differs completely. In the raw API implementation,
the application layer communicates with the lwIP using event
callback functions. These callback functions, therefore, must be
registered before starting the communication process. If an
event occurs, the registered callback function associated with
the event is called automatically. In other words, the events are
handled indirectly by the callback functions and therefore the
code for processing the events is not shown in the main infinite
loop. In the sequential API implementation using an RTOS, in
contrast the application thread communicates with the lwIP
through sequential API calls. It is thus more direct than the raw
API implementation.

IV. CONCLUSION

The paper presented an implementation of a configurable
UART-to-Ethernet converter using the lwIP and a real-time
operating system named freeRTOS. Unlike the previous
version, we adopted the high-level sequential API provided by
the lwIP with the aid of freeRTOS. Compared to the raw API,
the sequential API leads to a simpler implementation and less
development time but results in more memory footprint and
lower execution speed. The performance of the raw API
implementation seems slightly better than its sequential API
counterpart but the difference does not seem remarkable. The
performance of the sequential API implementation is
satisfactory as well.

REFERENCES
[1] J. Moon, and M. Yoon, “An implementation of a configurable

serial-to-Ethernet converter using lwIP”, Science International, vol.
ED-11, pp. 34–39, Jan. 1959.

[2] STMicroelectronics, STM32F107xxx Reference Manual, 2014.
[3] “lwIP Wiki”, Available at: http://lwip.wikia.com/wiki/LwIP_Wiki.

(Accessed Sep. 20, 2016)
[4] STMicroelectronics, Developing Applications on STM32Cube with lwIP

TCP/IP Stack, 2015
[5] “FreeRTOS”, Available at: http://www.freertos.org, (Accessed May 10,

2017)
[6] B. Lubanovic, Introducing Python: Modern Computing in Simple

Packages, O’Reilly, 2014
[7] M. Lutz, Learning Python 5/e, O’Reilly , 2013
[8] M. Summerfield, Rapid GUI Programming with Python and Qt: The

Definitive Guide to PyQt Programming, Prentice Hall, 2015.
[9] B. M. Harwani, Introduction to Python Programming and Developing

GUI Applications with PyQT, Cengage Learning PTR, 2011.

