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Abstract—Earthquake is an inevitable catastrophic natural
disaster. The damages of buildings and man-made structures, where
most of the human activities occur are the major cause of casualties
from earthquakes. A comparison of optical and SAR data is presented
in the case of Kathmandu valley which was hardly shaken by 2015-
Nepal Earthquake. Though many existing researchers have conducted
optical data based estimated or suggested combined use of optical
and SAR data for improved accuracy, however finding cloud-free
optical images when urgently needed are not assured. Therefore, this
research is specializd in developing SAR based technique with the
target of rapid and accurate geospatial reporting. Should considers
that limited time available in post-disaster situation offering quick
computation exclusively based on two pairs of pre-seismic and co-
seismic single look complex (SLC) images. The InSAR coherence
pre-seismic, co-seismic and post-seismic was used to detect the
change in damaged area. In addition, the ground truth data from field
applied to optical data by random forest classification for detection of
damaged area. The ground truth data collected in the field were used
to assess the accuracy of supervised classification approach. Though
a higher accuracy obtained from the optical data then integration by
optical-SAR data. Limitation of cloud-free images when urgently
needed for earthquak evevent are and is not assured, thus further
research on improving the SAR based damage detection is suggested.
Availability of very accurate damage information is expected for
channelling the rescue and emergency operations. It is expected that
the quick reporting of the post-disaster damage situation quantified
by the rapid earthquake assessment should assist in channeling the
rescue and emergency operations, and in informing the public about
the scale of damage.

Keywords—Sentinel-1A data, Landsat-8, earthquake damage,
InSAR, rapid monitoring, 2015-Nepal earthquake.

[. INTRODUCTION

HE concentration of population in urban areas is rapidly

increasing and earthquake is one of the most catastrophic
natural disasters for them. The technically sound cities with
earthquake-resistant infrastructures and prompt emergency
services can defend damages from large earthquakes; whereas
rampant buildings in vulnerable fault zones are perils of mass
deaths and cremations. The extravagant deaths and injuries
due to earthquakes observed over last few decades undermine
present urbanization. While urbanization is inevitable at the
expense of rising population, damage reduction strategies in
earthquake-prone regions are mandatory. Though earthquakes
are unavoidable, their damages can be minimized by disaster
preparedness and tactful management.

Saeid Gharechelou is with the Faculty of Civil Engineering, Shahrood
University of Technology, Shahrood, Iran (e-mail: sgharachelo@gmail.com).

Ryutaro Tateishi is with the Center for Environqwmental Remote Sensing
(CEReS), Chiba University, Japan.

Earthquakes have caused more than 23 million deaths
during the period of 1902-2011 alone globally [1]. Nepal is
one of the most earthquake-prone countries in the world. The
geodetic strain emerged on Main Himalayan Thrust (MHT)
fault and potential seismic hazard across Nepal Himalaya has
been well described by scientists [2]-[12]. In line with this, an
earthquake with a moment magnitude (Mw) of 7.8 occurred on
April 25, 2015 followed by another major aftershock with 7.3
Myw on May 12, 2015, and hundreds of large aftershocks after
that. This earthquake occurred as the result of thrust faulting
on or near the MHT between the subducting India plate and
the overriding Eurasia plate at a rate of 45 mm per year to the
north [1]. It causes more than 9,000 deaths, 23,000 injured,
500,000 families homeless, and 2.8 million people in need of
humanitarian assistance [13]. The sequence of major
aftershocks also triggered thousands of landslides in the steep
topography of Nepal with hundreds of fatalities and road
blocks to the villages [14].

Nepal has an evidence of 17 earthquakes larger than 6.0 Mw
in the documented history since 1225 [1]. The 1225-
earthquake as the first recorded earthquake in Nepal believed
to have killed one-third of the total population in Kathmandu
including the king of Nepal; the earthquakes of 1408, 1505,
1681, 1767, 1833, and 1916 were said to have as devastating
as of 1225. The 8.4 My earthquake of 1934 was very
destructive which killed 8,519 people’s lives. The terrifying
moment of this earthquake has been well described by Rana,
1935. The 2015-earthquake was the worst natural disaster
Nepal faced since 1934. Scientists have indicated that more
calamitous mega earthquake appears to be inevitable to
Nepal's future because the present earthquakes have failed to
fully rupture the main fault beneath the Himalaya [15]-[17].
These scientific statements urge that Nepal requires boosting
up its disaster preparedness plan.

Buildings damage information is essential for rescue,
humanitarian and reconstruction operations in the disaster area
[18]. The satellite-based optical and SAR data have been used
for buildings damage assessment after major earthquakes in a
number of places, for example 1995-earthquake in Kobe,
Japan [19], 1999-earthquake in Izmit, Turkey [20], 2001-
earthquake in Gugrat, India [21], [22], 2003-earthquake in
Bam, Iran [23]-[26], 2005-earthquake in Azad Kasmir,
Pakistan [27], 2006-carthquake in Java, Indonesia [28], 2008-
earthquake in Sichuan, China [29]-[32], 2009-earthquake in
L'Aquila, Ttaly [33], [34], and 2010-earthquake in Haiti [35]-
[37].

Different techniques have been utilized for retrieving the
earthquake-induced buildings damage information from
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remotely sensed imagery such as very high resolution satellite
imagery [38]-[40], stereo photographs [41], [42], combination
of SAR and optical data [43], [44], object based identification
[45], [46], supervised classification [47], [48], airborne
imagery [49]-[51], SAR backscattering intensity [52], [53],
Multi-temporal SAR images [54], unmanned aerial vehicle
images [55], [56], template matching and pattern recognition
[57], and textural and the spectral features [58], [59].
Buildings damage is often measured by grading the level of
damages, e.g., heavy damage, moderate damage, and low
damage [60]-[63]. However, detection of lower damage levels
is challenging while the remotely sensed images are mostly
capable of detecting heavy damage levels, i.e., totally
collapsed buildings [64], [65]. After the 2015-Nepal
earthquake, reconnaissance survey of the damaged buildings
and structures have been conducted by some researchers and
reported the damage to poorly structured stone/brick masonry
buildings, subsidence of soft soils and lateral spreading [66]-
[69].

The importance of near real-time disaster mapping using
satellite data to minimize the effects of natural disasters have
been discussed [70]. The major hazards caused by the
earthquakes are ground shaking, ground displacement, soil
liquefaction, and flooding/tsunami. All these hazards can
seriously damage buildings where most of the human
activities occur. The quick reporting of the post-disaster
damage situation is necessary for channelling the rescue and
emergency operations, and in informing the public about the
scale of damage. Satellite with a capacity of repeat
observation and wide area coverage offers optical and
synthetic aperture radar (SAR) data applicable to damage
detection. Though many attempts have been made for the
satellite based detection of damages, accuracy is an issue
immensely important. This research aims to increase the
accuracy of detection of buildings damaged by mining
important features from optical and SAR data through
supervised learning approach, and discuss potentialities of the
selected features.

II. METHODOLOGY

A. Study Area

This research was carried out in the urban areas of the
Kathmandu valley which was severely hit by the 2015-Nepal
earthquake. The Kathmandu valley is the bowl-shaped valley
standing at 1,425 meters above sea level surrounded by
mountainous ranges. It consists of several cities and villages
including Kathmandu metropolitan city, the capital of Nepal.
This valley as a lake in geological past has faced big
carthquakes throughout the history. The valley is a cultural
and economic hub of Nepal hosting several world heritage
sites. The location map of the study area is displayed in Fig. 1.
The major shake areas are also shown in Fig. 1 based on
Mercalli intensity data of the earthquake [1] which
demonstrates that the Kathmandu valley was severely shaken.
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Fig. 1 Location map of the study area, the Kathmandu valley, Nepal
(red polygon) along with the epicenter and major shake areas

B. Processing of the Satellite Data

Sentinel-1 mission by European Space Agency (ESA)
provides free data from a C-band Synthetic Aperture Radar
(SAR) instrument from April 2014. We used the pre-seismic
and post-seismic images in VH and VV polarizations from the
Sentinel-1 Ground Range Detected (GRD) product. The GRD
product consists of focused SAR data that has been detected,
multi-looked and projected to the ground range using an Earth
ellipsoid model. The resulting product has approximately
square resolution pixel by 13 m and square pixel spacing. We
processed the GRD scenes using the Sentinel-1 Toolbox
available freely from the ESA to generate a calibrated and
terrain-corrected product. The final terrain corrected images
were converted to decibels via log scaling and quantized to
16-bits. For change detection, we calculated the ratio between
post-seismic and pre-seismic polarizations (VH and VV). We
also calculated 18 types of image textures using the gray-level
co-occurrence matrix (GLCM) functions using 3x3 sliding
window size with a single pixel offset. Then, the ratios
between post-seismic and pre-seismic textures were calculated
for supervised learning.

We also calculated pre-seismic and co-seismic phase
coherence from Sentienel-1 Single Look Complex (SLC)
product using Interferometry Synthetic Aperture Radar
(InSAR) technique. The SLC product consists of focused SAR
data geo-referenced using orbit and attitude data from the
satellite and provided in zero-Doppler slant-range geometry.
The InSAR technique uses phase difference between two
observations taken from slightly different sensor positions.
Two pairs of SLC images representing pre-seismic (March 24,
2015 and April, 17) and co-seismic (April 17, 2015 and April
29, 2015) events were co-registered and coherence were
calculated using Sentinel-1 Toolbox. The terrain corrected
coherence images were used to calculate the ratio between co-
seismic and pre-seismic coherences as an additional feature
for the change detection. We also calculated post-seismic
(April 29, 2015 and May 11, 2015) coherence image to
compare the phase change after and before the earthquake. It
should be noted that the post-seismic pair uses the SLC
images taken before large aftershock on May 12, 2015. The
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perpendicular (temporal) baseline differences of the co-
seismic and pre-seismic image pairs were 38.92 meters (12-
days), and -34.82 meters (24-days) respectively as minor
differences for damage detection.

The standard terrain corrected (Level 1T) Landsat 8
Operational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS) scenes belonging to pre-seismic and post-seismic
events were processed. The Digital Numbers (DNs) for each
OLI and TIRS band delivered as
16-bit unsigned integers were converted into Top-Of-
Atmosphere (TOA) spectral reflectance and brightness
temperature (K) values using the rescaling coefficients found
in the metadata file. Out of nine OLS and two TIRS bands of
the Landsat 8 data, seven bands (blue, green, red, near infrared,
mid infrared shortwave infrared and thermal infrared) were
extracted. The clouds were removed by using separate Quality
Assessment (QA) band information available in the Landsat 8
data. The ratios of post-seismic and pre-seismic images of all
seven Landsat 8 bands were calculated. 18 types of image
textures for each band were calculated for each of the post-
seismic and pre-seismic images. Then, the ratio between the
post-seismic and pre-seismic textures were also calculated.
Altogether, a stack of 172 feature images was prepared from
the Sentinel-1, Landsat 8 data, and used in the research. The
input feature images are listed out in Table I.

C. Collection of the Ground Truth Data

For evaluating the strength of earthquake impacts to a
specific place, the European Macro-seismic Scale [72] has
used twelve damage scales. For rapid monitoring of
earthquake damages using satellite data, discriminating all the
twelve damage scales are not only difficult but also not
necessary. Therefore, from satellite perspectives, the EMS
scales are summarized into three damage levels in our research
as follows: safe, danger, and lethal.

1. Safe: Divisions 1-3 (not felt, scarcely felt, weak, and
largely observed) including not felt by everyone, felt by
individual indoor peoples, noticeable shaking of many
objects and swing of hanging objects respectively without
any damage to the buildings are termed as safe to the
peoples nearby.

2. Danger: Divisions 4-7 (strong, slightly damaging, and
damaging) including the toppling of heavy objects, falling
of objects on wall, and shifted furniture and falling of
objects from the shelves respectively that can kill and
injure the peoples are termed as “danger”, but they cannot
be discriminated by satellite images and did not account.

3. Lethal: Divisions 8-12 (heavily damaging, destructive,
very destructive, devastating, and completely devastating)
including the partial collapse of few buildings, partial
collapse of many buildings, the collapse of many
buildings, the collapse of most buildings, and destruction
of all structures respectively are termed as lethal damages.

After 2015- earthquake in Nepal, locations of the lethal and
safe damages were collected through visual inspection in the
field. The polygon around the lethal and safe blocks as seen
on the ground was recorded based on a GPS instrument. Not

only the residential buildings but also the public buildings,
historical monuments, towers, and temples were included.
However, the brick walls in the periphery of houses which
were damaged elsewhere were not accounted. Altogether 105
polygons belonging to each class were collected. The
distribution of the ground truth polygons are plotted in Fig. 2.
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Fig. 2 Distribution of the ground truth polygons in the Kathmandu
valley displayed over Landsat-8 based RGB composite image

TABLEI
LIST OF 172 INPUT FEATURES USED IN THE RESEARCH

Features Landsat 8 Sentinel-1
Post-seismic and pre-seismic optical bands ratio 7 -
Post-seismic and pre-seismic optical textures ratio 7 x18 -
Post-seismic and pre-seismic SAR polarizations ratio - 2
Post-seismic and pre-seismic SAR textures ratio 2 x18
Post-seismic and co-seismic InSAR coherence ratio - 1
Sub-total 133 39
Total 172

D. Supervised Classification and Accuracy Analysis

The mean pixel values of 172 feature images were
calculated for each of the ground truth polygons, and
supervised classification approach was used for the detection
of buildings damages. The Random Forests algorithm that
uses bootstrap aggregating (bagging) to form an ensemble of
trees by searching random subspaces from the given data
(features) and the best splitting of the nodes by minimizing the
correlation between the trees, was used as a supervised
classifier [71]. Out of 110 polygons belonging to each class,
55 polygons were used for training the Random Forests model,
whereas remaining 55 polygons were used for analyzing the
accuracy of the model. The hierarchy of best features provided
by the random forests algorithm was used to identify the
importance of features through assessment of each subset of
features separately. The overall accuracy and kappa
coefficient were used as the metrics of accuracy.

III. RESULTS AND DISCUSSION

A. Visualization of the Lethal Blocks

The time-lapse images from very high resolution satellite
data are vital information for grasping quick geospatial
information of the disaster situation and assessing the scale
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and extent of damages. Google Earth can be a useful platform
for quick delivery of the damage information due to its free
accessibility mainly for countries which lack modern data
infrastructure. Examples of the lethal block polygons as
collected in the field have been demonstrated in Fig. 3 using
pre-seismic and post-seismic Google Earth images. In each
location in Fig. 3, the scale and extent of damages are clearly
distinguished which confirms the suitability of Google Earth
images for rapid damage assessment if promptly updated soon
after the availability of very high resolution images.

2014-10-25 2015-05-03

| 2015-05-0

Fig. 3 Examples of the lethal blocks (red polygons) as collected in the
field using pre-seismic (left) and post-seismic (right) Google Earth
images

B. Coherence Changes

The coherence is the complex cross-correlation coefficient
of the SAR image pair, provides the similarity between the
pre-event and post-event images after compensating the
topographic phase. The phase coherence as computed from the
pair of pre-seismic, co-seismic, and post-seismic images have
been shown in Fig. 4. The coherence images obtained from
each pair have provided larger coherence over buildings and
man-made structures, whereas forests, croplands, and water
bodies provided lower coherence. However, there was a strong
drop of the co-seismic coherence (Fig. 4 (b)) as compared to
pre-seismic (Fig. 4 (a)) and post-seismic coherence (Fig. 4 (c)),
which provides qualitative information about the earthquake
induced damages. The red colour shows more change and
damage by value range of coherence change.

C. Detection of Buildings Damage

The accuracy of the detection of the building's damages was
analysed using the overall accuracy and kappa coefficient. The
kappa coefficient measures inter-rater agreement for

categorical variables by counting the proportion of instances
that predictions agreed with the validation data (observed
accuracy), after adjusting for the proportion of agreements
taking place by chance (expected accuracy) [73].
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Fig. 4 A large drop of the co-seismic coherence (b) as compared to
pre-seismic (a) and post-seismic (c) coherence
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A fifty percent of the sample polygons collected in the field
were used for the calculation of overall accuracy and kappa
coefficient which were not used for fitting the Random Forests
model. The variation of the overall accuracy and kappa
coefficient with respect to the combinations of the features is
displayed in Fig. 5. The maximum accuracy (Overall accuracy
= 0.92, Kappa coefficient = 0.84) could be obtained by the
combination of 94 features. The best performed 87 features
belong to the SAR, optical and textural data sources.

The performance of each dataset for the detection of
buildings damages are also summarized in Table II. The SAR
group (HV and VV polarizations, their 18 types of textures,
and co-seismic/pre-seismic coherence) provided overall
accuracy and kappa coefficient of 0.83 and 0.66 respectively
which is lower than the optical group based accuracy (overall
accuracy (0.92), kappa coefficient (0.84). Nevertheless, a
combination of the SAR based features with the optical data
did not improve the accuracy more than provided by the
optical data based features.

This accuracy based analysis suggested that optical data
mainly the very-high-resolution imageries are more important
than the SAR data for the detection of buildings damages.
However, time is a determining factor for the quick reporting
of the building's damages in the aftermath of disasters. The
availability of optical data as determined by clouds and
atmospheric conditions cannot be guaranteed in that short
period. Therefore, SAR data are the most important for the
detection of buildings damaged. However, accuracy of the
SAR data is not very high, kappa coefficient is 0.66 which is
more important than overall accuracy, therefore future
research should focus on increasing the accuracy of the SAR
based buildings damages detection.

The comparison of the co-seismic coherence image with the
pre-seismic and/or post-seismic coherence images showed
very clear qualitative information on the scale and extent of
the earthquake damages. It is very useful information for rapid
assessment of the severity the earthquake damages. However,
tracking individual damaged buildings is very challenging
solely using the coherence data. Many houses in Kathmandu
are surrounded by walls which are just stacks of bricks glued
together with a little concrete which are highly prone to
damage even by small-scale earthquakes. Since the SAR data
are very sensitive to the surface changes, the wall damages
provide false alarm on the detection of lethal damages. It is
expected that the availability of sub-meter resolution SAR
data in future could provide buildings level changes with high
accuracy.

TABLEIT
PERFORMANCE OF RANDOM FORESTS ALGORITHM FOR THE DETECTION OF
BUILDINGS DAMAGES
Features (Number ~ Overall accuracy ~ Optimum
of features) (Kappa coefficient) features

Sentinel-1 only 0.83 (0.66) 33

Landsat-8 only 0.92 (0.84) 21
Sentinel-1&

Landsat 0.92 (0.84) 94
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Fig. 5 (a) Performance of the SAR plus optical features (Sentinel-1
and Landsat 8) for the detection of buildings damages, (b) SAR
features (Sentinel-1) only and (c) optical features only (Landsat 8)
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IV. CONCLUSION

Since the available time is hurdling for the post-disaster
situation, a suitable method for the rapid geospatial reporting
of the earthquake-induced damages was presented in this
research. Though the optical data provided more accurate
damage detection with using of three division of ground truth
data collecting and integration with SAR data can work for
improving the accuracy of building damage. In this way
finding cloud-free optical images when urgently needed are
not assured, future research on increasing the accuracy of SAR
data that works even in the case of clouds and rains is
suggested. However, by changing the coherence SAR data can
observe the damage of buildings but, this change may cause of
other resaon as well, therefore investigation and combination
with optical data and filed data can help to improve the
accuracy. On the other hand, some researchers used the
backscatter from SAR data for detecting the change and
damage of buildings while this change in backscatter is
coming up by different sources from a ground object such as
moisture contents and chemical variation of materials. In this
was using the coherence change would be the best way to
detecting the change.
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