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Speech Enhancement Using Wavelet Coefficients
Masking with Local Binary Patterns

Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract—In this paper, we present a wavelet coefficients masking
based on Local Binary Patterns (WLBP) approach to enhance the
temporal spectra of the wavelet coefficients for speech enhancement.
This technique exploits the wavelet denoising scheme, which splits
the degraded speech into pyramidal subband components and extracts
frequency information without losing temporal information. Speech
enhancement in each high-frequency subband is performed by binary
labels through the local binary pattern masking that encodes the ratio
between the original value of each coefficient and the values of the
neighbour coefficients. This approach enhances the high-frequency
spectra of the wavelet transform instead of eliminating them through
a threshold. A comparative analysis is carried out with conventional
speech enhancement algorithms, demonstrating that the proposed
technique achieves significant improvements in terms of PESQ, an
international recommendation of objective measure for estimating
subjective speech quality. Informal listening tests also show that
the proposed method in an acoustic context improves the quality
of speech, avoiding the annoying musical noise present in other
speech enhancement techniques. Experimental results obtained with a
DNN based speech recognizer in noisy environments corroborate the
superiority of the proposed scheme in the robust speech recognition
scenario.

Keywords—Binary labels, local binary patterns, mask, wavelet
coefficients, speech enhancement, speech recognition.

I. INTRODUCTION

IN the presence of various kinds of background noise,

the performance of many real-world speech processing

applications, such as hearing aids design, hands-free mobile

telephony, speech transmission and robust speech recognition,

is far from being satisfactory. The noise degrades the systems

to levels where their use may become definitely unacceptable.

In recent years, speech enhancement has attracted much

research effort to deal with this issue. The goal of enhancement

is to improve the intelligibility and quality of a speech signal

degraded in adverse conditions. Many methods have been

proposed in the literature to handle with the noise problem [1],

[2] under various assumptions. Some of them are based mainly

on the estimation of the short-term noise power spectrum

to suppress its components and reconstruct the clean signal.

Spectral subtraction (SS) [3] is a classical method for noise

suppression. It averages the noisy signal over non-speech

sections through a voice activity detector (VAD), subtracting

an estimate of the short-term noise spectrum and providing a

measure of the present noise floor. An important problem of

this method is that assumptions regarding background noise

are required to make them work reasonably well. They depend
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on characteristics such as the stationary of noise, the SNR of

the observed signal, etc. Another technique proposed in the

literature is the Wiener filtering [2]. The goal of this filter is the

reduction of noise from the second order statistics. It assumes

that the voice signal and the additive noise are stationary

stochastic processes with known spectral characteristics, being

an optimal filter to recover clean speech in the Minimum

Mean Square Error (MMSE) [4] sense. However, a crucial

problem usually found in these traditional methods based on

noise suppression is that the resulting speech is modified by

an annoying artefact known as ’musical noise’.

Another well-known enhancement approach is the wavelet

denoising (WD) proposed by Donoho [5]. Unlike the previous

ones, this technique attempts to enhance speech signal without

requiring explicit speech pause detection for noise level or

SNR estimation. It leads to a good representation of stationary

as well as nonstationary segments of the speech signal.

The wavelet-based algorithm employs the discrete wavelet

transform as subband decomposition. It can be used to extract

the localized contributions of the signal of interest.

In contrast to noise suppression methods, based on noise

estimations, and inspired by the human auditory processing,

Wang et al. in [6] introduces a speech segregation approach,

to separate speech from background noise. This approach

has shown considerable promise to improve the speech

enhancement results. It considers that the sounds that reach

the ear are subject to a process called Auditory Scene Analysis

(ASA for its acronym in English) [7]. Based on this process,

it has been proposed the classical ideal binary mask (IBM)

[8], [9], which has been suggested as a primary computational

goal for Computational Auditory Scene Analysis (CASA)

systems. The IBM may be seen as a binary classification of

time-frequency (T-F) units constructed from premixed target

and interference. Each unit in the T-F representation of the

noisy signal is identified as speech domain when the T-F unit

exceeds a threshold or noise domain otherwise.

Following these research lines, we propose a speech

enhancement technique, referred to as Wavelet LBP (WLBP),

using the relevant information of the wavelet transform

according to scale or resolution, and a mask based on

the Local Binary Patterns (LBP) [10], [11] approach. It is

often used in 2-D image processing for texture description.

Our proposal provides, for every one coefficient of each

high-frequency subband, the masking which converts it into

a value encoded with a higher level of information through

the LBPs instead of being eliminated through a threshold.

Hence, the method aims at indicating which coefficient of

the wavelet transformation of noisy speech is dominated by
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noise. The effectiveness of this scheme relies primarily on

the fact that with the LBP codes the value of the original

coefficient is encoded with the values of the neighbouring

coefficients. Therefore, the coded information will take into

account the highest level of information. We evaluate the

proposed WLBP on the AURORA-4 tasks (clean and corrupted

speech) [12]. The performance assessments are carried out in

terms of the objective speech quality measure p.862, known

as perceptual evaluation of speech quality (PESQ) standard.

as well as the word error rate (WER) in a DNN based

continuous speech recognition system. The rest of the paper is

organized as follows. Section II provides a brief overview of

prior works related to the wavelet-based speech enhancement

algorithm and the local binary patterns technique. In Section

III we introduce the proposed speech enhancement method

using wavelet masking with local binary patterns (WLBP).

Simulation results are presented in Section IV and finally,

Section V contains some concluding remarks.

II. PRIOR WORK

A. Wavelet-Based Speech Enhancement: Wavelet Denoising
(WD)

Let y(t) = x(t) + r(t) denote the noisy signal, with x(t)
and r(t) representing the clean speech and noise, respectively.

The general wavelet denoising algorithm proposed in [5],

[13], attempts to recover a signal x(t) from the noisy data

y(t). The wavelet-based speech enhancement algorithm

known as wavelet denoising (WD) is summarized as follows:

Step 1: Apply a J-level wavelet decomposition to the

noisy signal to produce the corrupted wavelet coefficients.

Step 2: Apply the appropriate thresholding nonlinearity to

the detail (high-frequency) coefficients in order to shrink

the wavelet coefficients of the noisy signal. The threshold

rule can be either soft or hard. In this paper we use the

soft-threshold function defined by

ηy(βjk, t) =

{
sgn(βjk)(|βjk| − δj), |βjk| ≥ δj
0, otherwise

(1)

where βjk is the kth detail (high-frequency) coefficient of the

noisy signal at level j, at the t-th frame (time) in a particular

resolution, and the function sgn(.) is +1 if the argument is

positive and −1 otherwise.

Step 3: Inverse wavelet transform of the thresholded wavelet

coefficients to obtain the denoised signal.

Note that the above algorithm was developed taking into

account the method of denoising denominated Visushrink

introduced by Donoho [5], where δj in (1) represents a

soft-threshold, which is proposed as an universal threshold

estimate given by

δj = σj

√
2ln(Nj) (2)

where Nj represents the size of the coefficients in level j and

σj is a rough estimate of the noise level. This estimate is given

by

σj =
mad(βjk)

0.6745
, k = 0, ..., Nj − 1 (3)

where mad is the median absolute deviation of the detail

coefficients at the highest resolution level (j = J).

B. Local Binary Patterns Technique

The Local Binary Patterns technique (LBP) was originally

developed for Digital Image Processing, introduced as a

complementary measure for local image contrast [10]. It has

become one of the best texture descriptors, in terms of its

performance and highly discriminative abilities [14], [15]. The

aim of this scheme is to summarise the local structure in

an image by comparing each pixel with its p neighbours.

The original LBP operator typically works in a 3X3 pixel

block of an image (see Fig. 1 for illustration), where every

single pixel in the block is thresholded by its central pixel

value. This procedure results in a binary number which is

summed to each neighbour binary value to be transformed

into a decimal number, obtaining a label for the centre pixel.

As mentioned in [16], the neighbourhood consists of 8 pixels,

a total of 28 = 256 different labels can be obtained depending

on the relative grey values of the centre and the pixels in the

neighbourhood. The LBP code for the central pixel is given

in a decimal form as

LBPp =

p−1∑
i=0

sgn(fp − fc)2
p (4)

where fc represents the gray value of the center pixel, fp the

gray values of the p=8 surrounding pixels, and the function

sgn is the same as in (1).

In [11], the authors adapted the 2-D LBP operator to 1-D

LBP and presented a theoretically very simple, yet efficient,

1-D LBP approach for voice activity detection (VAD). The

concept of the one-dimensional LBP method consists in a

binary label describing the abrupt local changes of the 1-D

signal which attempts to estimate periods of speech and

non-speech. The LBP 1-D code is obtained from a sliding

window with an odd number of samples through the signal,

where each neighbouring sample is threshold against central

samples of the processing window. An example of the 1-D

LBP operator and their binary codes are given in Fig. 2,

where p, the number of neighbourhoods, is set to 8 (1x8 mask

pattern).

III. WAVELET COEFFICIENTS MASKING BASED ON LOCAL

BINARY PATTERNS

The aim of masking techniques is to separate speech from

noise sources. As mentioned in Section I, the IBM mask is

considered to be a goal of CASA in order to achieve this

purpose. It consists of a T-F binary matrix constructed from

pre-mixed speech and noise, where each T-F unit is set to 1 if

the local SNR is greater than a threshold and 0 otherwise. This

mask has been widely used in the literature and it has been

shown that under certain constraints it is the optimal binary
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Fig. 1 Computing the binary code of eight neighbouring pixels
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Fig. 2 Computation of the 1-D LBP operator of eight neighbouring samples

mask in terms of Signal-to-Noise Ratio (SNR). However, this

algorithm presents a significant limitation affecting speech

quality. When spectral frequency components are reduced to

zero, they produce a musical noise. Furthermore, this kind

of mask is based on true speech spectrum requiring access

to the true local (instantaneous) SNR. On the other hand,

one critical decision of this kind of methods is to choose a

suitable T-F domain to represent the time varying contents

of the signal. Traditionally, they use the short time Fourier

transform (STFT) to produce a time-frequency representation

for the sound mixture.

In this paper, we propose a new masking technique

based on a compromise between precise temporal information

and frequency localization. This is offered by the wavelet

transform, which presents a solution to overcome the

shortcomings of the Fourier transform. This is due to its ability

to incorporate additional temporal information that covers

multiple frames in the characteristic vector. In the proposed

scheme we apply the LBP mask to the high-frequency

subbands of the wavelet denoising technique. The diagram of

our mask estimation based on wavelet coefficients is shown in

Fig. 3. Details are given in the following paragraphs.

As mentioned in Section II, in the step 1 we compute

the wavelet packet of the input signal using the wavelets

represented by

βjk,t =
1√
Nj

N−1∑
t=0

y(t)ψj,k(t) (5)

where βjk,t are the coefficients of the wavelet transform

for each j-th level of decomposition (scale j) and position k
and ψj,k(t) is the family of wavelet functions with scale j,

position k. In (5), t is the index of the frame in a particular

high-frequency, and the wavelet function is defined by

ψj,k(t) =
√
2j(ψ2jt− k) (6)

The decomposition of the signal into different frequency

bands is obtained by successive low-pass and high-pass

filtering in the time domain. The input corrupted speech signal

y(t) is first filtered by a low-pass filter and a high-pass filter.

The result will be a low-pass signal a1 and a high-pass signal

d1, each containing half of the samples of the input signal

y(t). The high-pass filter produces the wavelet coefficients

where the LBP mask will be applied for level J. The low-pass

filter produces the scale function for the next level of the

hierarchical decomposition. When the low-frequency bands

are input to another filter bank system, identical to the first

one, a tree structure is created, which divides the spectrum of

the original signal into octaves. The decomposition produces

J levels of wavelet coefficients (see Fig. 4) corresponding

to individual signals where the high-frequency ones will be

used for the proposed masking. In Fig. 4 the input signal is

decomposed into 5 levels, where the signal y(t) (Fig. 4(b))

corresponds to the signal to be analyzed. The signal a5 is the

low-frequency component of the input signal since it is the

output of the last low-pass filter of the decomposition tree.

The signals dj (j = 1 ... 5) are the high-frequency components,

being d1 the highest one because it is obtained from the first

filter of the tree. These signals are referred to as detail signals.

The output of any high-frequency filter is subdivided into

overlapping consecutive time frames of 32 ms and 10 ms

time shift. This process generates a matrix of two dimensions

ΓM,N , where M represents the number of frames and N is the

number of wavelet coefficients in each frame. This produces

a T-F units matrix for each level. They will be enhanced

according to the adapted LBP operator to work on each row

of the matrix ΓM,N for each j-th level of decomposition. A

mathematical description of our adapted LBP for each j − th
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Fig. 3 Block diagram of proposed method, based on local binary patterns and wavelet transform

level, k−th coefficient and a particular time (frame) t is given

as follows

LBPj,t[k] =

p/2∑
i=1

{
sgn[γ[k − i]− γ[k]]2p/2−i

+sgn[γ[k + i]− γ[k]]2p/2+i−1
}

(7)

where p is the number of neighbouring coefficients

surrounding each T-F unit in analysis. The function sgn[.] is

set to 1 if the difference between the neighbouring coefficients

and the T-F unit of analysis is greater than the threshold δj ,

given in (2) and is important because it avoids the influence of

very small noises, γ[k] represents the a priori SNR for each

T-F unit in dB estimated directly from the noisy coefficients.

To estimate γ[k] we have used the algorithm reported in [17].

For the case p = 2, we obtain LBP codes ranging from 0 to

3. For each LBP code, we set the corresponding mask value

to 1 if the LBP code is 3. This represents the situation where

the speech energy is significantly higher than the noise. When

the LBP codes are 1 or 2, these values are smoothed using

a Wiener filter gain function. Finally, a temporal smoothing

through a weighted average filter is carried out when the LBP

code is 0 to reduce fluctuations between the local energy

of the noisy speech and the one when the speech energy

is greater than the noise. This procedure enhances speech

presence in neighbouring coefficients, smoothing all T-F units

with dominant noise energy, instead of removing them, as in

IBM. Quantitatively, for the case where p = 2 the WLBP

mask for each j− th level, k− th coefficient and a particular

time t is defined as

Fig. 4 Wavelet decomposition of the input signal into 5 levels: (a) clean
speech and (b) corrupted speech with babble noise at 0dB SNR

WLBPjk,t =

⎧⎪⎪⎨
⎪⎪⎩

γ[k − 1] + 2γ[k] + γ[k + 1]

4
, LBPj,t[k] = 0√

γ[k]

1 + γ[k]
, LBPj,t[k] = 1 or 2

1, LBPj,t[k] = 3
(8)
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Finally, the inverse transform is applied in order to obtain the

synthesis of the signal. In this step, the improved speech signal

is passed through the high-pass and low-pass synthesis filters.

For the high-pass filters, the reconstructed signal is derived

from the retained coefficients. The inverse wavelet transform

of the detail signals is given by

β−1
jk,t =

1√
Nj

∑
j

∑
k

WLBPjk,tψj,k(t) (9)

In Algorithm 1 we summarize the proposed technique for

the case where the number of neighbours is p = 2.

Algorithm 1 Computing the WLBP mask for p=2

Input: Corrupted speech signal y(t).
Output: WLBPjk,t.

1: Compute the wavelet transform to the noisy signal usnig
Daubechies 10 mother wavelet with J=5 levels of decomposition.

2: Segment each j-th detail level, j=1,...,5, into 32-ms frames (256
samples at an 8kHz sampling frequency) with 10-ms intervals

3: Compute the SNR a priori γ[k] for each high-frequency wavelet
subband according to [17].

4: while γ[k] True (for k = [0 : 255]) do
5: Perform the LBPjk,t[k] code on the slide analysis window

of length p = 2.
6: if γ[k ± 1] ≥ γ[k] then
7: return Wp = 1; increment p
8: else
9: return Wp = 0; increment p

10: end if
11: if p = 2 then
12: return LBPjk,t[k] = 2Wp + 2Wp+1

13: end if
14: end while
15: Separate all segments which diferent values of LBP.
16: Compute WLBPjk,t according to (8)

IV. SIMULATION RESULTS

In this section, we present and discuss the simulation results

of the proposed algorithm (WLBP), the classical spectral

subtraction (SS), the wavelet denoising method (WD), and

the estimated binary mask (EBM). In the case of the WLBP

and EBM algorithms, we estimate the a priori SNR γ[k], by

using the Improved Minima Controlled Recursive Averaging

(IMCRA) algorithm proposed by Cohen [17]. All experiments

were conducted on the noisy subset of Aurora-4 task [12]. The

chosen subset consists of 330 clean speech utterances mixed

with 6 environmental noises (babble, airport, restaurant, street,

car, train) ranging from 0dB to 15dB. The original signal was

sampled at a frequency of 8kHz. Performance evaluations were

carried out with two measures for assessing the quality of the

enhanced speech:

1. The ITU-T P.862 Perceptual Evaluation of Speech Quality

(PESQ) recommendation, which is an objective measurement

for estimating subjective quality obtained in listening-only test

[18].

2. The proposed technique was also evaluated by a speech

recognition system that was implemented using a baseline

hybrid deep neural network-HMM (DNN-HMM). This system

was trained using Kaldi recipe ’s5’ [19]. The training set used

for the experiments was the subset train-si84 (7138 utterances).

We used the dataset Nov’92 (330 utterances) as the test set.

The audio data was preprocessed into 40-dimensional log

Mel filter-banks, with deltas and accelerations. The trigram

language model used for the task was provided with the

WSJ CD. The forced alignments were generated from Kaldi

recipe tri4b, corresponding to LDA preprocessing of data,

with MMLT and SAT for adaptation. There were a total 3385

triphone states in the alignments.

Performance results in terms of PESQ scores are given in

Table I. From this table, we observe that noisy results obtained

without any enhancement technique, severely affect the speech

signal. The efficiency of the algorithms is better when Local

Binary Patterns is used in the wavelet masking process. As

can be seen, the performance of the proposed masking scheme

improves the PESQ measure in all scenarios of SNR averaged

over 6 environmental noises.

TABLE I
PESQ AVERAGED OVER THE DIFFERENT KINDS OF NOISE

SNR noisy SS WD WLBP EBM
0 1.06 1.19 1.20 1.30 1.11
5 1.19 1.40 1.42 1.56 1.22
10 1.45 1.75 1.78 1.94 1.47
15 1.87 2.20 2.25 2.40 1.89

Although a formal subjective evaluation was not carried

out, it was observed from informal listening tests that the

proposed method does not present the uncomfortable musical

noise present in the other enhancement techniques.

Finally, the performance of a DNN based continuous speech

recognition system was assessed by the average word error rate

(WER) performance measure (experimental conditions were

previously reported in this section). In clean conditions, it

produces a WER of 4.71%. Table II shows the performance

of our mask compared with the other techniques for six

environmental noises. Each method is averaged over 0, 5 10

and 15dB. We can see that the wavelet coefficient masking

based on Local Binary Patterns overperforms the spectral

subtraction, wavelet denoising and EBM mask in all noise

scenarios averaged over the different conditions of SNR.

Taking the average of the WER over all kinds of noise in

Table II we can see that for the WLBP scheme this average

is 32.6% while for the spectral subtraction, wavelet denoising

and EBM methods this value is 34.11% 37.11% and 36.52%
respectively.

TABLE II
WORD ERROR RATE WER ON THE NOISY SUBSET OF THE AURORA-4

CORPUS, AVERAGED OVER THE DIFFERENT CONDITIONS OF SNR

system babble airport restaurant street car train
Noisy 59.24 56.80 58.88 46.18 56.27 34.90
SS 43.95 38.48 46.57 31.94 39.15 22.62
WD 36.29 35.82 42.63 34.84 39.94 21.00
WLBP 36.09 34.29 40.24 31.14 34.29 18.77
EBM 56.24 54.28 57.34 44.67 54.02 32.86

V. CONCLUSIONS

In this paper, a method to improve speech 
enhancement has been proposed. This method employs the
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wavelet denoising scheme and applies a new mask to threshold

the high-frequency wavelet coefficients. The proposed scheme

(WLBP) exploits the spectro-temporal characteristics of

speech to perform enhancement of the signal, by employing

the local binary patterns mask in each high-frequency subband

signal of the wavelet decomposition. We have compared

our method with well-known enhancement techniques (SS,

WD, EBM) in six real noisy environments where the SNR

estimation does not depend on the true or ideal condition

of knowing all signals a priori. We have shown that the

results provided by the proposed scheme are better in objective

quality scores, showing to be a good technique for speech

enhancement. An experiment was also carried out with a DNN

based continuous speech recognizer. We have shown that the

WLBP algorithm yields superior speech recognition results, as

compared to the SS, WD and EBM schemes. This reveals that

not only with respect to objective speech quality but also in

terms of the word error rate of a DNN based speech recognizer,

the WLBP is more effective in noise reduction.
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