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Long Wavelength Coherent Pulse of Sound
Propagating in Granular Media

Rohit Kumar Shrivastava, Amalia Thomas, Nathalie Vriend, Stefan Luding

Abstract—A mechanical wave or vibration propagating through
granular media exhibits a specific signature in time. A coherent
pulse or wavefront arrives first with multiply scattered waves (coda)
arriving later. The coherent pulse is micro-structure independent i.e.
it depends only on the bulk properties of the disordered granular
sample, the sound wave velocity of the granular sample and hence
bulk and shear moduli. The coherent wavefront attenuates (decreases
in amplitude) and broadens with distance from its source. The
pulse attenuation and broadening effects are affected by disorder
(polydispersity; contrast in size of the granules) and have often been
attributed to dispersion and scattering. To study the effect of disorder
and initial amplitude (non-linearity) of the pulse imparted to the
system on the coherent wavefront, numerical simulations have been
carried out on one-dimensional sets of particles (granular chains).
The interaction force between the particles is given by a Hertzian
contact model. The sizes of particles have been selected randomly
from a Gaussian distribution, where the standard deviation of this
distribution is the relevant parameter that quantifies the effect of
disorder on the coherent wavefront. Since, the coherent wavefront is
system configuration independent, ensemble averaging has been used
for improving the signal quality of the coherent pulse and removing
the multiply scattered waves. The results concerning the width of the
coherent wavefront have been formulated in terms of scaling laws. An
experimental set-up of photoelastic particles constituting a granular
chain is proposed to validate the numerical results.

Keywords—Discrete elements, Hertzian Contact, polydispersity,
weakly nonlinear, wave propagation.

I. INTRODUCTION

SOUND propagation through particulate media (granular

matter) has been a helpful tool in capturing the ma-

terial properties through which it is propagating. This at-

tribute has been extensively used for seismic exploration of

oil/gas/mineral reservoirs [1], studying the internal structure

of a planetary body (Moon / Earth, [2]) or for geotechnical

investigations to determine the material properties [3]. There

are various phenomena associated with sound propagation

like multiple scattering, attenuation, geometric spreading, dis-

persion, coherent back scattering effects, wave localization,

etc. [4]. These individual phenomena allow us to measure,

evaluate and predict the material properties and, hence, enable
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Fig. 1 Wave propagating in a one-dimensional chain; displacement response
of 100th particle, initial impulse vo = 0.1 plotted against dimensionless

time (Section II), disorder parameter ξ = 0.2 (Section II-E)

us to study the material without destroying it (non-destructive

testing).

The space time responses of the particles through which the

mechanical wave is propagating has a typical signature of its

own [5]-[7]. The signal has a coherent wave front as the first

arrival (in terms of time) and is accompanied by the multiply

scattered waves (coda) as shown in the illustration (Fig. 1).

The coherent wave has long wavelength and low frequency

property and the coda has the vice-versa. The multiply scat-

tered part of the signal is extremely phobic to averaging and

gets completely removed. The coherent wavefront maintains

its shape(width) and size (amplitude) on ensemble averaging

in comparison to the signal from a single realization [8].

This property indicates that the coherent wavefront contains

information regarding the bulk property of the system, e.g.

bulk moduli, shear moduli, primary wave velocity (P-wave),

co-ordination number, etc. [9].

In Ref. [5], it is shown that the propagating coherent

wavefront (pulse) attenuates and “broadens” as it propagates

along a medium, this “broadening” is affected by the disor-

der in particle sizes as well as by the propagation length.

We investigate this observation and found some agreements

with the scaling parameters observed in [5]. This observation

indicates a potential application for determining the structure

or the granular size distribution of the medium. However,

in [10], it was observed that the space time responses for

a set of particles with nonlinear repulsive interaction force

(when the amplitude of the propagating wave is high) are

significantly different from the ones obtained when the inter-

particle forces are linear in nature even if there is no opening

and closing of contacts (non-occurrence of sonic vacuum,

[11]). The aforementioned observation and the previous work
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Fig. 2 Schematic diagram for one dimensional chain

have paved a path for the question as to what happens to

this “coherent wavefront/pulse” when it propagates through a

not so consolidated granular media. With less pre-compression

or high wave amplitude; inter-particle forces vary non-linearly

with overlap. The inter-particle forces exhibit a departure from

the linear towards non-linear nature, in this scenario does

the pulse broadening display similar behavior with length or

disorder? In the present case, the impulse amplitude has been

varied and its effect has been investigated in the following

sections. Also, the coherent wavefront has been instrumental

in determining the velocity of sound in a medium which is

interconnected with bulk and shear moduli, some light has

also been shed on this aspect with Hertzian inter-particle forces

taken into consideration.

One dimensional chains of particles (Fig. 2) having linear

and nonlinear repulsive (Hertzian) interaction forces have been

used as models for studying impulse propagation along the

chains. The choice of one dimensional chain was motivated

by the existence of force chains in granular materials, these

force chains act as pathways for sound wave propagation and

also support large stresses of the system [12]-[14]. Section II

contains the micro-mechanical model of the one-dimensional

chain describing the linear and non-linear repulsive interaction

forces used in the model, similar model has been used in

[10], [15], [16]. The disorder in the system is in the form

of mass distribution, it has also been discussed in the afore-

mentioned section. Section III contains the numerical results

obtained from the simulations of impulse propagation in

granular chains, both single realization and ensemble-averaged

space time responses have been taken into consideration

and discussed upon. Section IV contains the experimental

construction of a granular chain using photoelastic elastic

discs, it serves as an outlook for experimental validation of

numerical results. Section V presents the conclusion along

with issues associated with present subject matter requiring

further research work.

II. MICROMECHANICAL MODEL: GRANULAR CHAIN

N + 2 particles long, pre-compressed granular chain of

particles has been taken into consideration. F(i,j) is the re-

pulsive interaction force experienced by neighboring particles

i and j, F(i,j) ∝ δ
(1+β)
(i,j) , where δ is the non-dimensionalized

dynamic inter-particle overlap between the neighboring parti-

cles. δ(i,j) = Δ(i,j) − (u(j) − u(i))(1+β), Δ(i,j) is the non-

dimensionalized initial static overlap due to pre-compression.

u(i) is the non-dimensionalized displacement of the ith particle

relative to the initial static pre-compressed state. Hence,

F(i,j) = κ(i,j)(Δ(i,j) − (u(j) − u(i)))(1+β), (1)

κ(i,j) is the non-dimensionalized stiffness.

A. Non-Dimensionalization

The mass of the ith particle m̃(i) is non-dimensionalized

by the mean mass m̃o, b(i) ≡ m̃(i)/m̃o. The stiffness κ(i,j)

is non-dimensionalized by characteristic stiffness (κo; stiffness

between same size neighboring particles). The displacement of

the ith particle is non-dimensionalized by Δ̃o, u(i) ≡ ũ(i)/Δ̃o,

where Δ̃o is the initial static overlap when all the particles have

uniform characteristic stiffness κ̃o. The initial static overlap for

polydisperse particles (Δ(i,j)) is also non-dimensionalized by

Δ̃o, Δ(i,j) ≡ Δ̃(i,j)/Δ̃o. Time is non-dimensionalized by the

characteristic time t̃c, t ≡ t̃/t̃c, where t̃c =
√

m̃o

κ̃(i,j)
.

B. Nonlinear Equation of Motion

The nonlinear equation of motion of particle i = 1 to N
are written as:

b(i)
d2u(i)

dt2
= −κ(i,i+1)

{
Δ(i,i+1) − (u(i+1) − u(i))

}(1+β)

+κ(i,i−1)

{
Δ(i,i−1) − (u(i) − u(i−1))

}(1+β)

(2)

with u(0) and u(N+1) being 0 as the 0th and N+1th particles

are fixed.

C. Hertzian Equation of Motion

Substituting β = 1/2 in (2) gives the Hertzian equation of

motion [17]

b(i)
d2u(i)

dt2
= −κ(i,i+1)

{
Δ(i,i+1) − (u(i+1) − u(i))

}(3/2)

+κ(i,i−1)

{
Δ(i,i−1) − (u(i) − u(i−1))

}(3/2)

(3)

which is valid for repulsive interactions between spherical

particles. Equation (3) is solved numerically using Verlet inte-

gration scheme. Verlet has been used because of its symplectic

nature.

1) Hertz Contact Model: For the nonlinear repulsive in-

teraction between the particles to be Hertzian, the non-

dimensionalised contact stiffness is given by [10], [17]

κ̃(i,j) =
κ̃(i,j)

κ̃o
=

√
2

b(i) + b(j)

(
b(i)b(j)

)(1/6)

. (4)

The characteristic time is

t̃c =
1

Δ

1/4

o

√
1− ν2

Ẽ

[
243πρ̃m̃5

o

2

]1/12

. (5)

The initial overlap during static equilibrium is given by

Δ(i,j) =
Δ̃(i,j)

Δ̃o

= κ
−2/3
(i,j) (6)
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D. Linearized Equation of Motion

Equation (1) can be expressed as a power series about the

initial overlap (Δ(i,j)),

F(i,j) = κ(i,j)Δ
1+β
(i,j) + κ(i,j)(1 + β)Δβ

(i,j)(δ(i,j) −Δ(i,j))

+
1

2
κ(i,j)β(1 + β)Δβ−1

(i,j)(δ(i,j) −Δ(i,j))
2 + . . . (7)

For small amplitudes of wave propagation (in present sce-

nario, an initial impulse, vo), the displacement of particles

from the initial static overlap condition is small, this can be

used to ignore higher order terms in (7) resulting in

F(i,j) = κ(i,j)Δ
1+β
(i,j) − κ(i,j)(1 + β)Δβ

(i,j)

(
u(j) − u(i)

)
. (8)

Now, (8) can be used to arrive at linearized equation of motion

for a particle i,

b(i)
d2u(i)

dt2

= κ(i−1,i)Δ
β
(i−1,i)

[
Δ(i−1,i) − (1 + β)(u(i) − u(i−1))

]
− κ(i+1,i)Δ

β
(i,i+1)

[
Δ(i+1,i) − (1 + β)(u(i+1) − u(i))

]
.

(9)

Using β = 1/2 and (6) we get linearized hertzian equation

of motion

b(i)

(1 + β)

d2u(i)

dt2
= κ

2/3
(i+1,i)(u

(i+1) − u(i)) (10)

−κ
2/3
(i−1,i)(u

(i) − u(i−1))

Equation (10) for particles i = 1 to i = N can be assembled

in the form of an equation consisting of matrices resulting in

M
d2u

dt2
= Ku+ f , (11)

where M is the mass matrix with diagonal entries

b(1), b(2), b(3), ..., b(N) and zero otherwise, K is the stiffness

matrix with diagonal entries −(κ(i+1,i) + κ(i−1,i))/(1 + β),
superdiagonal (κ(i+1,i)/(1 + β)) and subdiagonal (

κ(i−1,i)

(1+β) )

elements. f is the external force. For impulse driving, f = 0,

initial displacement vector of particles uo = [0 0 ... 0] and

initial velocity vector of particles vo = [vo 0 .. 0] (the first

particle receiving the impulse). Substituting A = −M−1K
and using ansatz u = u′eiωt (assuming plane wave motion of

particles) gives

Au = ω2u. (12)

The solution of this equation can be expressed as a superpo-

sition of eigenmodes,

u = SC(1)G−1S−1vo + SC(2)S−1uo, (13)

where S is the eigenbasis matrix of A and contains eigenvec-

tors sj as column vectors. Each eigenvector has a respective

eigenvalue ω2
j associated with it (ωj is the eigenfrequency).

The set of eigenvectors are orthonormalized by the orhtonor-

mality condition sT
(i)Ms(j) = δ(i,j) where δ(i,j) is the Kro-

necker delta function. Hence, the displacements individual

particles are given by

u(i)(t) = vo

N∑
j=1

SijS1j sin(ω(j)t)

ω(j)
. (14)
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Fig. 3 Wave propagating in a one-dimensional chain, single and ensemble
averaged displacement response of 100th particle, initial impulse vo = 0.1,

disorder ξ = 0.2

E. Disorder in the Chains and Ensemble Averaging

The masses of the particles in the granular chains b(i) have

been selected randomly from a normal distribution.

f (n)(b) =
1

ξ
√
2π

e
(b−1)2

2ξ2 , (15)

where f (n)(b) is the probability distribution function of the

mass distribution. The mean of the distribution is 1 and

its standard deviation is ξ, the disorder parameter of the

chain. A similar disorder model has been used in [10], [15],

[18]; this disorder model has also been termed “diagonal

randomness” [4] because the diagonal elements of the mass

matrix M are the masses of the particles (Section II-D).

In [10] and [15], it has been observed that the space time

responses of the particles in different disordered chains are

quantitatively similar if the first two moments of the mass

distributions are the same. To obtain a coherent picture of

space time responses (coherent wavefront without the multiply

scattered part of the wave), ensemble averaging has been used.

Multiple realizations of chains have been averaged with the

same disorder parameter and the same impulse amplitude to

study the coherent wavefront propagation characteristics. 〈〉
is used to represent ensemble averaged physical quantities,

e.g. 〈u(i)(τ)〉 represents the ensemble averaged space time

displacement response.

III. NUMERICAL RESULTS AND DISCUSSIONS

Equations (3) and (14) have been used to numerically and

analytically compute space time responses for 512 particles

long granular chains for different disorder parameters (ξ)

and for different impulse amplitudes (vo). The space time

responses for single realizations as well as for ensembles

with the same ξ are used for analysis. The output time step

Δt = 9.7656 × 10−4 and the maximum time period is 512

units.

A. Ensemble Averaged Space Time Responses and the Co-
herent Wavefront

Fig. 3 shows the displacement response of the 100th particle

in a 512 particles long granular chain for a single realization

as well as for ensemble averaged 500 realizations. Ensemble
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Fig. 4 Coherent wavefront of the displacement response of 100th particle
(zoomed version; see Fig. 1), initial impulse vo = 0.1, ξ = 0.2
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Fig. 5 Displacement response of 150th particle given by (3) and (14),
vo = 0.001, ξ = 0.1

averaging removes the coda, but the coherent wavefront is

preserved. As mentioned in Section I, ensemble averaging

improves the quality of the coherent wavefront signal which

then can be utilized for determining bulk parameters of the

material. For further studying the coherent wavefront, it has

been characterized by various points as illustrated in Fig. 4; a

similar methodology has been used previously [5], [10], [19].

The point peak signifies the point at which the coherent

wavefront achieves the maximum value, 50% signifies the

point at which it achieves 50% of the maximum value, and

similarly with 10%. ZC signifies the point at which the

wavefront crosses zero for the first time after achieving its

maximum value (peak). As it can be observed from Fig. 4, the

points 10% and 50% lie on both the sides of the peak of the

coherent wavefront; this property is instrumental in measuring

the width of the coherent wavefront, the width associated with

50% is also denoted as the Full Width Half Maxima (FWHM)

and half of the width at 50% is referred to as Half Width at

Half Maxima (HWHM) [20].

B. Linear vs. Nonlinear Space Time Responses

Figs. 5 and 6 show the displacement response of the

150th particle belonging to granular chains with the same

disorder parameter (ξ = 0.1), however with different impulse

amplitudes, vo = 0.001 and vo = 0.1 respectively. It can

be observed that the difference between space time responses
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Fig. 6 Displacement response of 150th particle given by (3) and (14),
vo = 0.1, ξ = 0.1
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Fig. 7 Difference between the peak amplitudes of the coherent wavefront
calculated by (3) numerically and (14) analtically for 150th particle,

ξ = 0.1

from (3) and (14) is more significant in Fig. 6 indicating

enhanced nonlinearity with increase in impulse amplitude. Fig.

7 shows the difference between the peak amplitudes (udiff
peak)

of the coherent wavefront of the space time responses of the

150th particle, obtained from Eq. (3) (nonlinear, numerical)

and Eq. (14) (linearized, analytical). Similar observations were

also made in [10]. The width of the coherent wavefront for

different impulse amplitudes (vo) will be evaluated next.

C. Width of the Coherent Wavefront

The width of the coherent wavefront will be evaluated in

this section for an ordered chain, a disordered chain and then

for different impulse amplitudes after adopting a framework

for re-scaling the time and amplitude.
1) Re-Scaling Time and Amplitude: The framework is sim-

ilar to the one adopted in [5], it aids in comparing across

different simulation parameters as well as with experimental

results. Time and amplitude are scaled by the time of arrival

(tpeak) and the amplitude (Apeak) of the coherent wavefront,

respectively. The width of the coherent wavefront for HWHM

(50%) is defined as

W =
tpeak − t50%

tpeak

, (16)

where tpeak is the time of arrival or the time at which the

coherent wavefront achieves its maximum value, while t50% is

the time at which the coherent wavefront’s amplitude is 50%

of the maximum amplitude.
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Fig. 10 Amplitude and time scaled displacement response of 100th particle
for different disorder parameters

2) Ordered Chain: Fig. 8 contains the amplitude and time

scaled displacement response of two different particles along

a granular chain, it can be observed that the time of arrival of

the coherent wavefront as well as the amplitude have collapsed

but not the width. Fig. 9 shows the re-scaled displacement

responses of 100th particle for different vo, showing a perfect

collapse of the coherent wavefront with same peak amplitude,

time of arrival and width as well, indicating that the impulse

amplitude has no effect on width (W ) of the coherent wave-

front in an ordered chain.

3) Disordered Chain: Fig. 10 displays the space time re-

sponses of the 100th particle for different disorder parameters

(ξ = 0.0, ξ = 0.1, ξ = 0.2 and ξ = 0.5, with vo = 0.1).
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Fig. 11 Scaled width (W ) of the coherent wavefront for an ordered and
disordered chains with distance i from the source. vo = 0.1
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Fig. 12 Scaled width (W ) of the coherent wavefront for an ordered and a
disordered chain (ξ = 0.2) with distance i from the source., for varying

impulse amplitudes vo

The coherent wavefront collapses completely after scaling for

small disorder parameters but, as the disorder increases, the

width increases too, indicating that the disorder parameter has

a role to play in the width of the coherent wavefront.

4) Width of the Coherent Wavefront: In Ref. [5], it was

observed that for ordered chains the scaled width (W ) of

the coherent wavefront decreases from the distance from the

source following a power law relationship, W ∝ L−2/3 which

can be observed in our model as well (Fig. 11). In [5] it was

proposed that all disordered chains have a coherent wavefront

propagating with power law relationship of W ∝ L−1/2.

We can see from Fig. 11 that for slightly disordered media

(e.g. ξ = 0.1, 0.2), the power law exponent is −2/3, but the

exponent lies between −2/3 and −1/2 for stronger disorder

and further increase in disorder makes the exponent approach

−1/2. From Fig. 12 it can be observed that vo has not much

effect on W . The coherent wavefront is a little sensitive to

large or small impulse amplitudes.

D. Coherent Wavefront Velocity

The velocity of the coherent wavefront’s peak can be

calculated by dividing the individual particle number (i) with

the time of arrival tpeak. Fig. 13 shows these results for granular

chains with different disorder parameters and Fig. 14 for gran-

ular chains experiencing different impulse amplitudes. In both

figures, an acceleration close to the source can be observed
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Fig. 14 Velocity of the peak of coherent wavefront for different particles in
a granular chain with varying impulse amplitude vo

which was also reported in Refs. [10] and [21]. It is also

observed that an increase in either disorder or impulse velocity

decreases vpeak. However, the effect of impulse velocity (vo)

is not very significant.

E. Experimental Construction: An Outlook

To validate the theory described above, the simulations

can be reproduced experimentally using discs made out of a

photoelastic material, Clear Flex 50 (Smooth-on), to measure

the forces at the contacts. Figs. 15 and 16 show different views

of the experimental setup. A chain of 12 photoelastic discs,

2cm in diameter and 0.6cm deep, were lined up on the bottom

of an acrylic container 26cm wide, 17cm high and 0.8cm in

depth, one of whose sides was free to move horizontally and

act as a plunger on the chain of discs. This container was

lit from behind by a MiniSun A4 LED LightPad, and between

them a red filter was placed to narrow the range of wavelengths

of the light that passed through the photoelastic material. Two

opposite circular polarizers were attached on either side of

the container, one between the red filter and the first acrylic

wall and the second between the other side and a high-speed

camera. Thus, the second polarizer would cancel all the light

that passes through the first one except for that which was

affected by the photoelastic response of the compressed discs.

Fig. 16 shows the setup when the LightPad is turned on. The

acrylic container seems dark due to the opposite polarizers,

except for regions within the discs where some red light is

transmitted because of the materials photoelastic response to

Fig. 15 Experimental setup

Fig. 16 Lit experimental setup

Fig. 17 One dimensional chain of photoelastic particles

Fig. 18 One dimensional chain of photoelastic particles with marked circular
boundaries of particles

compression. Fig. 17 is an example image taken by the camera

in this setup. Before an experiment, a heavy block of wood

was leaned against the plunger to provide an arbitrary load

on the chain of discs. Through a soft tap on the plunger, a

pulse can be introduced into the pre-compressed chain, and

its progress along the chain can be recorded by the camera.

Preliminary experiments show that the pulse takes only a few

milliseconds to be transmitted along a disc, so experiments

can be recorded at a frame rate of 10000 frames per second to

ensure sufficient spatial and temporal resolution. The forces at

the contacts on either side of each particle are then computed

in the post-processing of each frame.

F. Force Measurements and Moving Average Filter

First, the measurement of the forces at the contacts between

discs was attempted here as a function of their overlap when

under compression. At the disc edges there is a noticeable

intensity gradient, and a Hough Transform is applied to each

frame returning the centre positions and radii of the circles

with brightest circumference. Fig. 18 superimposes in red the

result of this algorithm - the locations and sizes of twelve

circles - onto a sample experimental image. The discs are

numbered from one to twelve from left to right (in the

order in which the pulse travels across them). It can be

seen here that the red circles would appear to coincide well
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Fig. 19 Moving average filtered displacement response

Fig. 20 Nomalized, moving average filtered displacement response

with the visible disc edges, because the compression at the

contacts is small and does not affect the circularity of most

of the discs. Although the discs are under compression, the

overlaps between them are only barely perceptible by eye, but

the circle-finding method is precise enough to detect a sub-

pixels at each contact. The recorded overlaps are unfortunately

extremely noisy because the disc edges can be multiple pixels

thick at some places (due to refraction of the background light

and to slight parallax error in some cases) and the Hough

Transform’s decision on where the circumference lies changes

slightly from frame to frame, it significantly affects the small

measured overlap between circles. Nevertheless, by applying

a moving average filter to the raw data (Fig. 19) a definite

increase in the compression can be measured as the plunger

(black line) pushes inwards and compresses the chain. The

absolute values of the overlap are a little different at each

contact because of a parallax error, but if these are normalized

(Fig. 20), the compression peaks show a subtle shift from

contact to contact in the same order as they are numbered

at least qualitatively confirming the simulations.

IV. CONCLUSION

The coherent wavefront is the long wavelength and low fre-

quency part of a sound signal propagating in granular media.

Its short wavelength and high frequency counterpart “coda” is

composed of multiply scattered waves, forming the significant

part of the sound signal. Thus, on ensemble averaging, the

coda gets completely washed out. An elementary granular

chain of spherical particles with both linear and nonlinear

repulsive interaction forces has been used as a model (Section

II) to study the shape and propagation characteristics of the

coherent wavefront. The masses of the particles were selected

randomly from a normal distribution, the standard deviation

of this distribution quantifies the disorder parameter (Section

II-E). Both single realizations and displacement responses

averaged over various samples were chosen for analysis. The

space time responses calculated by the nonlinear equation of

motion (3) and by the analytical solution of the linearized

equation of motion (14) exhibited a significant difference

only for larger impulse amplitudes (Figs. 5 and 6), increasing

exponentially with impulse magnitude (Fig. 7). The time and

amplitude were re-scaled according to the methodology used

in [5] for further analysis (Fig. 8 and 9). Half Width at Half

Maximum (HWHM) of the coherent wavefront was used to

quantify its scaled width. W decreases with distance from the

source following a power law relationship W ∝ L−2/3 for

an ordered chain (Fig. 11). However, for disordered chains

the power law exponent starts increasing with increasing

disorder parameter and tends to approach -1/2 (Fig. 12).

Change in impulse magnitude (vo) has no strong effect on

the aforementioned power law relationship. The peak velocity

of the coherent wavefront (vpeak) was also measured and it

was observed that increase in disorder considerably decreases

the peak velocity and increase in impulse magnitude slightly

decreases the peak velocity (Figs. 13 and 14). An experimental

set-up of a granular chain comprising of photoelastic disks was

also discussed to validate or challenge the numerical results.

The framework of moving average filters to improve signal to

noise ratio was also laid down but warrants further study.

The power law relationship exhibited by the coherent wave-

front can be exploited to know the structure or disorder

of the system through which sound signals propagate. The

attenuation of the coherent wavefront got removed due to

the scaling of the amplitude, but its connection with multiple

scattering and hence, the coda require further study.
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