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Abstract—The Fixed-angle Softened Truss Model with 
Tension-stiffening (FASTMT) has a superior performance in 
predicting the shear behaviour of reinforced concrete (RC) membrane 
elements, especially for the post-cracking behaviour. Nevertheless, 
massive computational work is inevitable due to the multiple 
transcendental equations involved in the stress-strain relationship. In 
this paper, an iterative root-finding technique is introduced to 
FASTMT for solving quickly the transcendental equations of the 
tension-stiffening effect of RC membrane elements. This fast 
FASTMT, which performs in MATLAB, uses the bisection method to 
calculate the tensile stress of the membranes. By adopting the 
simplification, the elapsed time of each loop is reduced significantly 
and the transcendental equations can be solved accurately. Owing to 
the high efficiency and good accuracy as compared with FASTMT, the 
fast FASTMT can be further applied in quick prediction of shear 
behaviour of complex large-scale RC structures. 
 

Keywords—Bisection method, fixed-angle softened truss model 
with tension-stiffening, iterative root-finding technique, reinforced 
concrete membrane. 

I. INTRODUCTION 

URING the past several decades, remarkable progress has 
been achieved in theories of predicting shear strength of 

2-D RC membrane elements under pure shear condition. A 
shear model is required to analytically predict the shear 
behaviour of RC elements under different loading conditions. A 
rational shear model has to rigorously satisfy Navier’s 
three-principals of mechanics of material, including 
equilibrium equations, compatibility condition and constitutive 
models, to correctly predict a shear load and deformation 
history under different loading patterns [1]. 

A 2-D RC element subjected to membrane stresses is 
considered as a series of trusses, consisting of compressive 
concrete struts and tensile steel ties, following which a softened 
truss model was developed to employ a softened compression 
constitutive model for concrete to cope with the degraded 
concrete strength after cracking. Based on the softened truss 
model rules and rotating angle theory, the rotating-angle 
softened truss model (RASTM) [2] was proposed, where cracks 
are assumed to be perpendicular to the direction of principal 
tensile stress in concrete element. The constitutive model of 
concrete is based on actual nonlinear and softened behaviour of 
concrete under compression, and a sophisticated tensile 
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stress-strain relationship is adopted. A smeared model for 
reinforcing bars covered by concrete was obtained from 
experiments. As the principal stress direction coincides with the 
crack direction, the contribution of concrete to shear strength is 
equal to zero.  

To incorporate the contribution of concrete, which, together 
with contribution of steel, forms the shear strength of a 
membrane element, the fixed-angle softened truss model 
(FASTM) was proposed based on the softened truss model 
rules and fixed-angle theory [3], [4]. The principal direction 
deviates from the crack direction, creating a concrete shear 
stress on the cracked surface, which serves as the source of 
concrete contribution to the shear strength of the RC element. 

The two softened truss models both adopt uniaxial 
constitutive relationship for concrete, which may overestimate 
the shear strengths of specimens. The softened membrane 
model (SMM) [5], which is similar to FASTM except for using 
a biaxial constitutive relationship, was developed and the two- 
dimensional softening effect was considered. Nevertheless, the 
improvement to biaxial constitutive relationship shows 
negligible influence on the prediction of peak shear strength by 
comparing FASTM with SMM. So FASTM has a superior 
performance with theoretical accuracy and calculation 
simplicity. However, the expression of concrete under uniaxial 
tension in these shear models could not correctly present the 
tensile stress-strain curve for concrete. It is shown in the 
experimental study [6] that the tensile stress of concrete 
vanishes rapidly after the initiation of first crack, which 
disagrees with the smooth and gentle ascending branch of the 
original tensile stress-strain relationship from FASTM. The 
FASTMT effect [7] was developed to enhance the accuracy of 
shear strength prediction by refining the tensile stress-strain 
curve of concrete with tension-stiffening effect. A 
comprehensive tension-stiffening model for post-cracking 
concrete was adopted including the influence of bond stress- 
slip relationship, orthogonal reinforcement and crack 
propagation. The predicted peak shear strength by FASTMT 
shows excellent agreement with the experimental results. 

The modification of tension stiffening effect provides a more 
comprehensive theoretical background for FASTM and a more 
rational constitutive model for concrete in tension. However, 
complex transcendental equations are repeatedly solved in the 
calculation procedure. Massive computational effort is required 
for a full profile of shear stress-strain curve and consequently 
the solving procedure becomes extremely time-consuming. 
This paper aims to improve the calculation efficiency of shear 
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prediction by FASTMT without sacrificing the accuracy. A fast 
FASTMT is proposed and an iterative root-finding method is 
adopted in the algorithm. The elapsed time of each iteration 
loop is reduced significantly thus further application in various 
large-scale RC structures is allowed. 

II. MODEL DESCRIPTION 

A. Basic Principles 

The 2-D RC membrane element is subjected to in-plane 
shear stress ߬௟௧ , and biaxial stresses, ௟ߪ	  and ߪ௧ , along ݈ െ  ݐ
coordinate, which is also the direction for longitudinal and 
transverse reinforcement. For reinforcement grid, ߩ௟ and ߩ௧ are 
the reinforcing ratios along ݈ െ axes and ݐ െ axes, and ௟݂  as 
well as ௧݂ are the average stresses in longitudinal and transverse 
steel, respectively. In fixed angle theory, the principal stresses 

of concrete stress are denoted as 1ߪ
ܿ  and 2ߪ

ܿ  and shear stress 

along crack surface is ߬12
ܿ , and the cracks are assumed to be 

propagating along the 2 െ axis. The corresponding 1 െ 2 
coordinate is defined as the principal direction of applied 
stresses, and it is obtained by rotating the ݈ െ  coordinate of ݐ

in-plane stresses by a fixed angle of 1ߙ, as illustrated in Fig. 1. 
 

 

Fig. 1 Stress states and coordinates of fast FASTMT 

B. Equilibrium Conditions 

In fixed-angle theory, the concrete stress condition in ݈ െ  ݐ
coordinate is transformed into a 1 െ 2 coordinate, which is the 
principal coordinate of applied stresses. The angle between two 

coordinates is denoted as 1ߙ and its value remains fixed as the 
loading increases proportionally. Accordingly, the governing 
equations for equilibrium condition of fixed-angle softened 
truss model are: 
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C. Strain Compatibility 

The compatibility conditions of fast FASTMT are obtained 
by assuming the cracks propagate along 2 െ  axis and the 
principal stress direction coincides with the principal strain 
direction. By transforming a set of strains in ݈ െ  coordinate ݐ

into 1 െ 2 coordinate, the governing equations are: 
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D. Constitutive Laws 

The concrete under compression is treated as an orthotropic 
material with a softening coefficient , which softens the 
strength capacity of cracked concrete and is developed based on 
experimental studies. The angle ߚ  represents the deviation 
between angle of principal direction of applied stresses and the 
angle of principal direction of concrete stresses. The governing 
equations for concrete under compression are: 
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where ߝ଴  represents the strain level under maximum 
compressive stress and the value is taken as -0.00235. 

For concrete in tension, a comprehensive tension-stiffening 
model [8]-[10] is employed. It assumes a linear bond stress-slip 
relationship between reinforcement and the surrounding 
concrete and includes the effect of orthogonal reinforcement. 
The stress-strain relationship can be divided into several stages 
and the governing equations are listed accordingly. 

In linear stage, the concrete is within its elastic range and 
ଵߝ ൑ 0.00008. The tensile stress-strain relationship gives:	 

 

1 1
c

cE   (10a) 

 
After the initiation of first crack, the maximum tensile stress 

in concrete starts to converge to tensile strength of concrete ௧݂
ᇱ 

and the nonlinear stress-strain curve for 0.00008 ൑ ଵߝ ൑ 0.001 
becomes: 
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where ܽ  is average crack spacing, ܣ௖  is the unit area of a 
membrane element, ݌௟  and ݌௧  are the perimeters of a 
reinforcing bar, ݊௟  and ݊௧  are the numbers of bars in unit 
length, ݊௟

ᇱ  and ݊௧ᇱ  are the modular ratios in the ݈  and ݐ 
directions, respectively. 

When the maximum bond stress ߬௕ is reached, reinforcement 
starts to yield and the expression of the lower boundary point 
becomes when ߝଵ ൌ  :௨௟௧,௖௥௔௖௞ߝ
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where ݏ௟  and ݏ௧  are the reinforcement spacings in the ݈ and ݐ 
directions, respectively. 

In the final stage of tension-stiffening, the termination point 
of tension is defined with the total failure of concrete element. 
The expression of the termination point of tension gives: 
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For the curve between the crack stabilisation point and the 

lower boundary point and the curve between the lower 
boundary point and the termination point, the normalised 
tensile stress-strain curve is plotted linearly. 

It is observed in experiments [6] that a marked reduction 
occurs in the tensile capacity of concrete at higher 

deformations, and the normalised curve neglects such 
reduction. To account for this phenomenon and the 
accumulated damage to concrete by gradually increasing 
cracks, a variable tensile strength ௧݂ [8] is introduced to replace 
the fixed tensile strength ௧݂

ᇱ: 
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where ܥ is a damage parameter and ܥ ൌ 550. 

For concrete in shear, the relationship between shear stress 
and shear strain gives: 
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For reinforcement, a smeared model of steel is used and the 

stress-strain curve is obtained from experiments and only for 
embedded steel covered by concrete instead of bare steel bars. 
The notations ௟݂ and ௧݂ denote the reinforcement stresses along 
݈  and ݐ directions, respectively. The governing equations for 
embedded mild steel bars are as: 
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By subtracting and summing (1) and (2), two equilibrium 

equations are obtained to check the convergence of stress and 
strain solutions: 
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III. ANALYSIS METHOD 

A. Solution Algorithm 

13 governing equations of fast FASTMT, (1)-(13f), contains 
16 unknown variables, including 8 stresses (ߪ௟, ߪ௧, ߬௟௧, ߪଵ

௖, ߪଶ
௖, 

߬ଵଶ
௖ , ௟݂, ௧݂), 6 strains (ߝ௟, ߝ௧, ߛ௟௧, ߝଵ,	ߝଶ, ߛଵଶ), as well as the angle 
ߚ  and the softening coefficient . If 3 additional unknown 
variables are provided, the remaining 13 parameters can be 
solved by the 13 governing equations and the required stresses 
and strains are obtained.  

For a 2-D RC membrane specimen subjected to membrane 
stresses, the pure shear condition provides two of the three 
unknown variables, ߪ௟ ൌ ௧ߪ ൌ 0. The last unknown variable 
can be chosen by selecting a value for ߝଶ, due to the fact that ߝଶ 
varies linearly with shear strain ߛ௟௧ . With all three unknown 
variables obtained, the set of equations can be solved by 
iterative procedures shown in Fig. 2: 
1) Select a value for ߝଶ. 
2) Assume the values for principal strains ߛଵଶ and ߝଵ. 
3) Calculate the strains ߝ௟  and ߝ௧  in ݈ െ ݐ  coordinate by (4) 

and (5). 
4) Solve for concrete principal stresses ߪଵ

௖ ଶߪ ,
௖  and ߬ଵଶ

௖  by 
calculating the parameters including the angle ߚ  and 
softening coefficient by (8) and (9). 

5) Solve for reinforcement stresses ௟݂  and ௧݂  in ݈ െ  ݐ
coordinate by (12a)-(12f) and (13a)-(13f). 

6) Check if the two convergence conditions (14) and (15) are 
satisfied. Otherwise, adjust the values of ߛଵଶ and ߝଵ so that 
the convergence criteria can be satisfied. 

7) Solve for shear strain ߛ௟௧  and shear stress ߬௟௧  in ݈ െ  ݐ
coordinate by (3) and (6). 

8) Change the value for ߝଶ and repeat step 1 through 7. In this 
way, a set of ߛ௟௧ and ߬௟௧ for various ߝଶ can be obtained and 
the shear stress-strain curve can be plotted. 

B. Fast FASTMT 

The analyse method was performed off-line using a 
commercial software package MATLAB R2013b [11] and the 
key step is to find the values of ߛଵଶ  and ߝଵ  that satisfy the 
equilibrium criteria. As shown in Fig. 3, this calculation 
procedure starts by enumerating all possible values of concrete 
principal strain denoted by ߝଵሺ݅ሻ and ߛଵଶሺ݆ሻ. Following this, a 
݅ ൈ ݆  matrix ܲ  will be constructed and each grid ܲሺ݅, ݆ሻ 
represents the square summation of the difference between the 
two sides of the two equilibrium equations, (14) and (15), with 
variables ߝଵሺ݅ሻ  and ߛଵଶሺ݆ሻ . The equilibrium conditions are 

satisfied if the value of square summation ܲሺ݅, ݆ሻ approaches to 
zero with a certain tolerance. The minimum ܲሺ݅, ݆ሻ  will be 
located and the corresponding coordinate ሺ݅, ݆ሻ  will be 
returned, eventually one set of ߛଵଶሺ݅, ݆ሻ and ߝଵሺ݅, ݆ሻ which best 
satisfies the two equilibrium equations will be selected. 
 

 

Fig. 2 Solution algorithm of fast FASTMT 
 

 

Fig. 3 Root-finding procedures of fast FASTMT 
 
In the process of solving for the square summation value 

ܲሺ݅, ݆ሻ, multiple transcendental equations (10b) and (10c) in the 
tensile stress-strain relationship for post-cracking concrete will 
be involved repeatedly. In MATLAB, a built-in function solve 
is adopted and the program then returns the numerical solution 
of the stress-strain relationships. However, the elapsed time for 
each equation is non-negligible. As a result, it becomes 
significantly time-consuming since billions of transcendental 
calculations are required in order to obtain a full shear 
stress-strain curve. 

An iterative root-finding method is then adopted instead of 
the built-in solve function in MATLAB. Due to the 
monotonicity and the continuity of post-cracking concrete 
tensile stress-strain equations, the bisection method is chosen to 
solve the multiple transcendental problems. This method 
repeatedly bisects a certain interval and selects the interval that 
contains a root, consequently the interval shrinks into half each 
time. The equations can be solved by the following procedures: 
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1) Select an initial interval for possible crack spacing ܽ, and 
the upper bound of this initial interval should be relatively 
large to represent the uncracked stage. 

2) Bisect the interval and select the section where the function 
values of the two end points have opposite sign. 

3) Reset the initial interval and repeat step 1 and 2 until the 
interval length is within the tolerance. 

IV. RESULTS AND COMPARISONS  

The fast FASTMT is applied to a series of typical 2-D RC 
membrane elements tested by Pang and Hsu [12] as shown in 
Fig. 4 to validate the prediction accuracy. The elements are 
subjected to pure shear condition, where the inclination angle 
of crack is ߙଵ ൌ 45° and the initial stress value followsߪ௟ ൌ
௧ߪ ൌ 0. The material properties are tabulated in Tables I and Ⅱ. 

 

 

Fig. 4 Testing RC membrane element B2 [12] 
 

TABLE I 
REINFORCEMENT PROPERTIES 

Longitudinal Reinforcement Transverse Reinforcement 

 ௧ 1.193%ߩ ௟ 1.789%ߩ

௟݂௬	ሺMPaሻ 446.5 ௧݂௬	ሺMPaሻ 462.6 

 ሺMPaሻ 192 400	௧௦ܧ ሺMPaሻ 200 000	௟௦ܧ

 
TABLE Ⅱ 

CONCRETE PROPERTIES 

௖݂
ᇱ	ሺMPaሻ 44.1 

 ଴ 0.00235ߝ

 
The testing result for specimen B2 under pure shear is 

compared with the obtained values from fast FASTMT and also 
the original curve from FASTM in Fig. 5. The original FASTM 
overestimates shear strength of the 2-D RC membrane element 
under large shear strain and the deviation may be caused by the 
irrational decreasing curve of tensile stress without considering 
the effect of tension-stiffening. While the fast FASTMT, which 
includes the loss of bond stress under large slip distance and the 
gradual concrete tensile stress loss due to newly initiated 
cracks, exhibits a relatively conservative prediction for low 
strain level and accurate result for peak shear strength.  

After adopting the bisection method, the fast FASTMT 
excels in the simplicity and efficiency in the root-finding 

process. For a single transcendental function employed by 
concrete tensile stress-strain relationship, the elapsed time for 
the built-in solve function in MATLAB is approximately 0.70 
seconds, while by using bisection method the required time 
approaches to zero. For the full profile of tensile stress-strain 
curve with tension stiffening effect, the elapsed time for built-in 
solve function is approximately 2.80 seconds, while the 
bisection method requires only 0.06 seconds. To obtain the 
shear stress-strain curve of a RC panel under pure shear 
condition, the elapsed time of built-in solve function is more 
than 17 hours, while the bisection methods requires 
approximately 10 minutes. 
 

 

Fig. 5 Comparison of fast FASTMT, FASTM and experimental data 

V. CONCLUSIONS 

The fast FATMST aims for quickly predicting the shear 
strength of RC membrane element and it is based on the 
fixed-angle theory and softened truss model theory, which 
excels in both calculation accuracy and simplicity. The tensile 
stress-strain relationship in the fast FASTMT includes the 
comprehensive effect of tension-stiffening of RC after the first 
initiation of crack, thus the influences of bond stress-slip 
relationship, orthogonal reinforcement and crack propagation 
are incorporated. In the calculation procedure performed in 
MATLAB, an iterative root-finding method is adopted to solve 
the tensile stress-strain relationship for post-cracking concrete.  

The testing result of a RC panel under pure shear condition is 
compared with the fast FASTMT and the original FASTM. 
Based on the comparison, the following conclusions can be 
drawn: 
1) The calculated shear stress-strain curve of fast FASTMT 

shows a better agreement with the experimental data than 
the original FASTM. The overestimation of shear strength 
of FASTM is affected by the irrational decreasing rate of 
tensile stress under large strain level. 

2) The total elapsed time of the fast algorithm is greatly 
shortened owing to the bisection root-finding method. 
Additionally, the fast FASTMT allows a smaller step when 
plotting the shear stress-strain curve, which inherently 
generates a more thorough and detailed shear behaviour of 
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the full monotonic loading process.  
3) The high efficiency as well as the accuracy of fast 

FASTMT enables a further application in quick shear 
behaviour prediction of complex large-scale RC structures. 
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