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Turing Pattern in the Oregonator Revisited
Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss

Abstract—In this paper we reconsider the analysis of the
Oregonator model. We highlight an error in this analysis which
leads to an incorrect depiction of the parameter region in which
diffusion driven instability is possible. We believe that the cause of
the oversight is the complexity of stability analyses based on
eigenvalues and the dependence on parameters of matrix minors
appearing in stability calculations. We regenerate the parameter
space where Turing patterns can be seen, and we use the common
Lyapunov function (CLF) approach, which is numerically reliable,
to further confirm the dependence of the results on diffusion
coefficients intensities
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I. INTRODUCTION

TURING theory of pattern formation [9] has had a

tremendous impact on various branches of science.

According to Turing analysis a systems of reacting and

diffusion chemical species, termed as morphogens, could lead

to a spatial heterogenieties (patterns) of chemical densities

from an intial uniform state. This phnomenon is known as

diffusion-driven-instability (DDI) or Turing instability [10].

In other words Turing explanation of pattern formation is

based on using a reaction diffuion (RD) system. RD models

have subsequently been widely applied to various biological

patterning phenomena [10], [11]. An early application of

Turing’s theory was to patterning of the body segment in fruity

Drosophila [12], [13]. RD systems have been used to model

complex pattern formation of certain animal skins [14], [15].

Reaction diffusion theory has been also utilised to examine

the spatio-temporal pattern formation on the surface of

tumour spheroids [16]. Pattern formation via diffusion driven

instability plays an important role in chemistry [17]–[19] and

physics [19]. Ecologists use RD models to understand spatial

patterns in populations and communities [20]–[26], where for

instance, a very fast prey (predator) would intuitively drive the

density of the whole population to be spatially dependent.

Despite all the promising successes of Turing mechanism

to replicate many patterns in nature, as mentioned above,

existence of morphogens has not yet been proved for definite.

However, there do exist very close candidates for morphogens.

Calcium as morphogen leading to hair spacing in Acetabularia

[27], and Fibronectin as a morphogen for cartilage formation

[28]. Nevertheless, there is no definitive assertion that they

are interacting as suggested by Turing. For details see [29].
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In chemical systems, Turing structure has been shown by a

group in Bordeaux led by De Kepper [30], [31]. The chemical

reaction they used was the CIMA reaction. This paper is

organised as follows. In Section II we present a classical

approach for diffusion driven instability. Section III will focus

on the error made during the analysis of the Oregonator model

as developed by Qian et. al [1].

II. A CLASSICAL APPROACH TO DETERMINING

DIFFUSION DRIVEN INSTABILITY

A reaction diffusion (RD) system is a system of the form

∂u

∂t
= f(u) +D∇2u. (1)

The function f ( we assume it is regular) describes the

reaction dynamics and D is a diagonal matrix of diffusion

coefficients. Here u(t, x) : [0,∞) × R
n → [0,∞) is an

n-tuple vector of densities at spatial position x and time

t on a domain Ω, which typically bounded, with zero

flux boundary conditions (i.e. ∇.u|Ω = 0). Imposing such

boundary conditions is due to their neutral nature as they

do not pump the space with any additional material and this

makes ”self-organization” plausible. Taking other boundary

conditions can influence the predictions where this can drive

forming different patterns, see [36]. In studying pattern

formation in RD systems the key first step is to determine

the Turing space for a given model, i.e. the parameter set for

the model on which pattern formation can be triggered [37],

[38]. This can then be followed by bifurcation analysis of

specific pattern formations [39]. Pattern formation is trigged

by Turing instability. Turing instability, or diffusion driven

instability(DDI), is a concept first proposed by Turing [9].

This concept is defined as follows.

Definition: We say that a system of the form (1) exhibits

Turing instability, or DDI, if the system without diffusion, i.e.,

∂u

∂t
= f(u). (2)

has locally stable equilibrium state which becomes unstable

in the presence of diffusion.

To analyse DDI mathematically, we use linearised stability

analysis. If û is a spatially uniform equilibrium of (2), then

small disturbances w away from û are governed, qualitatively,

by the linear system

dw

dt
= Aw.

Here A, the Jacobian matrix of f evaluated at û, is the

linearised reaction matrix. If A is stable (all its eigenvalues

have negative real parts), which we assume for the remainder

of this chapter, then û is an asymptotically stable equilibrium

for (2). The equilibrium û is also a spatially homogeneous
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equilibrium of the system with diffusion. Small spatial

disturbances v around û are governed by the linearised reaction

diffusion equation

∂v

∂t
= Av +D∇2v. (3)

Now taking Fourier transform of (3) in space, following

Neubert et al. [42], and using zero flux boundary conditions

we obtain

dv̌

dt
= (A− k2D)v̌ (||k|| = k),

where

v̌ =

∫ ∞

−∞
eik.xv(t, x)dx.

Here k is a vector of Fourier frequencies and usually referred

to as the wave vector. Letting

J = A− k2D, (4)

Equation (3) can then be written as

dv̌

dt
= Jv̌.

Keypoint: Turing instability (DDI) requires J to be unstable

for some k, i.e. J has an eigenvalue with positive real part. In

other words, for DDI we require

ρ(k2) := max
1≤i≤n

real(λi(J)) > 0 for some k. (5)

Equation (5) is often called the dispersion relation of the

system (1). Plotting ρ(k2) against all possible k2 is a common

technique used to determine the range of unstable modes.

One approach to determining this parameter set is to compute

principle minors [1], [40], [41] of linearised reaction-diffusion

matrices. However, this approach leads to tedious calculations

in the case of high dimensional systems.

In the particular case where n = 2, Murray [36] derives

easily verifiable necessary conditions for DDI that are also

sufficient for infinite domains. In this case (1) becomes

∂u

∂t
= f(u, v) + du∇2u

∂v

∂t
= g(u, v) + dv∇2v.

The corresponding A and D in (4) are given as

A =

(
fu fv

gu gv

)
and D =

(
du 0

0 dv

)
.

Assuming that A is stable we have

fu + gv < 0 and fugv − fvgu > 0. (6)

In this case (4) becomes

J =

(
fu fv

gu gv

)
−k2

(
du 0

0 dv

)
=

(
fu − k2du fv

gu gv − k2dv

)
.

(7)

To have at least an eigenvalue with positive real part, one

of the Hurwitz conditions for A − k2D must be violated.

Conditions (6) assure that

trace(J) = (fu + gv)− k2(du + dv) < 0.

So the only way to have an eigenvalue with positive real part

is through the determinant. It turns out that the determinant is

given by

det(J) = dudvk4 − (dvfu + dugv)k2 + det(A) =: h(k2). (8)

Essentially (8) captures the signs of the dispersion

relation (5) and that is why it is also called the dispersion
relation. Since dudvk4 and det(A) are positive, det(J) can be

negative only if

dvfu + dugv > 0. (9)

Conditions (6) and (9) force the diffusivity coefficients to

be unequal. The above condition is necessary but not sufficient

for DDI. Negativity of det(J) can be assured if hmin(k2) is

negative. Using standard calculus techniques, we differentiate

h(k2) with respect to k2, and equating the result with zero we

eventually get the stationary values

k2c =
dvfu + dugv

2dudv
.

Substituting in (8) we get

hmin = det(A)− (dvfu + dugv)
2

4dudv
.

Hence det(J) can be negative if, and only if,

(dvfu + dugv)
2 − 4dudvdet(A) > 0.

Hence the necessary conditions for DDI (Turing pattern

formation) are

fu + gv < 0, fugv − fvgu > 0,

dvfu + dugv > 0, (dvfu + dugv)
2 − 4dudvdet(A) > 0.

(10)

It is worth mentioning here that the conditions (10) are also

sufficient if the space is not finite which will be always the

case in Section III where we do not have any restrictions on

the domain. If the domain is finite then we require further

investigations to the roots of (8).

III. DIFFUSION DRIVEN INSTABILITY IN THE

OREGONATOR

In this paper we revisit the analysis of the Oregonator

performed in [1]. The Oregonator [32]–[34] is a reduced

version of the oscillatory Belousov-Zhabotinsky (BZ)

chemical reaction [32]. According to Feild and Noyes [33],

[35], the species of the reaction behave as

A+ Y −→ X + P

X + Y −→ P + P

A+X −→ 2X + 2Z

X +X −→ A+ P

Z −→ fY
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Fig. 1 The Oregonator system with parameters ε = 0.00073, δ = 0.0004.
The stability region is the union of the regions outside the green or red

curves. The region determined by the inequality 11 is the region inside the
red curve. The region for Turing instability is the green region shown in the

zoomed-in subplot
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Fig. 2 The dispersion relation of the Oregonator with f = 1.181 and
q = 0.00226. The remaining parameters are chosen as in Fig. 1

where A = BrO−
3 , X = HBrO2, Y = Br−, Z = Ce(IV )

and P = HOBr. The nonlinear reaction dynamics of the

Oregonator are given by the system of ODEs

⎧⎪⎨
⎪⎩

εdxdt = −qy + xy + x(1− x),

δ dy
dt = −qy − xy + 2fz,

dz
dt = x− z.

Here q, f , ε and δ are positive constants. The non-negative

equilibria of the system are the origin and (xe, ye, ze) where⎧⎪⎨
⎪⎩

xe = 1/2
(
1− 2f − q +

√
(1− 2f − q)2 + 4q(1 + 2f)

)
ye = 2fxe

q+xe
,

ze = xe.

Linearisation of the corresponding reaction-diffusion system

around this uniformly steady state reduces the system to

ż = (A− k2D)z,

where k is a wave number, A = (ai j) is the corresponding

linearised reaction matrix and D = diag (di) is the

diagonal matrix of diffusion coefficients. According to

standard diffusion driven instability (DDI) calculations

[9], DDI is possible when A is stable but A −
k2D is unstable for some wave number k.

When A is 3× 3, as is the case for the Oregonator model,

stability of a matrix A can deduced from its characteristic

equation

λ3 + p2λ
2 + p1λ+ p0 = 0,

where

p2 = −trace(A), p1 = sum of the diagonal cofactors of A,

and p0 = −det(A). According to the Hurwitz criterion, A is

stable if and only if

p2 > 0, p0 > 0 and p1p2 − p0 > 0.

In the case of the Oregonator this can be reduced to the

condition

S := 2a11a22 − a22 − a11 + a12a23 − a11a
2
22 − a211a22

+a211 + a222 + a11a12a21 + a12a21a22 > 0.

See [2], [3] for details.

To show DDI it suffices to show that A satisfies the above

condition but that the matrix A − k2D violates one of the

Hurwitz conditions of stability for some wave number k.

Qian and Murray use this approach to obtain sufficient

conditions for DDI. In particular, they show that

p0(k
2) := −det(A− k2D) > 0

is violated. Their result can be summarised as follows:

Let arr be the largest diagonal element of A and Cof(A)ss
be the smallest diagonal cofactor of A. The sufficient condition

for DDI is either

(i) arr > 0 with drr � 1; or (ii)Cof(A)ss < 0

with dss � 1.
For the Oregonator, it turns out that the sufficient condition

for DDI is given by:

2qye − (q + xe)(1− 2xe) < 0 (11)

with relatively very large d3. However, Qian and Murray did

not verify stability of A in the same parameter region. We

believe that Qian and Murray have mixed up stability of A with

det(A) < 0, a condition only necessary (but not sufficient) for

stability of A. In fact, in the set of parameters where DDI is

claimed, A itself is unstable even though det(A) < 0. So DDI

is not proved.

Fig. 1 shows the stability region of A (the region outside

the green curve); the region determined by the inequality (11)

(inside the red curve). For the specific choice of the parameters

f = 0.6, q = 0.03 inside the region determined by (11) we

have real(λ1(A)) = 0.002023 > 0. So A itself is unstable and

hence DDI is meaningless.
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Fig. 3 The Oregonator with the same parameter chosen in above. The region where DDI is not possible (Shaded green) increases as the diffusivities d1
d3

and
d2
d3

increases

Adding stability of A to the sufficient condition (11), DDI

require

A is stable and 2qye − (q + xe)(1− 2xe) < 0 (12)

In Fig. 1, the subplot is determined by the inequalities (12).

For the choice f = 1.181, q = 0.00226 in the region we

have S > 0 and 2qye − (q + xe)(1 − 2xe) < 0. With d1 =
d2 = 0 and d3 = 0.9 the corresponding dispersion relation

for A − k2D is given in Fig. 2 below which assures Turing

instability approximately for k2 > 24.

The Qian and Murray matrix minors based analysis of the

Oregonator, needs sufficiently small diffusion coefficients. As

the diffusion coefficients increase, this asymptotic analysis of

stability/instability breaks down. We can use results in [2] to

rule out DDI when A and −D share a CLF. Fig. 3 illustrates

how increasing diffusivity reduces the region in which DDI is

possible.

IV. CONCLUSION

The Oregonator is a very well studied oscillatory chemical

reaction [4]–[8]. In this paper we have revisited the analysis

of the Oregonator by Qian and Murray [1]. We further

confirm the dependence of the results developed in diffusion

intensities using the numerical approach which based on

common Lyapunove function as developed in [2]. We show

that stability of the reaction matrix is not properly taken into

account in generating Fig. 1 in [1]. We show, by choosing

parameters in the region that A is not stable. We add the

condition of stability and generate the correct picture for

Turing instability, Fig. 1, and then using results from [2] we

characterise the Turing region when the stability analysis of

Qian and Murray does not apply, i.e., when the diffusion

coefficients are very small.
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