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 
Abstract—The Greater Zab and Lesser Zab are the major 

tributaries of Tigris River contributing the largest flow volumes into 
the river. The impacts of climate change on water resources in these 
basins have not been well addressed. To gain a better understanding 
of the effects of climate change on water resources of the study area 
in near future (2049-2069) as well as in distant future (2080-2099), 
Soil and Water Assessment Tool (SWAT) was applied. The model 
was first calibrated for the period from 1979 to 2004 to test its 
suitability in describing the hydrological processes in the basins. The 
SWAT model showed a good performance in simulating streamflow. 
The calibrated model was then used to evaluate the impacts of 
climate change on water resources. Six general circulation models 
(GCMs) from phase five of the Coupled Model Intercomparison 
Project (CMIP5) under three Representative Concentration Pathways 
(RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 
and 2080-2099 were used to project the climate change impacts on 
these basins. The results demonstrated a significant decline in water 
resources availability in the future. 
 

Keywords—Tigris River, climate change, water resources, 
SWAT. 

I. INTRODUCTION 

HE water resources of a basin are influenced by a large 
number of explanatory variables such as precipitation and 

other meteorological factors, vegetation and other landuse, and 
natural catastrophes such as hurricanes and bushfires. The 
water balance is often delicate, which can be easily 
exacerbated by climate change, especially when water 
resources are restricted [1]. Climate change can have a 
considerable impact on the hydrological cycles mainly through 
the modification of evapotranspiration and precipitation [2], 
[3]. The alterations of evapotranspiration and precipitation 
can, at the extreme, demonstrate formations of severe droughts 
or major floods leading to significant impacts on the water 
balance of a basin [4]. Greater Zab and Lesser Zab are the 
largest tributaries of Tigris River in terms of their contribution 
to Tigris flow. Greater Zab and Lesser Zab contribute about 
40%-60% of total Tigris flow [5]. Furthermore, they are the 
main sources of surface water for Kurdistan region. Water 
scarcity has been pronounced in recent history in these basins 
[6]. Up till now, water problems in relation to climate change 
in the Greater Zab and Lesser Zab catchments have not been 
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well addressed [7]. Therefore, the main objective of this study 
has been to evaluate the potential impacts of future climatic 
changes in the water sources of these important basins, 
specifically blue and green waters. SWAT model was applied 
to determine the effects of climatic change on the watersheds. 
The model was set at monthly scale using available spatial and 
temporal data and calibrated against measured streamflow. 
Climate change scenarios were obtained from GCMs. 

II. STUDY AREA 

 

Fig. 1 Location of Greater Zab and Lesser Zab within Iraq 
 

The Greater Zab rises from the Ararat Mountains in Turkey 
and flows through Turkey and the central northern part of Iraq 
and then joins the Tigris River south of Mosul City with a 
length of 372 km. The greater Zab is situated between 
latitudes 36 0N and 380N, and longitudes 43.3 0E and 44.3 0E 
[6] (Fig. 1). It drains an area of 26,473 km2, 65% of which is 
located in Iraq and the rest in Turkey [5]. Lesser Zab (also 
known as Little or Lower Zab) rises from north-eastern Zagros 
Mountains in Iran running through Iran and Iraq, and after a 
length of about 302 km, the river links with the Tigris River at 
Fatah (south of Mosul). The watershed is located 
approximately between 35.160N to 36.79 0N latitudes and its 
longitudes are 43.39 0E to 46.26 0E (Fig. 1). Lesser Zab serves 
an area of about 15,600 km2, 80% of which is located in Iraq 
and the remainder in Iran. The weather of the Greater Zab and 
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Lesser Zab watersheds is arid to semi-arid with dry and hot 
summers and wet winters [5]. The average annual temperature 
is variable from 22 °C in the south to 10 °C in the north. The 
average annual rainfall varies from 350 mm in the south and 
1500 mm in the north [6]. The flow regime of Greater Zab and 
Lesser Zab demonstrates high seasonal variability with peak 
flow occurring between April and May primarily due to 
snowmelt, and low seasonal flow occurring between July and 
December (Fig. 2). It is estimated that 70% of the catchment is 
covered by pasture and the rest is utilised for agriculture, 
Xerosols soil is the dominant in these basins [6]. 

 

 

Fig. 2 Average monthly streamflows of Greater Zab and Lesser Zab 
at EskiKelek and Dukan, respectively during 1979-2004 

III. DESCRIPTION OF SWAT MODEL 

The SWAT model [8] is a river watershed, physics-based 
distributed model for analysing hydrology and water quality at 
different watershed scales with varying soils, land use and 
management conditions on a long-term basis. The model has 
two main divisions, land phase and routing phase, which apply 
to simulate the hydrology of a watershed. The land phase 
estimates the hydrological mechanisms which comprise 
evapotranspiration, surface runoff, subsurface water, ponds, 
lateral flow, channels and return flow [8]. The routing phase 
controls the movement of water, sediments, nutrients, and 
organic chemicals via the waterways network of the basin to 
the outlet [8].  

In land phase of the hydrological cycle, the simulation is 
based on the water balance equation. 
 

ܵ ௧ܹ ൌ ܵ ଴ܹ ൅෌ ൫ܴௗ௔௬ െ ܳ௦௨௥௙ െ ௔ܧ െ ௦ܹ௘௘௣ െ ܳ௚௪൯
௡

௜ୀଵ
 (1) 

 
where SWt (mm) is the final soil water content, SWo (mm) is 
the initial soil water content on day i, t(days) is the time, Rday 
(mm) is the amount of precipitation on day i, Qsurf (mm) is the 
amount of surface runoff on day i, Ea (mm) is the amount of 
evapotranspiration on day i, Wseep (mm) is the amount of 
water entering the vadose zone from the soil profile on day i, 
and Qgw (mm) is the amount of return flow on day i. A 
description of some of the major features of the model is 
shown in this study, and the full descriptions of the model can 
be provided in [9].  

The estimation of surface runoff is conducted with two 
methods; the SCS curve number procedure [8] and the Green 

and Ampt infiltration method [10]. The SCS method was 
applied in this study due to unavailability of sub-daily data 
that are essential for the Green and Ampt infiltration method. 

The SCS curve number equation is: 
 

ܳ௦௨௥௙ ൌ
൫ோ೏ೌ೤ష଴.ଶୗ൯

ሺோ೏ೌ೤ା଴.଼ୗሻ

ଶ

       (2) 

 
where, Qsurf (mm) is the accumulated runoff or rainfall excess, 
Rday (mm) is the rainfall depth for the day, S(mm) is the 
retention parameter.  

The retention parameter diverges spatially owing to 
different soils, landuse, management and slope of a catchment 
and temporally because of soil water content variations. The 
retention parameter is defined by: 

 

 ܵ ൌ 25.4 ቀ
ଵ଴଴଴

஼ே
െ 10ቁ       (3) 

 
where CN is the curve number for the day. 

To estimate the retention component, SWAT 2012 utilizes 
the modified soil moisture method that permits the retention 
parameter to differ with plant evapotranspiration.  

When the retention component is variable with soil profile 
water content, the equation below is applied,  

 

ܵ ൌ ܵ௠௔௫ ∗ ቀ1 െ
ௌௐ

ሾௌௐାୣ୶୮ሺ௪భି௪మ∗ୗ୛ሻሿ
ቁ     (4) 

 
where S (mm) is the retention parameter for a given day, Smax 

(mm) is the maximum value that the retention parameter can 
achieve on any given day, SW(mm) is the soil water content of 
the entire profile excluding the amount of water held in the 
profile at wilting point, and w1 and w2 are shape coefficients. 
The maximum retention parameter value, Smax (mm), is 
calculated by solving (3), using CN1, as shown below, 
 

ܵ௠௔௫ ൌ 25.4 ቀଵ଴଴଴
஼ேభ

െ 10ቁ       (5) 

 
In the case where the retention parameter is to be varied 

with plant evapotranspiration, the following equation is 
applied to calculate the retention parameter at the end of every 
day: 

 

ܵ ൌ ܵ௣௥௘௩ ൅ ௢expܧ ቀ
ିୡ୬ୡ୭ୣ୤ିௌ೛ೝ೐ೡ

ௌ೘ೌೣ
ቁ െ ܴௗ௔௬ െ ܳ௦௨௥௙  (6) 

 
where Sprev (mm) is the retention parameter for the previous 

day, Eo (mm/day) is the potential evapotranspiration for the 
day, cncoef is the weighting factor used to estimate the 
retention coefficient for the daily curve number calculation 
which depends on plant evapotranspiration, Smax is the 
maximum value of the retention parameter that can be 
achieved on any given day, Rday (mm) is the rainfall depth for 
the day, and Qsurf (mm) is the surface runoff. The initial value 
of the retention parameter is defined as S = 0. 9Smax. 

The model estimates the volume of lateral flow which 
depends on the variation in conductivity, slope and soil water 

0
100
200
300
400
500
600
700
800
900

1000

M
ea

n 
M

on
th

ly
 d

is
ch

ar
ge

 
(m

3 /
se

c)

Month 

Greater Zab

Lesser Zab



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:11, No:10, 2017

943

 

 

content. A kinematic storage model is used to predict lateral 
flow through each soil layer. Lateral flow is the flow below 
the soil surface when the water input into a layer exceeds the 
field capacity after percolation.  

Regarding groundwater simulation, the process assumes 
two aquifers which are a shallow aquifer (unconfined) and a 
deep aquifer (confined) in each watershed. The shallow 
aquifer contributes streamflow into the main channel of the 
watershed.  

The water balance equation for the shallow aquifer is: 
 

௦௛,௜ݍܽ ൌ ௦௛,௜ିଵݍܽ ൅ ௥௖௛௚.௦௛ݓ െ ܳ௚௪ െ ௥௘௩௔௣ିݓ െ  (7)	௣௨௠௣.௦௛ݓ
 
where aqsh,i (mm) is the amount of water stored in the shallow 
aquifer on day i, aqsh,i-1(mm) is the amount of water stored in 
the shallow aquifer on day i-1, wrchrg.sh(mm) is the amount of 
recharge entering the aquifer on day i, Qgw (mm) is the 
groundwater flow, or base flow, into the main channel on day 
i, wrevap (mm) is the amount of water moving into the soil zone 
in response to water deficiencies on day i, and wpump,sh (mm) is 
the amount of water removed from the shallow aquifer by 
pumping on day i.  

The steady-state response of groundwater flow to recharge 
is calculated by the equation given below [8]. 

 

ܳ௚௪ ൌ ଼଴଴଴∗௄ೞೌ೟
௅೒ೢ

మ ∗ ݄௪௧௕௟        (8) 

 
where Ksat (mm/day) is the hydraulic conductivity of the 
aquifer, Lgw (m) is the distance from the ridge or sub-basin 
divide for the groundwater system to the main channel, and 
hwtbl (m) is the water table height. 

Water infiltrating into the confined aquifer is presumed to 
contribute to the flow outside the watershed. SWAT model 
uses three methods to assess potential evapotranspiration 
(PET) – the Penman-Monteith method [11], the Priestley-
Taylor method [12] and the Hargreaves method [13]. Water is 
directed via the streamflow network by using Muskingum 
river routing method utilizing the daily time step [8]. 

SWAT model demands an enormous amount of input data 
to achieve the tasks visualized in this research. Digital 
elevation model (DEM), landuse map, soil map, weather data 
and discharge data are basic data requirements for modelling. 
DEM was extracted from ASTER Global Digital Elevation 
Model (ASTERGDM) with a 30-meter grid and 1×1 degree 
tiles [14]. The land cover map was gathered from the 
European Environment Agency with a 250-meter grid raster 
for the year 2000 [15]. The soil map was obtained from the 
global soil map of the Food and Agriculture Organization of 
the United Nations (1995) [16]. Weather data which included 
daily precipitation, maximum and minimum temperatures 
were collected from the Iraq’s Bureau of Meteorology. 
Monthly streamflow data were obtained from the Iraqi 
Ministry of Water Resources/National Water Centre. 

In SWAT model, the watershed is divided into smaller 
basins based on the DEM. The landuse map, soil map and 
slope datasets are embedded in the SWAT databases for this 

study. The small basins are further sub-divided into 
Hydrologic Response Units (HRUs). HRUs are defined as 
parcels of land that have unique slope and soil and landuse 
area within the borders of a small basin. The HRUs represent 
percentages of sub-basin areas and hence are not spatially 
defined in the model. There must be at least one HRU in each 
small basin. HRUs enable the users to identify the differences 
in hydrologic conditions such as evapotranspiration for varied 
soils and landuses. Routing of water and pollutants is 
accomplished from the HRUs to the sub-basin level and then 
through the river system to the watershed outlet. 

The Sequential Uncertainty Fitting Algorithm application 
(SUFI-2) is rooted in the SWAT-CUP model [17] was applied 
to assess the performance of the SWAT. The advantages of 
SUFI-2 are that it combines optimisation and uncertainty 
analysis, can handle large number of parameters through Latin 
hypercube sampling, and it is easy to apply. Moreover, SUFI-
2 algorithm was found to achieve good prediction uncertainty 
with a limited number of runs comparing with other 
techniques connecting to SWAT such as generalized 
likelihood uncertainty (GLU) estimation, parameter solution 
(parsol), Markov Chain Monte Carlo (MCMC). This efficacy 
is of importance when the model is applying to complex and 
large basins [17]. 

Firstly, The SUFI-2 categorizes the dimension for each 
parameter. Thereafter, Latin Hypercube method is applied to 
produce different permutations among the calibration 
parameters. Finally, the model runs with each permutation, 
and the obtained results are compared with the observed data 
until the optimum objective function is reached. Because of 
the uncertainty in forcing inputs (e.g. temperature, rainfall), 
conceptual model and errors in measured data which are 
unavoidable in hydrological models, SUFI-2 algorithm 
computes the uncertainty of the measurements, the conceptual 
model and the parameters by two separate measures: P-factor 
and R-factor. P-factor is the percentage of data included by the 
95% prediction uncertainty (PPU) which is bounded at 2.5% 
and 97.5% of the cumulative probability distribution of an 
output variable obtained from Latin Hypercube Sampling – it 
is similar to 95% confidence interval construction. The R-
factor, which is standardized value, is the average width of the 
95 PPU divided by the standard deviation of the corresponding 
measured variable. In an ideal scenario, P-factor tends towards 
1 and R-factor towards zero. Furthermore, SUFI-2 calculates 
the Coefficient of Determination (R2) and the Nasch-Sutcliff 
efficiency (ENC) [18] to assess the goodness-of-fit between 
the measured and simulated data.  

The ENC value indicates how well the plot of the observed 
against the simulated values fits the 1:1 line. It ranges from 
negative infinity (-∞) to one. The nearer the value to 1, the 
better is the prediction, while the value of less than 0.5 
indicates unsatisfactory model performance [19]. ENC is 
calculated as shown below:  
 

ܥܰܧ ൌ 1 െ ൤
∑ ሺை೔ି௉೔ሻ

మ೙
೔సభ
∑ ሺை೔ିைതሻమ
೙
೔సభ

൨                         (9) 
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where Oi is the observed streamflow, Pi is the simulated 
streamflow, and Ō is the mean observed streamflow during the 
evaluation period.  

SUFI-2 allows users to accomplish global sensitivity 
analysis, which is computed based on the Latin Hypercube 
and multiple regression analysis. The multiple regression 
equation is defined as: 

 
g ൌ α ൅ ∑ ௜ߚ ∗ ܾ௜

௠
௜ୀଵ   

 
where g is the value of the evaluation index for the model 
simulations, α is a constant in the multiple linear regression 
equation, β is a coefficient of the regression equation, b is a 
parameter produced by the Latin hypercube method, and m is 
the number of parameters.   

The t-stat of this equation which can indicate parameter 
sensitivity is applied to determine the relative significance of 
each parameter, the more sensitive the parameter, greater is 
the absolute value of the t-stat. When p-value is used, it is also 
an indication of the significance of the sensitivity, p-value 
close to zero has more significance. 

Six GCMs from CMIP5 namely CGCM3.1/T47, CNRM-
CM3, GFDL-CM2.1, IPSLCM4, MIROC3.2 (medres), and 
MRI CGCM2.3.2 were selected for climate change projections 
in the Lesser Zab basin under a very high emission scenario 
(RCP 8.5), a medium emission scenario (RCP 4.5) and a low 
emission scenario (RCP 2.6) for two future periods (2049-
2069) and (2080-2099). Thereafter, the modelled temperatures 
and precipitation were input to the SWAT model and then 
water assets in the basin compare with the baseline period 
(1980-2010). BCSD method was applied to downscale the 
GCM results [20]. 

IV. RESULTS AND DISCUSSION  

A. Sensitivity Analysis 

Sensitivity analysis was carried out for 25 parameters 
related to streamflow [8], from which 12 most sensitive 
parameters were considered for implementing in the model for 
calibration of the Greater Zab Basin. The rankings of 12 
highest sensitive parameters for each watershed are presented 
in Table I. For Greater Zab, SFTMP was the greatest sensitive 
parameter. However, it was ranked the eighth for Lesser Zab. 
These results seem rational as Greater Zab river is snow-
dominated mountainous terrain. CN2 was the dominant 
SWAT calibration parameter for Lesser Zab. However, it was 
ranked the fourth for Greater Zab. In a large number of SWAT 
applications in other watersheds, CN2 was the highest 
sensitive parameter [21]. CN2 tends to have the main impact 
on the quantity of runoff produced from the HRU, thus a 
relatively high sensitivity index can be expected for most of 
the basins [22]. SOL_AWC came third for Greater Zab and 
Lesser Zab. ALPHA-BE was observed to be the highest 
sensitive parameter among the four groundwater parameters 
for both watersheds. ALPHA-BE was ranked the second for 
Greater Zab and Lesser Zab. These results are similar to the 
findings of Li et al. [23] who found that ALPHA-BE is a 

highly sensitive groundwater parameter in SWAT calibrations. 
SWAT was observed to be relatively sensitive to GW-DELY 
for Lesser Zab. 
 

TABLE I 
RANKS OF 12 HIGHEST SENSITIVE PARAMETERS RELATED TO STREAMFLOW 

IN THE TWO BASINS IN IRAQ 

Parameter Greater Zab Lesser Zab 

CN2 4 1 

ALPHA_BF 2 2 

SFTMP 1 8 

SOL_AWC 3 3 

GW_DELAY 12 4 

ESCO 8 11 

HRU_SLP 5 7 

SURLAG 7 5 

GW_REVAP 11 6 

GWQMN 9 9 

SLSUBBSN 6 12 

CH_K2 10 10 

B. Calibration and Validation 

In both the basins, in spite of overestimates and 
underestimates during wet months, the model performed well 
over the whole simulation periods (Table II). The 
underestimation and overestimation during some months 
could be because of errors in measuring flow, unequally 
spread rainfall stations and spatial variability in soil and land 
use [24], [25]. Generally, the model can be assumed from the 
results to be capable of simulating the streamflow of the two 
basins. 
 

TABLE II 
R2 AND ENC VALUES IN THE BASINS 

  Calibration Validation 

Watershed Station R2 ENC R2 ENC 

Greater-Zab Bekhme 0.69 0.66 0.89 0.53 

Greater-Zab Bakrman 0.53 0.50 0.66 0.52 

Greater-Zab EskiKelek 0.58 0.56 0.57 0.51 

Lesser-Zab Alulnkubri 0.77 0.76 0.87 0.73 

Lesser-Zab Dokan 0.58 0.54 0.76 0.71 

C. Impacts of Climate Change on Tigris Basin Using 
CMIP5 

1) Precipitation Forecasts 

Overall, all selected GCMs projected a reduction in the 
mean annual precipitation at about the mid-century (2049-
2069) and about one-century lead time (2080-2099) for the 
two basins. Fig. 3 illustrates the anomaly maps of precipitation 
distribution (maps of percent deviation from historical data, 
(1980-2010) for RCP 2.6, RCP 4.5 and RCP 8.5 scenarios for 
the periods 2049-2069 and 2080-2099 for the average change 
from the multi-GCM ensemble. Under the RCP 2.6, Greater 
Zab is expected to experience a decrease of about 12% while 
the Lesser Zab 2% for the mid-century. At the end of the 
century, Greater Zab will experience nearly the same 
reduction, 15%, whereas Lesser Zab will experience a 
reduction of 10%. RCP 4.5 produced nearly the same 
reduction (average -18%) for both the basins in the mid-
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century, whereas at the end of the century, Greater Zab will 
see reduction of about -15%; however, the Lesser Zab will see 
26% reduction. RCP 8.5 produced the same decreases for the 
half a-century in the two basins (17%), while for the end of the 
century, Greater Zab will experience a decline of about 22% 
and Lesser Zab 18%. 

D. Blue Water and Green Water Forecasts 

Fig. 4 captures the anomaly maps of blue water distribution 
(maps of percent deviation from historical data, 1980-2010) 
for RCP 2.6, RCP 4.5, and RCP 8.5 scenarios for the periods 
2049-2069 and 2080-2099 from the average change of the 
multi-GCM ensemble. Under RCP 2.6, the half-a-century 
projection (2049-2069) shows a decline of about 29% and 
22% in Greater Zab and Lesser Zab, respectively, while at the 
end of the century the reduction will be nearly the same in 
both the basins (27%). For RCP 4.5 (2049 -2069), Lesser Zab 
will see a decrease of about 33% followed by Greater Zab 
(20%). For RCP 4.5 (2080-2099), both the basins will 
experience approximately similar reduction of about 46%. 
Under RCP 8.5 both basins will experience a reduction of 

about 23% for the period of (2049-2069). However, the Lesser 
Zab and Greater Zab will see a reduction of about 51% and 
43%, respectively, for the period of (2080-2099). Green water 
has a tendency to have a similar trend as the blue water (Fig. 
5). 

Fig. 3 The impacts of climate change on the precipitation of 
the two basins (a) Anomaly based on scenario RCP 2.6 for the 
period 2049-2069, (b) Anomaly based on RCP 2.6 for 2080-
2099, (c) Anomaly based on RCP 4.5 for 2049-2069, (d) 
Anomaly based on RCP 4.5 for 2080–2099, (e) Anomaly 
based on RCP 8.5 for 2049-264, and (f) Anomaly based on 
RCP 8.5 for 2080–2099. 

Fig. 4 The impacts of climate change on the blue water of 
the two basins (a) Anomaly based on scenario RCP 2.6 for the 
period 2049-2069, (b) Anomaly based on RCP 2.6 for 2080-
2099, (c) Anomaly based on RCP 4.5 for 2049-2069, (d) 
Anomaly based on RCP 4.5 for 2080–2099, (e) Anomaly 
based on RCP 8.5 for 2049-264, and (f) Anomaly based on 
RCP 8.5 for 2080–2099. 
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Fig. 5 The impacts of climate change on the green water of the two basins (a) Anomaly based on scenario RCP 2.6 for the period 2049-2069, 

(b) Anomaly based on RCP 2.6 for 2080-2099, (c) Anomaly based on RCP 4.5 for 2049-2069, (d) Anomaly based on RCP 4.5 for 2080–2099, 
(e) Anomaly based on RCP 8.5 for 2049-264, and (f) Anomaly based on RCP 8.5 for 2080–2099 



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:11, No:10, 2017

947

 

 

V. CONCLUSION  

The findings from the SWAT model obviously reveal that 
the water system of the Greater Zab and Lesser Zab basins are 
likely to undergo alterations due to climate change, and most 
likely for the worse. The forecasts in the availability of water 
resources show declining trends. Since water is a limited 
resource for the region, a policy to deal with the adversity of 
the future is necessary. Certainly, preemptive intervention and 
pro-active actions would be highly beneficial and cost 
effective in the long term for the future generations. 
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