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Simulation of Piezoelectric Laminated Smart
Structure under Strong Electric Field

Shun-Qi Zhang, Shu-Yang Zhang, Min Chen

Abstract—Applying strong electric field on piezoelectric actuators,
on one hand very significant electroelastic material nonlinear effects
will occur, on the other hand piezo plates and shells may undergo
large displacements and rotations. In order to give a precise
prediction of piezolaminated smart structures under large electric
field, this paper develops a finite element (FE) model accounting for
both electroelastic material nonlinearity and geometric nonlinearity
with large rotations based on the first order shear deformation
(FSOD) hypothesis. The proposed FE model is applied to analyze
a piezolaminated semicircular shell structure.
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I. INTRODUCTION

SMART structures are those integrated with smart materials

like piezoelectric, shape memory alloys, etc., which have

a controlled loop with feedback. They have great potential

in the applications of vibration control, acoustic control and

health monitoring. In order to obtain high actuation forces,

strong electric driving field is one of the economical ways

without any modification of structural construction. However,

applying strong electric fields on piezo actuators, on one

hand electroelastic material nonlinear phenomenon will be

introduced to the system, on the other hand thin-walled

structures will undergo large displacements and rotations.

In such a case, numerical models should include both

electroelastic material nonlinearity and geometric nonlinearity.

Regarding the modeling and simulation of piezoelectric

smart structures, there are plenty of studies available in the

literature developed linear numerical models, see e.g. [1], [2]

among many others. Due to the simplified assumptions, linear

models are only valid for structures subjected to weak electric

fields and undergoing small displacements. The numerical

models for piezoelectric structures under strong electric field

must take into account the elctroelastic material nonlinearity.

Nelson [3], Tiersten [4] first proposed nonlinear electroelastic

equations for piezoelectric materials. Later, the irreversible

piezoelectric nonlinearities were investigated experimentally

by Li et al. [5], Masys et al. [6], and studied numerically

by Landis [7], Ma et al. [8]. Furthermore, Wang et al. [9],

Yao et al. [10] developed analytical models for cantilevered

piezoelectric bimorph and unimorph beams under strong

electric field. Kusculuoglu & Royston [11], Kapuria & Yasin

developed numerical model for dynamic analysis and active
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vibration control of piezoelectric smart structures under strong

electric fields.

The above mentioned references considered electroelastic

material nonlinearity with geometrically linear. Therefore,

piezoelectric materials can be subjected to strong electric

fields, with the structures undergoing small displacements

and rotations. Concerning piezoelectric structures undergoing

large displacements and rotations, but without taking into

account the electroelastic material nonlinearity, a lot of

papers can be found, e.g. von Kármán type nonlinear

model [12], [13], moderate rotation nonlinear model [14], and

large rotation nonlinear model [15], [16]. However, applying

strong electric fields usually yields large displacements and

rotations, which cannot be existing separately. In such a

case, Yao et al. [17] developed a finite element model with

von Kármán type nonlinearity and electroelastic material

nonlinearity. Von Kármán nonlinearity is the simplest one

including very week geometric nonlinearity, which is only

valid for structures undergoing moderately large displacements

and small rotations.

In order to simulate piezoelectric smart structures under

strong electric fields with large displacements and rotations,

the paper develops a numerical model with both geometric

and material nonlinearities for piezoelectric integrated smart

structures.

II. MATHEMATICAL MODELS

A. Electroelastic Material Nonlinearity

Considering electroelastic material nonlinearity, the

constitutive equations of piezoelectric materials are expressed

as [4]

σp = cpqεq − empEm − 1

2
bmnpEmEn , (1)

Dm = emqεq + gmnEn +
1

2
hmknEkEn , (2)

where p and q represent the numbers 1, 2, 3, 4, 5, and 6,

while n, m, and k take the numbers 1, 2, 3. Assuming that the

transverse normal strain is neglected for plates and shells and

the electric field is applied only along the thickness direction,

one yields p, q = 1, 2, 4, 5 or 6 and n = m = k = 3.

Furthermore, σp and εq denote the components of strain and

stress vector, Em and Dm are the components of electric field

and electric displacement vector, cpq represent the components

of elastic stiffness matrix.
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The coefficients appeared above can be obtained as

c11 =
Y1

1− ν12ν21
, c12 =

ν12Y2

1− ν12ν21
, (3)

c22 =
Y2

1− ν12ν21
, c44 = κG23 , (4)

c55 = κG13 , c66 = G12, (5)

e31 = d31c11 + d32c12 , (6)

e32 = d31c21 + d32c22 , (7)

b331 = β331c11 + β332c12 , (8)

b332 = β331c21 + β332c22 , (9)

g33 = ε33 − d31e31 − d32e32 , (10)

h333 = χ333 − d31b331 − d32b332 . (11)

Here (Y1, Y2), (ν12, ν21), (G12, G23, G13) and κ = 5/6 are

respectively the Young’s moduli, the Poisson’s ratios, the shear

moduli, and the shear correction factor; (d31, d32) and (ε33) are

the piezoelectric constants and the dielectric constant; (β331,

β332) and (χ333) denote the nonlinear electroelastic constants

and nonlinear electroelastic susceptibility constants.

B. Geometric Nonlinearity

For plate and shell structures, using the first-order shear

deformation hypothesis, one obtains the strain-displacement

relations with fully geometric nonlinearity as (the details can

be found in [18]-[20] [15], [16])

εαβ =
0
εαβ +Θ3 1

εαβ + (Θ3)2
2
εαβ , (12)

εα3 =
0
εα3, (13)

with the strain components

2
0
εαβ =

0
ϕαβ +

0
ϕβα +

0
ϕ3α

0
ϕ3β +

0
ϕδ
α

0
ϕδβ , (14)

2
1
εαβ =

1
ϕαβ − bλβ

0
ϕλα +

1
ϕβα − bδα

0
ϕδβ (15)

+
0
ϕ3α

1
ϕ3β +

1
ϕ3α

0
ϕ3β +

0
ϕδ
α

1
ϕδβ +

1
ϕδ
α

0
ϕδβ , (16)

2
2
εαβ =− bλβ

1
ϕλα − bδα

1
ϕδβ +

1
ϕ3α

1
ϕ3β +

1
ϕδ
α

1
ϕδβ , (17)

2
0
εα3 =

1
υα +

0
ϕ3α +

0
ϕδ
α

1
υδ +

0
ϕ3α

1
υ3. (18)

Here εαβ and εα3 represent respectively the in-plane strain

components and the stress components. Dropping all terms

with underlines yields linear plate/shell theory. Based on

the linear theory, containing additionally the squares and

products of transverse displacement gradients, one obtains

von Kármán type nonlinear plate/shell theory. Including the

fully geometrically nonlinear strain-displacement relations and

considering finite shell director rotations, one leads to large

rotation nonlinear theory.

In the FOSD hypothesis, 5 degrees of freedom at each

node are usually considered. The fully geometrically nonlinear

strain-displacement relations contain 6 parameters. In order

to represent finite rotation of shell director, the 5 degrees of

freedom are expressed by 6 parameters as (see [20])

0
υ1 = u, (19)

0
υ2 = v, (20)

0
υ3 = w, (21)

1
υ1 = sin(ϕ1) cos(ϕ2), (22)

1
υ2 = sin(ϕ2), (23)

1
υ3 = cos(ϕ1) cos(ϕ2)− 1. (24)

Here
0
υi and

0
υj are the 6 parameters in the strain-displacement

relations. Moreover, u, v, w denote the translational

displacements, ϕ1 and ϕ2 are the rotations. For linear theory

and von Kármán type nonlinear theory, small or moderate

rotations of the shell director are assumed, resulting in cosϕ =

1 and sinϕ = ϕ, which leads to
1
υ1 = ϕ1,

1
υ2 = ϕ2 and

1
υ3 = 0.

C. Finite Element Model

Using the principle of virtual work yields nonlinear static

equilibrium equations and sensor equations with consideration

of both geometric and material nonlinearities as

tKuuΔq + tKuφΔΦa = F ue − tF ui, (25)
tKφuΔq + tKφφΔΦs = Gφe − tGφi. (26)

Here Kuu, Kuφ, Kφu, Kφφ represent the stiffness matrix,

the piezoelectric coupled stiffness matrix, the coupled capacity

matrix and the piezoelectric capacity matrix, respectively;

F ue, F ui, Gφe and Gφi are, respectively, the external

force vector, the in-balance force vector, the external charge

vector and the in-balance charge vector; Φa and Φs denote,

respectively, the actuation voltage vector and the sensor

voltage vector.

For clear description, several abbreviations are introduced.

The finite element model considers geometric and material

linear effects based on the FOSD hypothesis is abbreviated as

LIN5WE, in which WE denotes weak electric field. Employing

the electroelastic material nonlinearity for strong driving

electric field (SE), the FE models considering geometric linear

and von Kármán nonlinear theory are respectively shorted as

LIN5SE and RVK5SE. Furthermore, the model including large

rotation geometric nonlinear theory with material nonlinear

relations is denoted by LRT56SE.

III. NUMERICAL EXAMPLES

In this section, a semicircular cylindrical shell is considered

as the numerical example, where two piezoelectric layers are

bonded at the inner and outer surfaces, as shown in Fig. 1. The

host structure is made of graphite/epoxy (T300/976) stacked

as 4 substrate layers [45◦/ − 45◦]s with equal thickness of

0.254 mm. The piezoelectric layers made of 3203HD has the

thickness of 0.254 mm. The material properties of 3203HD

and T300/976 are given in Table I.

The semicircular cylindrical shell is subjected to a driving

voltage of 254 V on both piezoelectric layers. Calculating the
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Fig. 1 Clamped piezolaminated semicircular cylindrical shell

TABLE I
MATERIAL PROPERTIES

Properties 3203HDa,b T300/976
Y1 (GPa) 60.24 150
Y2 (GPa) 60.24 9
ν12 0.253 0.3
ν23 0.494 0.3
G12 (GPa) 20.04 7.1
G23 (GPa) 19.084 2.5
G13 (GPa) 19.084 7.1
d31 (×10−12 m/V) -320 �

d32 (×10−12 m/V) -320 �

ε33/ε0 c 3800 �

β331 (×10−18 m2V−2) -520 �

β332 (×10−18 m2V−2) -520 �
a CTS Corporation [21]
b Kapuria & Yasin [22]
c Electrical permittivity of air, ε0 = 8.85× 10−12 F/m.

hoop and radial displacements, one obtains the deformed shape

of the central line by using different models, as presented in

Fig. 2.
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Fig. 2 Central line deformation of the semicircular shell

The numerical results are respectively using linear theory

(LIN5WE), geometrically linear with material nonlinear

(LIN5SE), von Kármán type nonlinear with material nonlinear

(RVK5SE), and large rotation geometrically nonlinear with

material nonlinear (LRT56SE). The results show that the

linear prediction is far different from the nonlinear predictions.

LIN5SE and RVK5SE curves are quite similar, but has

relatively large discrepancy compared with LRT56SE result.

This is because von Kármán type nonlinear theory is

the simplest one, which includes very week geometric

nonlinearity. However, the nonlinear model LRT56SE

considers fully geometric nonlinearity with large rotation, as

well as the electroelastic material nonlinearity.

IV. CONCLUSION

To simulate piezoelectric smart structures under strong

electric fields with large displacements and rotations, the

paper has developed a nonlinear FE model for piezolaminated

smart structures based on the FOSD hypothesis, in which

the electroelastic material nonlinearity and large rotation

geometric nonlinearity are taken into account.

The proposed model is applied to analyze a piezolaminated

semicircular shell structure. The results show that large

discrepancy occurs between the linear and nonlinear

predictions. Moreover, in the analysis of the semicircular shell,

the RVK5SE curve is very close to LIN5SE, but both of

them are different from LRT56SE curve, which indicates that

von Kármán type nonlinearity is too weak to predict behavior

precisely.
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