
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1024

1

Abstract—In the software development lifecycle, the quality
prediction techniques hold a prime importance in order to minimize
future design errors and expensive maintenance. There are many
techniques proposed by various researchers, but with the increasing
complexity of the software lifecycle model, it is crucial to develop a
flexible system which can cater for the factors which in result have an
impact on the quality of the end product. These factors include
properties of the software development process and the product along
with its operation conditions. In this paper, a neural network
(perceptron) based software quality prediction technique is proposed.
Using this technique, the stakeholders can predict the quality of the
resulting software during the early phases of the lifecycle saving time
and resources on future elimination of design errors and costly
maintenance. This technique can be brought into practical use using
successful training.

Keywords—Software quality, fuzzy logic, perceptron, prediction.

I. INTRODUCTION

F all the non-functional requirements of any software
system, the quality of that system and its reliability has

acted as a magnet for research. If the management and the
stakeholders have some knowledge of the quality of the system
being developed beforehand, it will help them to save the cost
and resources in the later stages of the software development
lifecycle. These expenses may include fixing the design errors,
elimination of architectural loopholes, etc.

In order to get this motive, a software quality prediction
technique comes in handy. This technique will help us to
develop a system which is flexible enough to cater for any
changes made during the lifecycle of the software
development. These changes may include the properties of the
development process the characteristics of the target product as
well as the environmental changes for correct operation.

Some related work already done in the related field has been
discussed in Section II. Section III gives the background
information about the proposed model. The next section
explains the proposed methodology in detail. After that, some
results are discussed after applying our proposed methodology
on small scale. Finally, the research has been concluded, and
the future work aimed is given in the last section of this
research paper.

Sadaf Sahar, Usman Qamar and Sadaf Ayaz are with the Department of

Computer Engineering College of Electrical & Mechanical Engineering,
National University of Sciences and Technology, Pakistan (e-mail:
Sadaf.sahar@ceme.nust.edu.pk, usmanq@ceme.nust.edu.pk,
Sadaf.ayaz@ceme.nust.edu.pk).

II. RELATED LITERATURE EVALUATION

In order to make the software profitable, the entire process
of software development should revolve around the fact that a
good quality software should hit the market in a reasonable
amount of time. To achieve that, the developers must have
sound knowledge of the modules or the areas in the software
which are likely to have faults or become the reason of failure
of the system. There is a lot of literature present in which the
authors have tried to categorize as to which modules should be
put under the fault-prone heading. There are numerous
techniques which include classification using fuzzy logic,
classification trees and logical regression, etc. [1]-[3]. These
authors have proposed various methods including the use of
metrics in order to identify the fault prone areas. This helps the
developers and testers to focus their attention not only on the
development of the modules but also on the validation and
verification of these modules as well. Once the module is
identified as fault-prone, major attention should be provided to
this module along with allocation of resource and time to the
fault fixing. Apart from this, there are other methods devised
by authors for the prediction of the quality of the target system.
These methods make use of artificial neural networks (ANNs)
using fuzzy logic [4], [5] and support vector machines (SVMs)
[6]. There is still a lot of research going on to test the accuracy
of these techniques. This is because the entire software
development process is itself so complex that checking the
performance of a technique becomes a tedious job. Along with
this during the development lifecycle, the management may
encounter changes in the working environment or changes in
the requirements from the clients.

Fenton and Neil thought that there is insufficiency of
algorithms which can efficiently predict the quality of the
software hence they proposed a methodology based on
Bayesian Belief Network. They modelled their approach in a
way that it would take more than one factors which are likely
to affect the quality of the software and output them on
multiple streams showing the quality attribute of the target
software [7].

Since it is almost impossible to take all the project related
attributes into consideration, Khoshgoftaar and Munson
proposed an attribute analysis technique to identify the
important attributes in their research [12]. Also, much effort
has been done by many other researchers in defining an
effective product metrics. Chidamber and Kemerer proposed a
complete suite for the development of product metrics for
Object Oriented Designs [13]. Similar work has been done by
Henderson-Sellers which calculates the complexity attribute of
products [14]. Likewise, Li and Henry proposed the

Multilayer Neural Network and Fuzzy Logic Based
Software Quality Prediction

Sadaf Sahar, Usman Qamar, Sadaf Ayaz

O

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1025

maintenance metrics for the similar purpose [15].
With the development of many new proposed models related

to quality predictions, much work has been done for the
validation purpose of these models. As Bandi et al. predicted
the performance of maintenance of an Object-Oriented Design
by using complexity metrics [16]. Similar work has been done
by Basili et. al. who performed the validation of Design
Metrics for the quality prediction [17]. Yu et al. also did an
industrial case study research for the prediction of fault
proneness [18]. Gyim´othy et al. also tried to validate the
metrics by doing fault prediction on an open source software
[19]. Similarly, Subramanyam and Krishnan tried to validate
the metrics by performing some analysis [20].

Although there is much work done for the development and
validation of quality prediction models, but there is not a single
model which can completely and accurately tell the quality of
the product before time. We have tried in this paper to provide
with a new quality prediction which can alone be used for the
prediction of product quality with maximum probability and
accuracy.

III. PERCEPTRON & FUZZY LOGIC

A. Learning Sequence of Perceptrons

A learning sequence is an adaptive algorithm by the help of
which a web of inputs and other computing units arrange
themselves in an organized fashion in order to achieve a
requisite output. This behavior can be achieved by training the
system for the scenarios to which we know the output to. By
this way, the system will start to learn how to get the
functionality that is required from the system. There is an
embedded corrective step which works iteratively throughout
the working of the system to make sure that the actual output of
the system is the expected output as well. After performing the
corrective step, the parameters are fed back to the system,
hence forming a closed loop.

Fig. 1 Closed loop learning and correction of parameters

In most of the cases of perceptron, learning the computing

units are associated with different weights. These weights are
liable to an update based on sequential stochastic tests. It is to
be noted here that learning is a process which achieves the
desired results by continuous update of weights and
parameters. Any algorithm which jumps to conclusions blindly
cannot be termed as learning. It can only be called a learning
algorithm if the parameters of the network are updated within a
closed loop and the results are obtained with the help of
previous experience.

Fig. 2 shows a single layer neural network in the form of a
diagram. Inputs p1 and p2 have their corresponding weights.
At b, a weighted sum Wp of these inputs is calculated and the
sum is fed for thresholding. After the limiting is done, the
result a is classified into one of the resultant classes available.
There could be more than two inputs and more than one output
classes for multilayer Neural Network.

Fig. 2 Neural Network with two inputs and one output

B. Why Use Fusion of Fuzzy Logic and Perceptron

Perceptron (Artificial Neural Networks) and fuzzy logic
(FL) are both vastly emerging field in the category of artificial
intelligence as they help in solving complex real life problems
in a self-explanatory and organized manner. The learning
efficiency and reasoning quality of the neural networks makes
it possible for them to solve large complex problems. For very
large and architecturally complex systems, it is nearly
impossible to obtain a single mathematical model. In such
cases, neural networks and fuzzy logic come in handy which
do not require any tedious mathematical model for system
computation [8], [9]. It is because of these advantages that
ANNs and fuzzy logic are widely used for almost all domains
implementing their self-organizing properties.

C. Limitations of This Technology

With the immense amount of help that ANNs and fuzzy
logic provide, unfortunately there are some limitations which
have to be catered for. For example:
 ANNs are also termed as “black boxes”. This is due to the

fact that the original model of the entire system is termed
as weights and inputs, making it hard to comprehend and
block out the functions of the system.

 It is difficult, almost impossible to find out the size and
scale of the neural network before starting the
computation and modelling.

 The perceptron and neural networks have a problem of
scalability. For each increase in the input, the entire
training and testing have to be carried out again and
weights get modified in order to adapt to the change in the
environment.

 When the size of the system increases, it is very difficult
to identify the useful inputs and functions to be
implemented and which of them are redundant and will
have no impact on the output of the system.

 For every new system that has to be developed the
algorithm for prediction and classification has to be
defined. There are no predefined standard functions that
can be embedded for all. The accuracy is maximized by

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1026

rigorous training and thorough testing of every input and
weight and the corresponding output that they produce.

Apart from all the limitations of the fuzzy logic, the biggest
and one of the key advantages of it is that it can be easily
implemented in a linguistic fashion, i.e. it is easy to program,
hence reducing the computations by hand.

IV. PROPOSED METHOD FOR SOFTWARE QUALITY
PREDICTION

In this section, we have tried to present a novel technique for
the prediction of the quality of the software product as it
matters a lot in the success of a product. Software development
is a vast process, and to get all the software and environment
attributes under one umbrella, it is a very difficult process as
there exist many attributes which are almost impossible to be
considered and also it is very difficult to specify a reasonable
value for many of the attributes. Hence in this section, we have
tried to explain the working of our software model in a way
that is easier to comprehend. We have used only three inputs
and only two outputs to reduce the complexity and to make it
easy to understand.

A. Preparing the System

We are all familiar that there are countless quality attributes
that can be associated with the software product. These quality
attributes can also be termed as non-functional requirements
and can include reliability, efficiency, portability, usability,
supportability & maintainability, etc. If all these attributes were
to be taken for the demonstration of our model, it would have
increased the complexity manifold as it will increase the
complexity.

When we come across most of the software products the
major qualities, what we look for in them is the reliability and
efficiency. In order to make our model understandable, we
have taken two quality attributes, i.e. reliability and efficiency.
These attributes will be the decision factors of the quality of the

software product.
Every perceptron has to have a set of inputs to evaluate the

output. Each of these inputs is associated with a weight which
tells us how much is this input contributing to the output of the
fuzzy neural network [10], [11]. Inputs to our model are
selected on the basis of those attributes which will be available
to us during the high level and low level design of our software
product. For the inputs, we have chosen complexity (both
structural and functional), reuse and depth of inheritance tree
(also known as DIT). Complexity of the design can be
structural or functional. It is the measure of the amount of
information that a particular software design represents. The
best software is termed to be the one which can achieve has the
probability to achieve more goals in a specified amount of
time. Code reuse is the measure of how much the architecture
of the system or design of it can be used to base other releases.
Depth of inheritance tree tells us how far a class is down in the
hierarchy of the system and how many other classes or
functions it is dependent on.

B. Training of the System

After having the knowledge of our inputs to the system and
the expected outputs, the next step is to train our models with
some sample data that can be acquired for systems which
already exist is the market or by the experience of the
developers in the organization. Each of the inputs is assigned
weights and can be categorized into three types, i.e. low,
medium, and high. The weights of the inputs range normally
from 0 to 1, closer to 0 being very low and closer to 1 being
high. The range 0.4 to 0.6 is considered to be medium.

Each input can hold one of the three states for a given
software system. For example, if the reuse value for a system is
0.9000 then the value of this input will stand at the high branch
of the input layer. Similarly, if the value of reuse is 0.2, then
this input belongs to the Low Branch of Input Layer. The
structure of the system is given in Fig. 3.

Fig. 3 Structure of the model

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1027

As there are three input nodes and each has three possible
values, the possible number of fuzzy logic values will be
3x9=27. All the permutations of these inputs are shown in the
table below.

TABLE I
POSSIBLE PERMUTATIONS FOR INPUT VALUES

 COMPLEXITY REUSE DIT

1. Low Low Low

2 Low Low Medium

3 Low Low High

4 Low Medium Low

5 Low Medium Medium

6 Low Medium High

7 Low High Low

8 Low High Medium

9 Low High High

10 Medium Low Low

11 Medium Low Medium

12 Medium Low High

13 Medium Medium Low

14 Medium Medium Medium

15 Medium Medium High

16 Medium High Low

17 Medium High Medium

18 Medium High High

19 High Low Low

20 High Low Medium

21 High Low High

22 High Medium Low

23 High Medium Medium

24 High Medium High

25 High High Low

26 High High Medium

27 High High High

Note: the values of all the inputs used in this model are normalized
between 0 & 1.

For training of the data, we have two samples for which we
know the output of. This means that after running these
samples from the system we can compare the actual output to
the output generated by our model. Sample 1 says that when
Complexity & DIT are high and Reuse is of medium level, then
the resulting efficiency should be medium and reliability
should be high. Sample 2 says that if all the input variables are
of low level, then the system will be highly efficient and
moderately reliable. These inputs along with the computation
with their weights are fed to layer number 3 where the ruling
nodes are present. The higher the weight of the input the
greater will be the fire power of the ruling node. After the
multiplication of the ruling node with their weights, these
products are fed into the final layer/ decision layer.

Each output node is also an attribute and can have three
possible values, i.e. high, medium, and low. Among these three
branches, the one which has the highest product will be the
resulting quality attribute. For example, if the highest product
for reliability is at the medium branch, we will say that the
reliability of the software product will be medium. If the actual
quality attribute will be the same as the one predicted, no

action will be taken. But if the predicted results differ from the
actual results, the values of the weights for the ruling nodes
will be updated using the equation.

஺ܹ஻ሺ௡௘௪ሻ ൌ 	 ஺ܹ஻ሺ௢௟ௗሻ െ 	 2ܧ߲

ܤܣܹ߲

where  is the learning rate of the system. The smaller the
value of it the slower will be the learning, and hence, the model

will be thorough.
డாమ

డௐಲಳ
 is the differential of error to the old

weights.
Error is described as the difference of actual output and

predicted output. Two of the samples for which the system was
trained are as follows.

TABLE II

EXAMPLE OF SAMPLES FROM THE TRAINING DATA

Quality attributes Expected output Actual output

complexity reuse DIT reliability efficiency reliability efficiency

0.9951 0.5714 0.9600 0.9000 0.4000 0.9071 0.4415

0.1667 0.1429 0.0011 0.6000 0.9000 0.5812 0.8600

Table II makes it quite clear the proximity of the results

which were found by training the system and the actual results.
Now, when the system is done training itself, all the weights
are updated according to it. We can say that the state of the
system is now in a fixed mode and we can test the system with
new sample data.

C. Testing of the System

Once all the training is done and its result is less than 0.1%
of error, we can then begin to test the system for new samples.
Testing for the system is done in a similar manner as training.
The only difference is that, in training, the weights which
rendered the output incorrect had to be updated. In case of
testing, the system is in a fixed state and, so are the weights
with rigorous training. Testing only involves giving the values
of the inputs and checking the output.

For testing, two samples were fed to the system. The values
of complexity, DIT, and reuse were given as inputs. The
system was run with these inputs, and the consequent output
was tested for the quality attributes, i.e. reliability and
efficiency.

Test sample 1 was considered to be software which has low
complexity, low reuse of code and moderate depth of
inheritance tree. Test sample 2 was software which had low
complexity and low reuse and DIT. Statistically if we observe,
the test sample 1should yield moderately efficient and reliable
system. As for test sample 2, the reliability should be moderate
and efficiency should be high.

V. RESULTS AND DISCUSSION

Making the test samples run through the system, we came up
with the following results

Looking at the results of the model that is proposed, we find
the need to elaborate the features of this model as well. There
are a number of reasons why this technique can be rendered

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1028

useful in prediction of the quality of the target software under
development.

TABLE III

TEST RESULTS

Quality attributes Actual output

complexity reuse DIT reliability efficiency

0.2500 0.2857 0.5900 0.5177 0.4632

0.0833 0.2500 0.0073 0.5168 0.8334

 This system can take multiple inputs for computation and

can yield multiple outputs making a strong connection
between the factors which affect the quality of the
software and the actual quality attributes of the system.
Multiple input-Multiple output system shows that it can
take into account countless factors which contribute to
change in the quality of the software, and on the other
hand, it enables us to take as many quality attributes for
evaluation as we want.

 The prediction done by this model can be counter-
validated using knowledge based experience. It is a
common experience that, when the number of classes and
modules for the software system is big, the efficiency of
the system is low and it will make the maintenance of the
system very tedious. Hence using the knowledge of
previously developed software and those which are
deployed in the market, we can validate the quality of
those systems using this model.

 The model which is proposed is flexible in a way that, in
the early stages of the software development, it is difficult
to know all the factors which will affect the quality
attributes of the target system. This system will adapt to
all the changes in the system and can take is as many
inputs during any phase of the software development life
cycle.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach for the
early prediction of software quality. This technique is
developed with the amalgamation of concepts of artificial
intelligence and software quality engineering. The proposed
system uses multilayer neural networks to correctly predict the
quality of the target software system. The factors which affect
the quality of that software system are fed to the model as
inputs, and doing the necessary computations, it gives us the
level of the quality attributes of the system. The key benefit of
this proposed methodology is its ease of use and flexibility as it
can take any number of inputs and any number of decision
making quality attributes. In future, we will try to validate the
proposed model by applying it on a real time product
development and will try to make it useful for the types of
projects for which the training data could not be available
already, e.g. for the development of a new product.

REFERENCES
[1] T. M. Khoshgoftaar and N. Seliya “Analogy-based practical

classification rules for software quality estimation”, Empirical Software
Engineering, 8(4): 325-350, 2003.

[2] T. M. Khoshgoftaar, Y. Liu and N. Seliya “A multiobjective module-
order model for software quality enhancement”, IEEE Transactions on
Evolutionary Computation, 8(6): 593-608, 2004.

[3] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones and J. P. Hudepohl
“Classification-tree models of software-quality over multiple releases”,
IEEE Transactions on Reliability.

[4] T. M. Khoshgoftaar, R. M. Szabo and P. J. Guasti “Exploringthe
behaviour of neural network software quality models”, Software
Engineering Journal, 10(3): 89-96, 1995.

[5] M. M. T. Thwin and T. S. Quah “Application of neural networks for
software quality prediction using object-oriented metrics”, Journal of
Systems and Software, 76(2): 147-156, 2005.

[6] S. S. So, S. D. Cha and Y. R. Kwon “Empirical evaluation of a fuzzy
logic-based software quality prediction model”, Fuzzy Sets and Systems,
127(2): 199-208, 2002.

[7] N. E. Fenton and M. Neil “A critique of software defect prediction
models”, IEEE Transactions on Software Engineering, 25(5): 675-689,
1999.

[8] E. Khan, Neural Fuzzy Based Intelligent Systems and Applications, in
Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms:
Industrial Applications, by L.C. Jain and N.M. Martin, Chapter 5, CRC
Press, 1998.

[9] M. B. Ghalia and A. T. Alouani “Artificial neural networks and fuzzy
logic for system modeling and control: a comparative study”, in
Proceedings of the 27th Southeastern Symposium on System Theory, pp.
258-262, March 1995.

[10] C. T. Lin and C. S. G. Lee “Neural-network-based fuzzy logic control
and decision system”, IEEE Transactions on Computers, 40(12): 1320-
1336, 1991.

[11] C. J. Lin and C.T. Lin “An ART-based fuzzy adaptive learning control
network” IEEE Transactions on Fuzzy Systems, 5(4): 477-496, 1997.

[12] J. C. Munson and T. M. Khoshgoftaar, “The dimesionality of program
complexity,” in Proceedings of the 11th International Conference on
Software Engineering, pp. 245-253, Pittsburgh, PA, May 1989.

[13] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Transactions on Software Engineering, vol. 20,
no. 6, pp. 476–493, 1994.

[14] B. Henderson-Sellers, Object-oriented metrics: measures of
complexity.Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[15] W. Li and S. Henry, “Maintenance metrics for the object oriented
paradigm,” in IEEE Proceedings of the First International Software
Metrics Symposium, May 1993, pp. 52–60.

[16] R. Bandi, V. Vaishnavi, and D. Turk, “Predicting maintenance per-
formance using object-oriented design complexity metrics,” Software
Engineering, IEEE Transactions on, vol. 29, no. 1, pp. 77–87, Jan. 2003.

[17] V. R. Basili, L. C. Briand, and W. L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators,” IEEE Trans. Softw.
Eng., vol. 22, no. 10, pp. 751–761, 1996.

[18] P. Yu, T. Systa, and H. Muller, “Predicting fault-proneness using oo
met-rics. an industrial case study,” Software Maintenance and
Reengineering, 2002. Proceedings. Sixth European Conference on, pp.
99–107, 2002.

[19] T. Gyim ´ othy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Trans. on Software Engineering, vol. 31, no. 10, pp. 897–910, 2005.

[20] R. Subramanyam and M. S. Krishnan, “Empirical Analysis of CK Met-
rics for Object-Oriented Design Complexity: Implications for Software
Defects,” IEEE Trans. Softw. Eng., vol. 29, no. 4, pp. 297–310, 2003.

