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Abstract—In the software development lifecycle, the quality 
prediction techniques hold a prime importance in order to minimize 
future design errors and expensive maintenance. There are many 
techniques proposed by various researchers, but with the increasing 
complexity of the software lifecycle model, it is crucial to develop a 
flexible system which can cater for the factors which in result have an 
impact on the quality of the end product. These factors include 
properties of the software development process and the product along 
with its operation conditions. In this paper, a neural network 
(perceptron) based software quality prediction technique is proposed. 
Using this technique, the stakeholders can predict the quality of the 
resulting software during the early phases of the lifecycle saving time 
and resources on future elimination of design errors and costly 
maintenance. This technique can be brought into practical use using 
successful training.  
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I. INTRODUCTION  

F all the non-functional requirements of any software 
system, the quality of that system and its reliability has 

acted as a magnet for research. If the management and the 
stakeholders have some knowledge of the quality of the system 
being developed beforehand, it will help them to save the cost 
and resources in the later stages of the software development 
lifecycle. These expenses may include fixing the design errors, 
elimination of architectural loopholes, etc.  

In order to get this motive, a software quality prediction 
technique comes in handy. This technique will help us to 
develop a system which is flexible enough to cater for any 
changes made during the lifecycle of the software 
development. These changes may include the properties of the 
development process the characteristics of the target product as 
well as the environmental changes for correct operation. 

Some related work already done in the related field has been 
discussed in Section II. Section III gives the background 
information about the proposed model. The next section 
explains the proposed methodology in detail. After that, some 
results are discussed after applying our proposed methodology 
on small scale. Finally, the research has been concluded, and 
the future work aimed is given in the last section of this 
research paper. 
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II. RELATED LITERATURE EVALUATION 

In order to make the software profitable, the entire process 
of software development should revolve around the fact that a 
good quality software should hit the market in a reasonable 
amount of time. To achieve that, the developers must have 
sound knowledge of the modules or the areas in the software 
which are likely to have faults or become the reason of failure 
of the system. There is a lot of literature present in which the 
authors have tried to categorize as to which modules should be 
put under the fault-prone heading. There are numerous 
techniques which include classification using fuzzy logic, 
classification trees and logical regression, etc. [1]-[3]. These 
authors have proposed various methods including the use of 
metrics in order to identify the fault prone areas. This helps the 
developers and testers to focus their attention not only on the 
development of the modules but also on the validation and 
verification of these modules as well. Once the module is 
identified as fault-prone, major attention should be provided to 
this module along with allocation of resource and time to the 
fault fixing. Apart from this, there are other methods devised 
by authors for the prediction of the quality of the target system. 
These methods make use of artificial neural networks (ANNs) 
using fuzzy logic [4], [5] and support vector machines (SVMs) 
[6]. There is still a lot of research going on to test the accuracy 
of these techniques. This is because the entire software 
development process is itself so complex that checking the 
performance of a technique becomes a tedious job. Along with 
this during the development lifecycle, the management may 
encounter changes in the working environment or changes in 
the requirements from the clients. 

Fenton and Neil thought that there is insufficiency of 
algorithms which can efficiently predict the quality of the 
software hence they proposed a methodology based on 
Bayesian Belief Network. They modelled their approach in a 
way that it would take more than one factors which are likely 
to affect the quality of the software and output them on 
multiple streams showing the quality attribute of the target 
software [7]. 

Since it is almost impossible to take all the project related 
attributes into consideration, Khoshgoftaar and Munson 
proposed an attribute analysis technique to identify the 
important attributes in their research [12]. Also, much effort 
has been done by many other researchers in defining an 
effective product metrics. Chidamber and Kemerer proposed a 
complete suite for the development of product metrics for 
Object Oriented Designs [13]. Similar work has been done by 
Henderson-Sellers which calculates the complexity attribute of 
products [14]. Likewise, Li and Henry proposed the 
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maintenance metrics for the similar purpose [15]. 
With the development of many new proposed models related 

to quality predictions, much work has been done for the 
validation purpose of these models. As Bandi et al. predicted 
the performance of maintenance of an Object-Oriented Design 
by using complexity metrics [16]. Similar work has been done 
by Basili et. al. who performed the validation of Design 
Metrics for the quality prediction [17]. Yu et al. also did an 
industrial case study research for the prediction of fault 
proneness [18]. Gyim´othy et al. also tried to validate the 
metrics by doing fault prediction on an open source software 
[19]. Similarly, Subramanyam and Krishnan tried to validate 
the metrics by performing some analysis [20].  

Although there is much work done for the development and 
validation of quality prediction models, but there is not a single 
model which can completely and accurately tell the quality of 
the product before time. We have tried in this paper to provide 
with a new quality prediction which can alone be used for the 
prediction of product quality with maximum probability and 
accuracy. 

III. PERCEPTRON & FUZZY LOGIC 

A. Learning Sequence of Perceptrons 

A learning sequence is an adaptive algorithm by the help of 
which a web of inputs and other computing units arrange 
themselves in an organized fashion in order to achieve a 
requisite output. This behavior can be achieved by training the 
system for the scenarios to which we know the output to. By 
this way, the system will start to learn how to get the 
functionality that is required from the system. There is an 
embedded corrective step which works iteratively throughout 
the working of the system to make sure that the actual output of 
the system is the expected output as well. After performing the 
corrective step, the parameters are fed back to the system, 
hence forming a closed loop. 
 

 

Fig. 1 Closed loop learning and correction of parameters 
 
In most of the cases of perceptron, learning the computing 

units are associated with different weights. These weights are 
liable to an update based on sequential stochastic tests. It is to 
be noted here that learning is a process which achieves the 
desired results by continuous update of weights and 
parameters. Any algorithm which jumps to conclusions blindly 
cannot be termed as learning. It can only be called a learning 
algorithm if the parameters of the network are updated within a 
closed loop and the results are obtained with the help of 
previous experience. 

Fig. 2 shows a single layer neural network in the form of a 
diagram. Inputs p1 and p2 have their corresponding weights. 
At b, a weighted sum Wp of these inputs is calculated and the 
sum is fed for thresholding. After the limiting is done, the 
result a is classified into one of the resultant classes available. 
There could be more than two inputs and more than one output 
classes for multilayer Neural Network. 

 

 

Fig. 2 Neural Network with two inputs and one output 

B. Why Use Fusion of Fuzzy Logic and Perceptron 

Perceptron (Artificial Neural Networks) and fuzzy logic 
(FL) are both vastly emerging field in the category of artificial 
intelligence as they help in solving complex real life problems 
in a self-explanatory and organized manner. The learning 
efficiency and reasoning quality of the neural networks makes 
it possible for them to solve large complex problems. For very 
large and architecturally complex systems, it is nearly 
impossible to obtain a single mathematical model. In such 
cases, neural networks and fuzzy logic come in handy which 
do not require any tedious mathematical model for system 
computation [8], [9]. It is because of these advantages that 
ANNs and fuzzy logic are widely used for almost all domains 
implementing their self-organizing properties. 

C. Limitations of This Technology 

With the immense amount of help that ANNs and fuzzy 
logic provide, unfortunately there are some limitations which 
have to be catered for. For example: 
 ANNs are also termed as “black boxes”. This is due to the 

fact that the original model of the entire system is termed 
as weights and inputs, making it hard to comprehend and 
block out the functions of the system. 

 It is difficult, almost impossible to find out the size and 
scale of the neural network before starting the 
computation and modelling. 

 The perceptron and neural networks have a problem of 
scalability. For each increase in the input, the entire 
training and testing have to be carried out again and 
weights get modified in order to adapt to the change in the 
environment. 

 When the size of the system increases, it is very difficult 
to identify the useful inputs and functions to be 
implemented and which of them are redundant and will 
have no impact on the output of the system. 

 For every new system that has to be developed the 
algorithm for prediction and classification has to be 
defined. There are no predefined standard functions that 
can be embedded for all. The accuracy is maximized by 
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rigorous training and thorough testing of every input and 
weight and the corresponding output that they produce. 

Apart from all the limitations of the fuzzy logic, the biggest 
and one of the key advantages of it is that it can be easily 
implemented in a linguistic fashion, i.e. it is easy to program, 
hence reducing the computations by hand. 

IV. PROPOSED METHOD FOR SOFTWARE QUALITY  
PREDICTION 

In this section, we have tried to present a novel technique for 
the prediction of the quality of the software product as it 
matters a lot in the success of a product. Software development 
is a vast process, and to get all the software and environment 
attributes under one umbrella, it is a very difficult process as 
there exist many attributes which are almost impossible to be 
considered and also it is very difficult to specify a reasonable 
value for many of the attributes. Hence in this section, we have 
tried to explain the working of our software model in a way 
that is easier to comprehend. We have used only three inputs 
and only two outputs to reduce the complexity and to make it 
easy to understand. 

A. Preparing the System 

We are all familiar that there are countless quality attributes 
that can be associated with the software product. These quality 
attributes can also be termed as non-functional requirements 
and can include reliability, efficiency, portability, usability, 
supportability & maintainability, etc. If all these attributes were 
to be taken for the demonstration of our model, it would have 
increased the complexity manifold as it will increase the 
complexity. 

When we come across most of the software products the 
major qualities, what we look for in them is the reliability and 
efficiency. In order to make our model understandable, we 
have taken two quality attributes, i.e. reliability and efficiency. 
These attributes will be the decision factors of the quality of the 

software product. 
Every perceptron has to have a set of inputs to evaluate the 

output. Each of these inputs is associated with a weight which 
tells us how much is this input contributing to the output of the 
fuzzy neural network [10], [11]. Inputs to our model are 
selected on the basis of those attributes which will be available 
to us during the high level and low level design of our software 
product. For the inputs, we have chosen complexity (both 
structural and functional), reuse and depth of inheritance tree 
(also known as DIT). Complexity of the design can be 
structural or functional. It is the measure of the amount of 
information that a particular software design represents. The 
best software is termed to be the one which can achieve has the 
probability to achieve more goals in a specified amount of 
time. Code reuse is the measure of how much the architecture 
of the system or design of it can be used to base other releases. 
Depth of inheritance tree tells us how far a class is down in the 
hierarchy of the system and how many other classes or 
functions it is dependent on. 

B. Training of the System 

After having the knowledge of our inputs to the system and 
the expected outputs, the next step is to train our models with 
some sample data that can be acquired for systems which 
already exist is the market or by the experience of the 
developers in the organization. Each of the inputs is assigned 
weights and can be categorized into three types, i.e. low, 
medium, and high. The weights of the inputs range normally 
from 0 to 1, closer to 0 being very low and closer to 1 being 
high. The range 0.4 to 0.6 is considered to be medium. 

Each input can hold one of the three states for a given 
software system. For example, if the reuse value for a system is 
0.9000 then the value of this input will stand at the high branch 
of the input layer. Similarly, if the value of reuse is 0.2, then 
this input belongs to the Low Branch of Input Layer. The 
structure of the system is given in Fig. 3. 

 

 

Fig. 3 Structure of the model 
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As there are three input nodes and each has three possible 
values, the possible number of fuzzy logic values will be 
3x9=27. All the permutations of these inputs are shown in the 
table below. 
 

TABLE I 
POSSIBLE PERMUTATIONS FOR INPUT VALUES 

 COMPLEXITY REUSE DIT 

1. Low Low Low 

2 Low Low Medium 

3 Low Low High 

4 Low Medium Low 

5 Low Medium Medium 

6 Low Medium High 

7 Low High Low 

8 Low High Medium 

9 Low High High 

10 Medium Low Low 

11 Medium Low Medium 

12 Medium Low High 

13 Medium Medium Low 

14 Medium Medium Medium 

15 Medium Medium High 

16 Medium High Low 

17 Medium High Medium 

18 Medium High High 

19 High Low Low 

20 High Low Medium 

21 High Low High 

22 High Medium Low 

23 High Medium Medium 

24 High Medium High 

25 High High Low 

26 High High Medium 

27 High High High 

Note: the values of all the inputs used in this model are normalized 
between 0 & 1. 
 

For training of the data, we have two samples for which we 
know the output of. This means that after running these 
samples from the system we can compare the actual output to 
the output generated by our model. Sample 1 says that when 
Complexity & DIT are high and Reuse is of medium level, then 
the resulting efficiency should be medium and reliability 
should be high. Sample 2 says that if all the input variables are 
of low level, then the system will be highly efficient and 
moderately reliable. These inputs along with the computation 
with their weights are fed to layer number 3 where the ruling 
nodes are present. The higher the weight of the input the 
greater will be the fire power of the ruling node. After the 
multiplication of the ruling node with their weights, these 
products are fed into the final layer/ decision layer.  

Each output node is also an attribute and can have three 
possible values, i.e. high, medium, and low. Among these three 
branches, the one which has the highest product will be the 
resulting quality attribute. For example, if the highest product 
for reliability is at the medium branch, we will say that the 
reliability of the software product will be medium. If the actual 
quality attribute will be the same as the one predicted, no 

action will be taken. But if the predicted results differ from the 
actual results, the values of the weights for the ruling nodes 
will be updated using the equation. 

 

஺ܹ஻ሺ௡௘௪ሻ ൌ 	 ஺ܹ஻ሺ௢௟ௗሻ െ 	 2ܧ߲

ܤܣܹ߲
  

 

where  is the learning rate of the system. The smaller the 
value of it the slower will be the learning, and hence, the model 

will be thorough. 
డாమ

డௐಲಳ
 is the differential of error to the old 

weights. 
Error is described as the difference of actual output and 

predicted output. Two of the samples for which the system was 
trained are as follows. 

 
TABLE II 

EXAMPLE OF SAMPLES FROM THE TRAINING DATA 

Quality attributes Expected output Actual output 

complexity reuse DIT reliability efficiency reliability efficiency

0.9951 0.5714 0.9600 0.9000 0.4000 0.9071 0.4415 

0.1667 0.1429 0.0011 0.6000 0.9000 0.5812 0.8600 

 
Table II makes it quite clear the proximity of the results 

which were found by training the system and the actual results. 
Now, when the system is done training itself, all the weights 
are updated according to it. We can say that the state of the 
system is now in a fixed mode and we can test the system with 
new sample data. 

C. Testing of the System 

Once all the training is done and its result is less than 0.1% 
of error, we can then begin to test the system for new samples. 
Testing for the system is done in a similar manner as training. 
The only difference is that, in training, the weights which 
rendered the output incorrect had to be updated. In case of 
testing, the system is in a fixed state and, so are the weights 
with rigorous training. Testing only involves giving the values 
of the inputs and checking the output.  

For testing, two samples were fed to the system. The values 
of complexity, DIT, and reuse were given as inputs. The 
system was run with these inputs, and the consequent output 
was tested for the quality attributes, i.e. reliability and 
efficiency. 

Test sample 1 was considered to be software which has low 
complexity, low reuse of code and moderate depth of 
inheritance tree. Test sample 2 was software which had low 
complexity and low reuse and DIT. Statistically if we observe, 
the test sample 1should yield moderately efficient and reliable 
system. As for test sample 2, the reliability should be moderate 
and efficiency should be high. 

V. RESULTS AND DISCUSSION 

Making the test samples run through the system, we came up 
with the following results 

Looking at the results of the model that is proposed, we find 
the need to elaborate the features of this model as well. There 
are a number of reasons why this technique can be rendered 
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useful in prediction of the quality of the target software under 
development. 

 
TABLE III 

TEST RESULTS 

Quality attributes Actual output 

complexity reuse DIT reliability efficiency 

0.2500 0.2857 0.5900 0.5177 0.4632 

0.0833 0.2500 0.0073 0.5168 0.8334 

 
 This system can take multiple inputs for computation and 

can yield multiple outputs making a strong connection 
between the factors which affect the quality of the 
software and the actual quality attributes of the system. 
Multiple input-Multiple output system shows that it can 
take into account countless factors which contribute to 
change in the quality of the software, and on the other 
hand, it enables us to take as many quality attributes for 
evaluation as we want. 

 The prediction done by this model can be counter-
validated using knowledge based experience. It is a 
common experience that, when the number of classes and 
modules for the software system is big, the efficiency of 
the system is low and it will make the maintenance of the 
system very tedious. Hence using the knowledge of 
previously developed software and those which are 
deployed in the market, we can validate the quality of 
those systems using this model. 

 The model which is proposed is flexible in a way that, in 
the early stages of the software development, it is difficult 
to know all the factors which will affect the quality 
attributes of the target system. This system will adapt to 
all the changes in the system and can take is as many 
inputs during any phase of the software development life 
cycle. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a novel approach for the 
early prediction of software quality. This technique is 
developed with the amalgamation of concepts of artificial 
intelligence and software quality engineering. The proposed 
system uses multilayer neural networks to correctly predict the 
quality of the target software system. The factors which affect 
the quality of that software system are fed to the model as 
inputs, and doing the necessary computations, it gives us the 
level of the quality attributes of the system. The key benefit of 
this proposed methodology is its ease of use and flexibility as it 
can take any number of inputs and any number of decision 
making quality attributes. In future, we will try to validate the 
proposed model by applying it on a real time product 
development and will try to make it useful for the types of 
projects for which the training data could not be available 
already, e.g. for the development of a new product. 
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