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 
Abstract—The light-effect in cylindrical quantum wire with an 

infinite potential for the case of electrons, optical phonon scattering, 
is studied based on the quantum kinetic equation. The density of the 
direct current in a cylindrical quantum wire by a linearly polarized 
electromagnetic wave, a DC electric field, and an intense laser field is 
calculated. Analytic expressions for the density of the direct current 
are studied as a function of the frequency of the laser radiation field, 
the frequency of the linearly polarized electromagnetic wave, the 
temperature of system, and the size of quantum wire. The density of 
the direct current in cylindrical quantum wire with an infinite 
potential for the case of electrons – optical phonon scattering is 
nonlinearly dependent on the frequency of the linearly polarized 
electromagnetic wave. The analytic expressions are numerically 
evaluated and plotted for a specific quantum wire, GaAs/GaAsAl. 

 
Keywords—The light-effect, cylindrical quantum wire with an 

infinite potential, the density of the direct current, electrons - optical 
phonon scattering.  

I. INTRODUCTION 

HE light-effect of charge carriers by electromagnetic 
waves is explained by the possibility of using this 

phenomenon for detecting intense electromagnetic radiation 
[1], [2], as well as for characterizing kinetic properties of 
semiconductors [3], [4]. In semiconductor systems, the 
presence of intense laser radiation can influence the electrical 
conductivity and kinetic effects in material [5]-[8]. The photon 
drag effect has been researched in semiconductors [9], in 
superlattice [10], in quantum wire with a parabolic potential 
[11], but the photon drag effect in quantum wire with an 
infinite potential is still open to study. In this paper, we use the 
quantum kinetic equation to study the drag of charge carriers 
in cylindrical quantum wire with an infinite potential for case 
of electrons – optical phonon. Electrons system is placed in a 
direct electric field, an electromagnetic wave, and the presence 
of an intense laser field. The constant current density of the 
light-effect with an infinite potential for the case of electrons – 
optical phonon is calculated. The difference between the light-
effect with parabolic potential for the case of electrons – 
acoustic phonon scattering and the light-effect with infinite 
potential for the case of electrons – optical phonon scattering 
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is in potential barrier, form factor, wave function, energy and 
electrons - phonon scattering. These will be indicated in this 
paper.  

II.  CALCULATING THE CONSTANT CURRENT DESTINY OF THE 

LIGHT-EFFECT IN CYLINDRICAL QUANTUM WIRE WITH 

INFINITE POTENTIAL FOR THE CASE OF ELECTRONS – OPTICAL 

PHONON SCATTERING  

The Hamiltonian of the electron - phonon system with the 
presence of the laser radiation field in the quantum wire can be 
written as [5]-[12] (using with 1  unit and we suppose the 
axis 0z along the length of the wire): 
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where  A t


 is the vector potential of laser field (only the laser 

field affects the probability of scattering): 
0

1
A(t) F sin t

c
  

  ; 

zn,l,pa and ( qb  and qb ) are the creation and annihilation 

operators of electron (phonon); zp


 is the electron wave 

momentum along axis 0z; q


 is the phonon wave vector; q  is 

the frequency of optical phonon; qC is the electrons – optical 

phonon interaction constant: 
2
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 (this 

is a difference with electrons – acoustic scattering);  ,  , 

and 0  are dielectric constant, high – frequency dielectric 

constant and low – frequency dielectric constant; (n, l) and (n’, 
l’) are the quantum numbers of electron; n,l,n ',l ' zI (q )  is the 

form factor for electrons in quantum wire with infinite 
potential and it is different from the form factor for electrons 
in quantum wire with parabolic potential. 

The electron energy takes the simple form: 

z

22
n,lz

n,l,p 2

Bp

2m 2mR
    (this is a difference with parabolic 

potential) ( n 0, 1, 2,...   , l 1,2,3,... ) where R is the radius 

of wire, and n,lB  is the solution of the Bessel function of real 

argument n n,lJ (B ) 0 . 

We use general quantum equations for electron distribution 
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function: 
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where 
z z zn,l,p n,l,p n,l,p tf (t) a a   is the distribution function. 

From (1) and (2), we obtain the quantum kinetic equation for 
electrons in quantum wire with the case of electrons – optical 
phonon scattering (after supplement: a linearly polarized 

electromagnetic wave field and a direct electric field 0E


): 
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where H
h

H



 is the unit vector of the magnetic field direction, 

0
L 2

eF q
J ( )

m

 
 is the Bessel function of real argument; qN  is the 

time-independent component of distribution function of 

optical phonon: B
q

q

k T
N 


 (this is a difference with electrons 

– acoustic scattering). 
The constant current density is in the form [9] of 
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 which is the 

partial current density. 
For simplicity, we limit the problem to the case of 

L 0, 1   and we multiply both sides of (3) with 

z n,p( e / m)p ( )


     


. After a few mathematical 

transformations, we obtained: 
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where c is the cyclotron frequency, ( )  is the momentum 

relaxation time in absence of laser radiation [9], and  
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Solving (4)-(6), we obtain: 
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The density of direct current: 
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   is the hypergeometric 

function. 
Equation (14) shows the dependence of the direct current 

density on the parameters of the system such as: the 
frequency, wave function, energy spectrum, form factor In,l,n’,l’ 
and potential barrier (that is the difference between cylindrical 
quantum wire with an infinite potential), cylindrical quantum 
wire with a parabolic potential, superlattices and bulk 
semiconductor. 

III. NUMERICAL RESULTS AND DISCUSSION  

In this section, we will survey, plot and discuss the 
expressions for 0zj  for the case of a specific GaAs/GaAsAl 

quantum wire (we select: E 0x


; h 0y


): 
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The parameters used in the calculations are as follows [12]: 

m = 0.0665m0 (m0 is the mass of free electron); F  = 50 meV; 

and F( )    10-11 s-1;; 23 3
0n 10 m ; 3 35.3 10 kg / m   ; 

13 1
0 5 10 s   ; 6

0zE 0.5 10   (V/m); 6F 1.2 10  (N),
6 1

q 2 10 s   ; 6q 2 10  (kg.m/s). 

 

 

Fig. 1 The dependence of j0z on the frequency of electromagnetic 
field with different values of T 

 
Fig. 1 shows the dependence of the constant current density 

on the frequency of electromagnetic wave. From this figure, 
we can see that the direct current density increases strongly 
with increasing the frequency of electromagnetic wave for the 
area of values 11 1210 10    (s-1). The direct current density 
decreases when 1210   and reaches saturation as the 
frequency  continues to increase. That is the difference 
between bulk semiconductor [9], superlattices [10] and 
quantum wire with a parabolic potential [11]. 

 

 

Fig. 2 The dependence of j0z on the frequency of radiation laser field 
with different values of   

 
Fig. 2 shows the dependence of the constant current density 
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on the frequency of laser radiation field. We can see that the 
value of the direct current density increases strongly with 
increasing the frequency of radiation laser field for the area of 
values 4 43.10 5.10    and reaches saturation as the 
frequency  continues to increase. That is the difference 
between bulk semiconductor [9], superlattices [10] and 
quantum wire with a parabolic potential [11]. 

 

 

Fig. 3 The dependence of j0z on the temperature with different values 
of   

 
Fig. 3 shows that when temperature T of the system rises 

up, the constant current density along the Oz axis goes up too. 
When T < 40 (K), then the constant current density depends 
nonlinearly on temperature, when T > 40 (K) then the constant 
current density has almost linear dependence on temperature. 
That is the difference between bulk semiconductor [9], 
superlattices [10] and quantum wire with a parabolic potential 
[11]. 

IV. CONCLUSIONS  

In this paper, we have studied the light-effect in cylindrical 
quantum wire with an infinite potential for the case of 

electrons – optical phonon. We obtain the expressions of 0j


, 

0zj  and show the dependence of 0j


 on the parameters of the 

system and on the basic elements of quantum wire with an 
infinite potential. The analytical results are numerically 
evaluated and plotted for a specific quantum wire 
GaAs/GaAsAl.  
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