
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

988

 

 

 
Abstract—The development of CPUs and of real-time systems 

based on them made it possible to use time at increasingly low 
resolutions. Together with the scheduling methods and algorithms, 
time organizing has been improved so as to respond positively to the 
need for optimization and to the way in which the CPU is used. This 
presentation contains both a detailed theoretical description and the 
results obtained from research on improving the performances of the 
nMPRA (Multi Pipeline Register Architecture) processor by 
implementing specific functions in hardware. The proposed CPU 
architecture has been developed, simulated and validated by using the 
FPGA Virtex-7 circuit, via a SoC project. Although the nMPRA 
processor hardware structure with five pipeline stages is very 
complex, the present paper presents and analyzes the tests dedicated 
to the implementation of the CPU and of the memory on-chip for 
instructions and data. In order to practically implement and test the 
entire SoC project, various tests have been performed. These tests 
have been performed in order to verify the drivers for peripherals and 
the boot module named Bootloader. 
 

Keywords—Hardware scheduler, nMPRA processor, real-time 
systems, scheduling methods. 

I. INTRODUCTION 

N society today, the real-time systems (RTS) used in the 
automotive industry, automation, nuclear power 

engineering, in the field of aerospace, or in medical systems, 
and not only, represent a very important and essential 
category, where the processor is a particularly important item. 
In most systems deployed in the areas mentioned above, 
processors do not only ease human work in the production or 
development process, but also represent a central element 
favoring an increase in the quality of products. This enhances 
competitiveness in industry, and the importance of the RTS 
increases as they are used also for eliminating the occurrence 
of material damage [1]. 

The real-time kernel is the heart of any RTS, directly 
connected to the hardware of the physical environment. 
Usually, the kernel performs the following actions: Process 
management; interrupts management; process 
synchronization. 

Process management is the main service provided by the 
real-time kernel. This involves the implementation of certain 
functions, as creating and terminating processes, scheduling 
jobs, other scheduling operations, context switching and 

 
Ionel Zagan and Vasile Gheorghita Gaitan are with the Stefan cel Mare 

University of Suceava, Suceava, Romania and Integrated Center for Research, 
Development and Innovation in Advanced Materials, Nanotechnologies, and 
Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare 
University, Suceava, Romania (e-mail: zagan@eed.usv.ro, 
vgaitan@eed.usm.ro). 

various relative activities. 
The interrupts handler is that part of the executive designed 

to guarantee the management of interrupts which can be 
generated by peripheral devices such as keyboard, analog-
digital converters, or even certain sensors [1]. This mechanism 
implies the execution of a driver for each interrupt, in order to 
transfer data from the peripheral device towards or from the 
main memory. A different functionality of the kernel is that of 
supplying the basic mechanisms for process synchronization 
and communication. In classical operating systems, these 
mechanisms are represented by semaphores that enable the 
mutual exclusion of tasks for shared resources. However, the 
semaphores can cause priority inversion, leading to the 
unlimited blocking of tasks execution. As a consequence, in 
order to guarantee predictability, the hard real-time operating 
system (RTOS) must provide special semaphores supporting 
access protocols to shared resources, such as Priority 
Inheritance, Priority Ceiling, or Stack Resource Policy; this 
way, priority inversion should be avoided. 

Of the other activities of the kernel, we can mention high-
level services of the operating system, and the initializing of 
internal data structures, such as Task Control Block (TCB), 
queues, tables and semaphores [2]. 

This paper describes the implementation of nMPRA 
processor [3], [4] using the FPGA Virtex-7 circuit, presenting 
the experimental model of the static real-time scheduler 
implemented in hardware. For this to be obtained, the field-
programmable gate array (FPGA) devices [5], available today 
at acceptable prices [6], [7], represents a hardware support for 
the development of nMPRA processor. 

This paper is structured as follows: After a short 
introduction in Section I, Section II briefly describes the 
nMPRA architecture. Section III presents the experimental 
data obtained from the validation of the instructions dedicated 
to the static scheduler, and Section IV explains the access to 
peripherals and to the boot procedure; the last section of the 
paper presents the conclusions and further research directions. 

II. NMPRA ARCHITECTURE AND HARDWARE SUPPORT 

In order to obtain a competitive processor, we focus on the 
nMPRA architecture, as a RTOS developed in hardware, 
based on a Hardware Scheduler Engine (nHSE). The 
architecture of the nMPRA processor is based on a five-stage 
assembly line, enabling the simultaneous execution of up to 
five instructions on different stages [8], [9]. 

The original design is based on a traditional MIPS 
architecture that was specially modified to support instructions 
dedicated to the hardware scheduler, part of the CPU itself. 

CPU Architecture Based on Static Hardware 
Scheduler Engine and Multiple Pipeline Registers 

Ionel Zagan, Vasile Gheorghita Gaitan 

I 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

989

 

 

The MIPS32 architecture is a superset of previous MIPS I and 
MIPS II; these architectures incorporate powerful new 
instructions, especially for embedded applications, as well as 
for the management of the control mechanism and of memory, 
for the privileged mode, previously found only in R4000 and 
R5000; R4000 is one of the first 64-bits processors and the 
first implementation of the MIPS III. By incorporating these 
powerful new features, standardizing the instructions of the 
privileged mode, and maintaining compatibility with the 
architecture of older CPU's instruction set, the MIPS32 
architecture provides a solid and high performance foundation 
for all future developments on these processors [10]. 

As it can be seen in Fig. 1, the authors use a register file and 
a set of four pipeline registers for each task, in order to hold 
the individual running state information. All the tasks running 
on the CPU use the same data path, control unit, ALU, Hazard 
Detection Unit and Forward Unit [11]. So, an instance of the 
CPU will be called semi processor (sCPUi for task i). 

The implementation is based on the project described in 
[12], a 32-bit MIPS processor which aims for conformance 
with the MIPS32 Release 1 ISA. The project has been 
implemented using the VC707 Evaluation Kit [13] produced 
by Xilinx and Vivado 2015.4 design environment and the 

source code has been written in Verilog HDL. 
The nHSE is a finite state machine which has inputs for 

events, such as interrupts, deadline, watchdog timers, timers, 
mutexes, messages, and self-support execution [14], [15]. The 
static scheduler is task-oriented. The priority of each sCPUi is 
i, the same with the ID of the sCPUi; this means that priorities 
are constant during the execution. Based on the remapping of 
the task contexts, this implementation allows a very fast task 
switching operation. In other words, the nMPRA architecture 
replaces the classical stack-saving methods with a remapping 
technique, allowing us to execute a new task in an average of 
one clock cycle. 

The paper also shortly describes the SoC project that 
integrates the nMPRA processor, the dual-port memory, the 
drivers for UART communication, the input/output 
components (LCD, DIP selectors and LEDs), as well as the 
debug component and also the way in which the Boot protocol 
is implemented and interacts with the CPU. A detailed 
comparison between the nMPRA architecture and other 
similar projects can be found in [4]. 

 

 

Fig. 1 Replication of resources of the nMPRA architecture and redirecting data in the hazard situations presented in Fig. 3. nHSE: Hardware 
Scheduler Engine, PC: program counter, IF: instruction fetch, ID: instruction decode, EX: execute, MEM: memory, WB: write back stage 

 
III. THE EXPERIMENTAL RESULTS OBTAINED DURING THE 

TESTING STAGE OF INSTRUCTIONS DEDICATED TO THE STATIC 

NHSE SCHEDULER 

The implementation of new additional instructions 
necessary for the functioning of the static nHSE unit 
represents the novelty brought by the present paper. Thus, data 
transfer between nHSE and COP0 is achieved by using four 
instructions implemented at the level of coprocessor 2, namely 
CFC2 (Copy control register From COP2), CTC2 (Copy 
control register To COP2), MFC2 (Move monitoring register 
From COP2) and MTC2 (Move monitoring register To 
COP2). This paper is not aimed at describing in detail the 
instructions and the registers of the nHSE architecture, but at 
implementing and testing these instructions at the level of the 

static nHSE scheduler; it also presents the solution for the 
occurrence of hazard situations. Besides these instructions, the 
wait instruction is added; this instruction holds a special 
status, because it allows the modification of the active sCPUi's 
crTRi registry, performing at the same time the context 
switching operation, if the sCPUi executing this instruction 
has no other active events. The syntax of these instructions 
depends on the implementation, and is described in a broader 
paper focusing on the specifications of the nMPRA 
architecture. 

The OpCode=6’b110010 field is the same for all 
instructions listed above; the interpretation and the format of 
the following fields Rs, Rt and Offset or Impl is specific to the 
implementation of Coprocessor 2. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

990

 

 

Fig. 2 shows the clock signal of the nMPRA processor, the 
mrCntRuni[0:3] (the monitoring register accessed only by the 
sCPU0, and possibly by the monitored sCPUi, enables the 
reading of the operation cycle of each sCPUi), the 
crTRi[0:3][31:0] (is a control register with the role of 
validating (1) or inhibiting (0) an event), the 
mrTEVi[0:3][31:0] (the monitoring register memorizes the 
value with which the timer for sCPUi is reloaded), the 
grINT_IDi[0:3][31:0] global register (the register that selects 
the ID of the task to which the interrupt has been attached); 
these are only some of the nHSE scheduler's registers. The 
nHSE_Task_Select[3:0] selector can be observed in the lowest 
part of the simulation, together with the validation signal of 
the nHSE_EN_sCPUi semiprocessors; this selector is 
necessary for the context switching operation. 

In the following part of the paper, we will exemplify the 
execution of the 0x48020000 instruction dedicated to the 
nHSE, even when data hazard occurs. The 0x48020000 
instruction type MFC2 copies the mrTEVi[sCPU0] monitoring 
register from nHSE to the RF_registers[2] register. As an 
example, the 0x20010011 and 0x24420001 MIPS instructions 
have been considered; the 0x20010011 instruction updates the 
RF_registers[1] register with the immediate value of 
0x00000011, and the 0x24420001 instruction adds the 
immediate value 0x00000001 to the RF_registers[2] register; 
the result is stored in RF_registers[2]. 

 

 

Fig. 2 Command, control and status registers that influence the nHSE 
directly or indirectly 

 
To better exemplify the waveforms in Fig. 3, arrows 

indicating the instructions extracted from the program memory 
and their effect have been introduced. The arrows pointing 

downwards indicate the transition between the ID, EX, MEM 
and WB pipeline stages, whereas the two arrows pointing 
upwards, Fwd_ex1 and Fwd_ex2, indicate the forwarding of 
data. Time moment T1 indicates the 0x48020000 instruction 
which transfers the 0x000000FF value from the 
mrTEVi[sCPU0] monitoring register to the RF_registers[2] 
register. The execution of the 0x24420001(R[rt]=R[rs]+ 
SiggnExtImm, where Opcode=addiu, rt=2, rs=2 and 
SiggnExtImm=1) MIPS instruction is marked by time moment 
T2, and the result is sent to the M_ALUResult_reg[0][31:0] 
and WB_ALUResult_reg [0][31:0] multiplied registers via the 
M_ALUResult and WB_ALUResult signals. In case of 
decoding the 0x24420001 instruction, at the time moment 
marked by marker C1, the ID_RsFwd_Sel[1:0] and 
ID_RtFwd_Sel[1:0] control signals select the operands needed 
in the arithmetic operation, even in the presence of a Fwd_ex1 
hazard situation. At the end of the simulation, the 0x48C10000 
(wait RF_registers[1]) was tested; this instruction copies the 
value contained in the RF_registers[1] register of COP0 in the 
crTRi[sCPU0] control register of nHSE, and, at the same time, 
performs the context switching operation between sCPU0 and 
sCPU3. Fig. 1 shows the block diagram for the execution of 
instruction 0x24420001 in two different contexts; the result is 
two cases of hazard, corresponding to T2 and T3 time 
moments, marked in Fig. 3. Thus, depending on the occurred 
situation, the redirecting of data in the decoding or execution 
stage is performed using the Fwd_ex1 and Fwd_ex2 paths. For 
this, it was necessary to modify the control unit, the unit for 
the detection of hazards and forwarding of data, because the 
redirected register comes from coprocessor 2. Fig. 3 represents 
the situation when there are two hazard situations on the 
assembly line; time moment T4 represents the moment in 
which context switching is performed; the data stored in the 
pipeline registers are saved during the transition from sCPU0 
to sCPU3. This switch takes place under the strict command of 
the nHSE static scheduler, through the 
nHSE_Task_Select[3:0] and nHSE_EN_sCPUi nHSE signals, 
the time needed for switching contexts is no more than one 
clock cycle. 

The simulation illustrated in Fig. 3 shows the propagation 
of the control signal and the redirection of data from MEM 
and WB pipeline stages, in case a register is copied from the 
nHSE (coprocessor 2) to register file (coprocessor 0). 

The simulation illustrates the signals generated by the 
Hazard_Detection module to flag an occurred hazard situation 
[16]; the data redirecting unit selects the source of the 
operands in the case of the encountered hazard, through the 
ID_RsFwdSel, ID_RtFwdSel, EX_RsFwdSel and 
EX_RtFwdSel lines. It can be seen that the EX_ALUResult 
register contains the result of the performed operation, while 
the EX_EXC_Ov register may indicate an overflow-type 
exception. Furthermore, the variation of the EX_AluSrcImm 
selection signal for the selection multiplexor of an Immediate-
type operand can also be seen. As it is shown by the arrow 
pointing upwards, the redirecting of data takes place from the 
MEM stage to the ID_ReadData1_End register in the ID stage. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

991

 

 

 

Fig. 3 Data redirection in the case of hazard situations, when instructions of the nHSE scheduler are executed on the assembly line. clock - 
nMPRA clock; nHSE_EN_sCPUi - nHSE enable signal; nHSE_Task _Select[3:0] - nHSE task selector; ID_Instruction[31:0] - wire type 

instruction; ID_Instruction_reg[0:3][31:0] - reg type sCPUi instruction; RF_registers[1:127][31:0] – Register File 
 

At the next clock cycle, the 0x000000ff data is copied in the 
Operand_A register of the execute stage, exemplifying the 
Fwd_ex1 case shown in the block scheme from Fig. 1. The 
ID_ReadData1_RF and ID_ReadData2_RF signals represent 
the data read from the register file, whereas 
ID_ReadData1_End and ID_ReadData2_End send the data 
selected by the ID_RsFwdSel[1:0] and ID_RtFwdSel[1:0] 
signals. 

At time moment T2, the 0x48020000 instruction is again 
executed, thus generating the hazard situation labeled as 
Fwd_ex2 in Fig. 1. At time moment T3, when executing the 
0x24420001 instruction, the data redirection occurs from the 
memory pipeline stage to the execute stage, through the 
Ex_RsFwdSel[1:0] signals. 

The M_ALUResult data, representing the result of the 
operation performed in the previous pipeline stage, and the 
content of the RF_registers[1:127][31:0] register file are 
shown in Fig. 3. Moreover, the writing of the 0x00000011 
value in the EX/MEM pipeline register and later in the 
RF_Registers[1], at the time moment marked by marker C2 
(as it is showed by the simulator), is represented in the same 
Fig. 3. The waveforms obtained for the WB pipeline stage can 
be observed; it is also important to note the correspondence 
between the executed instructions and the data written in the 
WB_ALU_Result, and afterwards in the register file. The 
WB_MemtoReg signal represents the one bit control line 
required for the selection of data sent in the register file, 
through the WBMemtoReg_Mux multiplexer. The 
WB_RegWrite control signal writes WB_ALU_Result in the 

register file on the positive front of the clock signal. 

IV. TESTING THE ACCESS TO PERIPHERALS AND THE BOOT 

PROCEDURE 

As for the boot procedure, the uart_bootloader module 
represents a UART compatible RS-232 driver, implemented in 
Verilog HDL. The VC707 evaluation kit uses Standard 
Microsystems Corporation USB3320 USB 2.0 ULPI 
Transceiver (U8) in order to support the USB connection to 
the host computer [13]. In order to allow connections to a PC 
using the USB port, the development kit contain a Silicon 
Labs CP2103GM USB-to-UART (U44) bridge device, the 
USB cable being supplied in VC707 board. The FPGA circuit 
supports USB-to-UART bridge using four lines (Transmit 
(TX), Receive (RX), Request to Send (RTS) and Clear to Send 
(CTS)); for this purpose, Silicon Labs provide the Virtual 
COM Port drivers (VCP). These drivers enable the bridge 
circuit to be accessed as a COM port within the BootLoader 
application implemented and run on the host PC [12]. Through 
this PC application and through the uart_bootloader module, 
the program memory implemented in the FPGA will be 
rewritten, thus allowing the change of instructions executed by 
the nMPRA processor. The UART is of general use, able of 
receiving and sending data with a predetermined transfer rate. 
The UART communication, type 8N1, uses 8 bits of data, one 
stop bit, with no parity, and only RxD and TxD signals. The 
module uses two buffer registers of 256 bytes each, one for 
sending, and the other for receiving data. At reset, the 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

992

 

 

bootloader is enabled by default. When the bootloader is 
enabled, the memory bus will not detect any input data. To 
configure the UART communication in the general-purpose 
module, the program must first initiate writing command 
towards the UART on the data memory bus with bit 8 set. This 
will disable the boot protocol until the UART is reset again, 
thus enabling normal booting. It should be noted that there are 
only five seconds after reset during which the bootloader is 
active [12]. Afterwards, the software status determines the 
UART's mode of operation. 

Fig. 4 shows a screen-shot made with the ChipScope 
analyzer, representing the content of the registers used for 
receiving data by the UART driver using the XUM 
communication protocol [12]. It can be seen how the line 
UART_Interrupt signals the transmission of the 0x58 byte 
saved in the temporary register uart_data_in[7:0]. The 
following lines of code set the reception-transmission pins in 
the constraint file: set_property PACKAGE_PIN AU33 
[get_ports UART_Rx], set_property PACKAGE_PIN AU36 
[get_ports UART_Tx]. 

 

 

Fig. 4 Verifying the data received on UART 
 

To test the access to an output port connected to a LED 
located on the Virtex-7 development board, it was also used 
the mapping of outputs in the address space of the data 
memory; the program performed a simple switching of a pin 
set to the .xdc constraints file. The LED[0] output is 
configured by setting the following properties: 
PACKAGE_PIN AM39, IOSTANDARD LVCMOS18, 
DRIVE 12 and SLEW SLOW. 

V. CONCLUSION AND FUTURE WORK 

The modular implementation of the processor, the interface 
with memory separate from the processor, the individual 
design of drivers for UART and I/O, the port mapping in 
memory address space, as well as legibility and readability of 
the code, all are parts of the SoC project presented in this 
paper. Moreover, the flexibility of the project enables it to be 
easily tested and improved in subsequent research activities. 

As future work, we aim to present the summary of the 
power consumption for the proposed nMPRA processor with 4 
sCPUi, 8 sCPUi and 16 sCPUi, and the experimental results 
obtained from including in hardware the inter-task 
synchronization and communication mechanisms. 

ACKNOWLEDGMENT 

This paper was supported by the project “Development and 
integration of a mobile tele-electrocardiograph in the 
GreenCARDIO© system for patients monitoring and 
diagnosis - m-GreenCARDIO”, Contract no. BG58/30.09. 
2016, PNCDI III, Bridge Grant 2016, using the infrastructure 
from the project “Integrated Center for research, development 
and innovation in Advanced Materials, Nanotechnologies, and 
Distributed Systems for fabrication and control”, Contract No. 
671/09.04.2015, Sectoral Operational Program for Increase of 
the Economic Competitiveness co-funded from the European 
Regional Development Fund. 

REFERENCES 
[1] G. C. Buttazzo, “Hard Real-Time Computing Systems - Predictable 

Scheduling Algorithms and Applications,” Third edition, Springer, 2011, 
ISBN: 978-1-4614-0675-4. 

[2] W. Stallings, “Computer Organization and Architecture,” 10th Edition, 
2015, ISBN: 978-0134101613. 

[3] E. Dodiu and V. G. Gaitan, “Custom designed CPU architecture based 
on a hardware scheduler and independent pipeline registers – concept 
and theory of operation” in IEEE EIT International Conference on 
Electro-Information Technology, Indianapolis, IN, USA, pp. 1-5, May 
2012. 

[4] V. G. Gaitan, N. C. Gaitan, and I. Ungurean, “CPU Architecture Based 
on a Hardware Scheduler and Independent Pipeline Registers,” in IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, 
no. 9, pp. 1661-1674, Sept. 2015. 

[5] J. Shawash, and D. R. Selviah, “Real-time nonlinear parameter 
estimation using the Levenberg–Marquardt algorithm on field 
programmable gate arrays,” IEEE Trans. Ind. Electron., vol. 60, no. 1, 
pp. 170–176, Jan. 2013. 

[6] M. Shahbazi, P. Poure, S. Saadate, and M. R. Zolghadri, “Fault-tolerant 
five-leg converter topology with FPGA-based reconfigurable control,” 
IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2284–2294, Jun. 2013. 

[7] T. T. Phuong, K. Ohishi, Y. Yokokura, and C. Mitsantisuk, “FPGA-
based high-performance force control system with friction-free and 
noisefree force observation,” IEEE Trans. Ind. Electron., vol. 61, no. 2, 
pp. 994–1008, Feb. 2014. 

[8] D. A. Patterson and J. L. Hennessy, “Computer Organization and 
Design, Revised Fourth Edition: The Hardware-Software Interface,” 
Fourth Edition, 2011, ISBN: 978-0-12-374750-1. 

[9] I. Zagan, “Improving the performance of CPU architectures by reducing 
the Operating System overhead,” in the 3rd IEEE Workshop on 
Advances in Information, Electronic and Electrical Engineering 
AIEEE’2015, pp. 1-6, 13-14 Nov. 2015, Riga, Latvia. 

[10] “MIPS® Architecture for Programmers Volume I-A: Introduction to the 
MIPS32® Architecture,” Revision 3.02, Mar. 2011, Available: 
https://courses.engr.illinois.edu/cs426/Resources/MIPS32INT-AFP-
03.02.pdf (Accessed: May 2016). 

[11] I. Zagan and V. G. Gaitan, “Schedulability Analysis of nMPRA 
Processor based on Multithreaded Execution,” in 13rt International 
Conference on Development and Application Systems, Suceava, 
Romania, pp. 130-134, May 19-21, 2016. 

[12] http://opencores.org/project,mips32r1 (Accessed: Sept. 2015). 
[13] www.xilinx.com/support/documentation/boards_and.../ug885_VC707_E

val_Bd.pdf (Accessed: Aug. 2016). 
[14] E. E Moisuc, A. B. Larionescu, and V. G. Gaitan, “Hardware Event 

Treating in nMPRA,” in 12rt International Conference on Development 
and Application Systems, Suceava, Romania, pp. 66-69, 15–17 May, 
2014. 

[15] I. Zagan, “Real-time evaluation of nMPRA CPU Architecture based on 
Multithreaded Execution,” in 8th International Conference on Computer 
Science and Information Technology, Amsterdam, Netherlands, 10–11 
Dec. 2015. 

[16] N. C. Gaitan, I. Zagan, and V. G. Gaitan, “Predictable CPU Architecture 
Designed for Small Real-Time Application - Concept and Theory of 
Operation,” International Journal of Advanced Computer Science and 
Applications – IJACSA, vol. 6, no. 4, 2015. 


