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 
Abstract—Mixing in the hyperspectral imaging occurs due to the 

low spatial resolutions of the used cameras. The existing pure 
materials “endmembers” in the scene share the spectra pixels with 
different amounts called “abundances”. Unmixing of the data cube is 
an important task to know the present endmembers in the cube for the 
analysis of these images. Unsupervised unmixing is done with no 
information about the given data cube. Sparsity is one of the recent 
approaches used in the source recovery or unmixing techniques. The 
l1-norm optimization problem “basis pursuit” could be used as a 
sparsity-based approach to solve this unmixing problem where the 
endmembers is assumed to be sparse in an appropriate domain known 
as dictionary. This optimization problem is solved using proximal 
method “iterative thresholding”. The l1-norm basis pursuit 
optimization problem as a sparsity-based unmixing technique was 
used to unmix real and synthetic hyperspectral data cubes. 
 

Keywords—Basis pursuit, blind source separation, hyperspectral 
imaging, spectral unmixing, wavelets. 

I. INTRODUCTION 

YPERSPECTRAL imaging (HSI) acquires images using 
hundreds of contiguous wavelengths in potentially 

different electromagnetic bands [1]. Using HSI for remote 
sensing is not easy, as hyperspectral cameras typically have 
low spatial resolutions that usually render an acquired spectral 
pixel a mixture of spectra of pure materials, usually called 
endmembers. Unmixing of these mixtures is very important 
task for required application. Unsupervised unmixing does this 
task without any prior knowledge about the nature of the 
scene. Every spectral pixel in the hyperspectral data cube is 
separated into a set of endmembers [2]. We model any spectral 
pixel using a linear mixture model such that: 
 

௜ݕ ൌ ∑ ௝ܽ௜௝ݏ ൅ ݁௜
ெ
௝ୀଵ                             (1) 

 
where ݏ௝ ൌ ሾݏ௝ଵ, … ,  ௝௅ሿ்is the spectrum of the jth materialݏ
present in the scene and ܽ௜௝ ൒ 0 are its corresponding 
proportion (abundance) in the ith pixel. ௜݁ represents an 
additive perturbation (noise), and M indicates the number of 
endmembers. The abundances are subject to the two main 
constraints: 

 
௜௝ܽ					:ݕݐ݅ݒ݅ݐܽ݃݁݊݊݋ܰ ൒ 0  

݉ݑܵ െ ݋ݐ െ 				:݁݊݋ ∑ ܽ௜௝ ൌ 1ெ
௝ୀଵ                  (2) 

 
In the matrix form, (1) could be written as: 
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܇ ൌ ܁ۯ ൅ ۳                                         (3) 
 

The problem of spectral unmixing is to estimate the 
endmembers (sources) matrix S, the abundance matrix 
ۯ ൌ ሾܽଵ;… ;	ܽேሿ, from the pixels spectra matrix	܇ ൌ
ሾݕଵ; …  ேሿ, where N is the number of spectral pixels in theݕ	;
data cube. This is considered as Blind Source Separation 
(BSS) problem [3]. 

In [2], the authors gave an overview on unmixing 
approaches of HSI. These unmixing approaches could be 
categorized into four main types; geometrical, statistical, 
spatial-spectral and sparsity-based approaches. The 
geometrical approaches exploit the fact that pixels spectra 
must lie in a simplex set formed by the endmembers [4]. The 
statistical approaches build Bayesian model enforcing the 
constraints using distribution-based likelihood and priors to 
estimate a posterior parameter probability [5]. The spatial-
spectral contextual approaches exploit the spatial correlation 
between the pixels spectra in addition to the spectral features 
contained in the data cube [6]. The sparse regression 
approaches, our interest here in this paper, is one of the most 
recent approaches to solve the unmixing problem.  

Sparsity has become an attractive approach in signal 
processing. It has many applications; restoration, feature 
extraction, source separation, compression … etc. [7]. Sparse 
signal representation uses a suitable domain where most of its 
coefficients are zero. Depending on the nature of the signal, 
one could find an appropriate domain where it would be 
sparse. Sparsity could be used for signal compression, as it 
requires less memory for its storage. It could also result in 
simpler signal processing algorithms, e.g., signal denoising via 
simple thresholding operations in a domain where the signal is 
assumed to be sparse [8]. In addition, the computational cost 
to process a sparsely represented signal would be typically less 
than the cost to process its dense counterpart.  

Sparse signal restoration assumes that the unknown signal is 
sparse in an appropriate domain. Therefore, signal sparsity 
could be used as prior information to obtain an estimate of the 
signal, even if the number of available measurements is 
smaller than the dimension of the unknown signal.  

Most of the sparse spectral unmixing techniques are 
implemented in a semisupervised fashion. This is done by 
assuming that the pixels spectra are a linear combination of 
some pure spectral signatures known before. These signatures 
are obtained in labs using a field spectroradiometer. Unmixing 
then aims to find the optimal subset of signatures out of a very 
large spectral library that can best fit each mixed pixel [9]. 
Sparse spectral unmixing also could be solved blindly 
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(unsupervised) by non-negative matrix factorization (NMF) 
[10], but these methods are not our interest here in this paper. 

Sparse regression formulates the unmixing problem as an l0-
norm minimization problem. This optimization problem is 
NP-hard and nonconvex. This problem could be solved 
approximately by greedy algorithms like the orthogonal 
matching pursuit (OMP) [11], or solved by an approximate or 
relaxed l1-norm minimization problem exactly. This relaxed 
version with a regularization parameter λ is termed basis 
pursuit (BP) or lasso minimization problem [12]. In this paper, 
we implement the second approach, convex relaxations or the 
basis pursuit problem. 

The basis pursuit optimization problems take the advantage 
of a sparse representation of the data in overcomplete 
dictionaries, to separate sources based on convex relaxations 
methods [12]. l1-norm basis pursuit optimization problems 
could be used in the spectral unmixing problem.  

Sparsity has been recognized recently as an efficient source 
separation approach. Sparsity can be obtained using wavelets 
[13], curvelets [14] (analytic dictionaries) or using sparse 
coding dictionary algorithms [15] (learned dictionaries). Due 
to the physical nature of spectra which have a small number of 
peaks corresponding to resonant absorption properties, the 
wavelets are chosen as a predefined or analytic dictionary for 
sparsifying pixels spectra.  

This paper is arranged as follows; Section II illustrates the 
l1-norm basis pursuit algorithm. Results of applying the l1-
norm basis pursuit algorithm to unmix real and synthetic 
hyperspectral data cubes are shown in Section III.  

II. THE L1-NORM BASIS PURSUIT ALGORITHM FOR SPECTRAL 

UNMIXING PROBLEM 

A. The Sparse Signal Representation and Basis Pursuit 
Definitions  

A signal ݔ is considered sparse in an overcomplete frame 
which is known as dictionary	Φ ൌ ሾφଵ,… , φ୘ሿ, if it can be 
well represented as a superposition of few of the T elementary 
dictionary elements or atoms	φ୧ as shown in Fig. 1. 

 

ݔ ൌ ઴ߙ ൌ ∑ ሾ݅ሿ߮௜ߙ
்
௜ୀଵ                                (4) 

 
where ߙ is called the coefficients of ݔ in ઴ whose columns ߮௜ 
are normalized to a unit l2-norm. The dictionary ઴ could be a 
concatenation of K subdictionaries Φ௞ such that	઴ ൌ
ሾΦଵ,… ,Φ୏ሿ. 

The sparse source recovery problem can be written as 
follows knowing that ݔ is sparse: 

 
min௫‖ݔ‖଴ .ݏ			 ݕ‖				.ݐ െ ଶ‖ݔ࡭ ൑  (5)              ߝ

 
This is the l0-norm minimization problems equation which 

is computationally hard due to its nonconvex optimization 
nature. The corresponding l1-norm relaxation of the l0-norm 
equation can be written in the form: 

 
min௫‖ݔ‖ଵ .ݏ			 ݕ‖				.ݐ െ ଶ‖ݔ࡭ ൑  (6)                 ߝ

 

 

Fig. 1 The sparse signal representation 
 
Using an appropriate Lagrange multiplier factor	λ, we can 

also rewrite the above problem as an unconstrained 
minimization: 

 
min௫

భ
మ
ݕ‖ െ ଶ‖ݔ࡭

ଶ 	൅ݔ‖ߣ‖ଵ                        (7) 
 
The above l1-norm regularized problem is widely known as 

the Basis Pursuit [12] in signal processing and as lasso among 
statisticians. 

B. The l1-Norm Basis Pursuit Problem for Spectral 
Unmixing Problem  

In the multichannel case as our interest of HSI, an extension 
of sparse signal representation to multichannel data can be 
done. As the hyperspectral data cube typically has a large 
number of spectra pixels, they could be considered as different 
observations or channels. The sparse sources recovery for the 
multichannel representation will be:   

 
minࢻ‖ࢻ‖ଵ .ݏ				 ܇						.ݐ ൌ  ઴்                  (8)ࢻۯ

 
where ܇ is the ܰ ൈ ܰ is the ۯ ,measurement matrix ܮ ൈܯ 
abundance matrix, ࢻ is the ܯ ൈ ܶ  sources sparse coefficients 
matrix and ઴ is the ܮ ൈ ܶ	 dictionary matrix. Note that the 
sources ܁ are sparsified in dictionary ઴ with coefficients 
matrix ࢻ using	܁ ൌ  ઴்ࢻ

The l1-norm basis pursuit minimization problem concepts 
could be used to solve the spectral unmixing problem. The 
sources or endmembers recovery optimization equation could 
be written similar to the relaxed l1-norm basis pursuit 
minimization problem (7), as: 

 
minࢻ,ۯ

భ
మ
܇‖ െ ઴்‖ଶଶࢻۯ ൅  ଵ                        (9)‖ࢻ‖ߣ

 
It could be proved that the solution for ࢻ can be obtained by 

proximal method or iterative thresholding [7]. 

C.  The Unmixing Algorithm  

To solve (9), orthogonal dictionary ઴ should be chosen to 
sparsify the pixels spectra obtaining the matrix	ࢼ	 ൌ  ઴, the܇
matrix where each of its rows stores the coefficients of each 
pixel	ݕ௜.  

In [16], the authors argued using redundant dictionary ઴ 
instead of orthogonal dictionary such that the spectra pixels 
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have the sparsest representation. Their argument was based on 
the fact that the sparse decomposition algorithm must preserve 
linearity, meaning that the sparsest decomposition of the 
spectra obtained must be equal to the linear combination of the 
sparsest decomposition of the sources. 

The optimization problem (9) then becomes: 
 

minࢻ,ۯ
భ
మ
ࢼ‖ െ ઴‖ଶଶࢻۯ ൅  ଵ                        (10)‖ࢻ‖ߣ

 
Here, the data ܇ have to be transformed once in ઴ which is 

computationally much cheaper. Indeed, as ܰ	 ≫  it turns ,ܯ	
out that (10) is a multichannel overdetermined least squares 
error fit with l1-sparsity penalization. The obtained solution is 
an iterative and alternate estimation of ࢻ and [7] ۯ: 
 Update the coefficients: when ۯ is fixed, ࢻ is obtained 

using: 
 

ࢻ ൌ  ሻ                            (11)ࢼறۯఋሺ݄ݏ݁ݎ݄ܶ
 

where	ۯறis the pseudo-inverse of the current estimate	ۯ	of the 
mixing matrix, ݄݄ܶݏ݁ݎఋ is a thresholding operator, and the 
threshold δ decreases with increasing iteration count. 
 Update the mixing matrix: when ࢻ is fixed, ۯ is obtained  

by a least-squares estimate using: 
 

ۯ ൌ  ୘ሻିଵ                             (12)ࢻࢻ୘ሺࢻࢼ
 

The two stages iterative process leads to the solution of 
(10). After convergence and obtaining the coefficient 
matrix	ࢻ, the spectra of the sources ܁ could be obtained using 
the same dictionary ઴ using	܁ ൌ  .઴்ࢻ

III. RESULTS 

Applying the l1-norm basis pursuit algorithm as a sparsity-
based unmixing approach to unmix the hyperspectral data 
cubes using wavelets as a predefined dictionary to sparsify the 
pixels spectra is investigated in this section.  

The wavelet transform is an excellent basis to sparsely 
represent 1-D smooth signals having a small number of 
irregular points. The wavelet family was chosen as our 
potential dictionary of choice because spectral pixels are 1-D 
smooth signals and the physical nature of spectra indicates that 
spectra have a small number of peaks corresponding to 
resonant absorption peaks. 

Two types of datasets were used, the first one is actual 
hyperspectral cube downloaded from AVIRIS website [17], 
and the second one is synthetic cube made from few selected 
materials from ASTER spectral library [18]. 

A. The Actual AVIRIS Cube  

A data cube was downloaded from the AVIRIS website 
[17]. This cube consists of images using 224 wavelengths (365 
nm to 2497 nm). A subimage (75 x 65 pixels) was selected for 
our study. The ground truth of the selected scene was obtained 
from Google Maps showing that it contains water and trees. 
The reference endmembers spectra have been obtained using 
one of the geometrical HSI unmixing approaches known as N-

FINDR [19]. MATLAB implementation available online for 
the N-FINDR method was used. The obtained endmembers, 
shown in Fig. 2, correspond to water and trees. 

The l1-norm basis pursuit algorithm illustrated in section II 
with 50 iterations to estimate of ࢻ and ۯ alternatevily as a tool 
to unmix the given data was applied. Fig. 2 shows the obtained 
estimated endmembers. 

 

 

(a) 
 

 

(b) 

Fig. 2 Results of N-FINDR algorithm. (a) The position of 
endmembers. (b) The corresponding endmembers spectra 

B. The Synthetic Cube 

A mixed cube was synthesized from three materials spectra, 
grass, concrete, and asphalt, picked up from the ASTER 
spectral library [18]. The cube was established using random 
abundances with the constraints given in (2). Additive 
Gaussian noise was added to the synthetic cube spectra with 
SNR = 20 db. The l1-norm basis pursuit algorithm illustrated 
in section II with 50 iterations to estimate of ࢻ and ۯ 
alternatevily was applied to the synthetic cube. Fig. 4 shows 
the obtained estimated endmembers. 
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Fig. 3 The estimated endmembers spectra using l1-norm basis pursuit 
with 50 iterations only 

IV. CONCLUSION 

Unmixing of hyperspectral images data cubes is a very 
important task for different applications. This unmixing 
process could be done using different geometrical, statistical, 
spatial-spectral, sparsity-based approaches. The l1-norm basis 
pursuit algorithm was implemented as a sparsity-based 
unmixing algorithm for hyperspectral data cubes. The 
endmembers sparsity was used as prior information to 
estimate of theses unknown endmembers. This optimization 
problem is solved using proximal method or iterative 
thresholding. The unmixing l1-norm basis pursuit algorithm 
using wavelets was applied to real and synthetic data cubes, 
and the results were presented.  

 

 

(a) 

 

(b) 

Fig. 4 (a) The exact endmembers spectra, (b) the estimated spectra 
with 50 iterations 
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