
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1448

 
Abstract—The loop-layout design problem (LLDP) aims at 

optimizing the sequence of positioning of the machines around the 
cyclic production line. Traffic congestion is the usual criteria to 
minimize in this type of problem, i.e. the number of additional cycles 
spent by each part in the network until the completion of its required 
routing sequence of machines. This paper aims at applying several 
improvements mechanisms such as a positioned-based crossover 
operator for the Genetic Algorithm (GA) called a Two Points 
Crossover (TPC) and an offspring selection process. The performance 
of the improved GA is measured using well-known examples from 
literature and compared to other evolutionary algorithms. Good results 
show that GA can still be competitive for this type of problem against 
more recent evolutionary algorithms. 
 

Keywords—Crossover, genetic algorithm, layout design problem, 
loop-layout, manufacturing optimization.  

I. INTRODUCTION 

LEXIBLE manufacturing systems (FMSs) are automated 
production systems designed to produce a variety of parts, 

where machines and material handling devices are computer 
controlled. The configuration of the facilities along a 
production line has a significant influence over the system 
overall performance. According to Tompkins et al. [1], 
approximately 8% of the U.S. gross national product is spent 
every year to build new facilities that need to be planned. 
Additionally, research by Huang et al. [2] showed that more 
than 35% of the system efficiency is likely to be lost by 
applying incorrect layout and location designs. A well-designed 
line layout is primordial in order to increase output and to 
decrease the time and manpower required for each task. This 
can be summed up into the reduction of the material handling 
cost (MHC). The productivity of the system, as well as the 
MHC and production times, is greatly influenced by the layout 
of the machines. Those MHCs can count up to a half of the total 
operating expenditures in manufacturing and they can be 
reduced by at least 10 to 30% with an efficient layout [3]. 
Reducing the MHC means also reduced material movement and 
throughput times, less product damage, simplified material 
control and scheduling, and less overall congestion. 

The loop layout is a common disposition type of 
manufacturing system. It comprises a closed ring like network 
of machines with material handling device such as conveyers, 
handling robots, path of unidirectional automated guided 
vehicles (AGV), or overhead monorail systems. Each part has a 

 
Xu LiYun, Florent Briand, and Fan GuoLiang are with the School of 

Mechanical Engineering, Tongji University, 4800 CaoAn Road, ShangHai 
201804, China (e-mail: lyxu@tongji.edu.cn, florent.briand56@gmail.com, 
2014fanguoliang@tongji.edu.cn). 

specified sequence of machines to visit along a unidirectional 
material handling device in order to complete its processing. 
Every time a process is finished on a machine, the part is moved 
to the next machine on the unidirectional material-handling 
network. If this next workstation is occupied, the part is stored 
in a buffer waiting until the machine is available. Each station 
has secondary handling equipment so that part can be brought 
to and transferred-from the station work ahead to the material 
handling loop. All the parts enter and exit the system by a 
unique load/unload station (Fig. 1). 

 

 

Fig. 1 Unidirectional loop layout 
 

The loop layout shows several advantages over a 
conventional single line layout: material handling flexibility 
and agility in accommodating new parts and processes. 
According to Afentakis [4], this layout has relatively low initial 
costs since it contains few material handling links to connect all 
the workstations together. It thus shows a high flexibility 
degree and can satisfy all the requirements of material handling 
because all machines are reachable from all other machines. 
Process changes and new products can easily be integrated 
when using this type of layout for manufacturing systems. The 
optimization of the layout is a necessary step for FMSs. It will 
provide the solid base for an efficient running of the system and 
drastically reduce the material handling expenses.  

The LLDP has been subject to numerous studies during the 
last decades with all types of methodology and heuristic 
algorithms. The recent studies have primarily focused on 
applying new meta-heuristics or extending the problem with 
multiple objectives. The GA is a widespread and renowned 
meta-heuristics that already proved its effectiveness for the 
LLDP. This paper aims at applying recent optimization 
techniques and newer operators to improve the GA’s 
performance and to compare it with newer algorithms on a 
common computation data input. The rest of this paper is 
organized as follows. Section II is a literature review of 
previous approaches for the LLDP. Section III describes the 
problem in more details and Section IV introduces the 

Xu LiYun, Briand Florent, Fan GuoLiang 

Two Points Crossover Genetic Algorithm for Loop 
Layout Design Problem 

F



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1449

mathematical model that supports this work. Section V 
describes the improvement implemented to the algorithm, and 
Section VI introduces the computational experiments to be 
discussed in Section VII. Finally, Section VIII summarizes the 
contribution and introduces some suggestions for future works. 
First, a review of the previous approaches for the LLDP will be 
given before introducing the improved algorithm, and finally, 
we compare its results with the previous studies. 

II. LITERATURE SURVEY 

A LLDP deals with the assignment of mn facilities to mn 
candidate locations. Afentakis [4] was the first to address the 
unidirectional loop layout problem in 1989. He suggested the 
use of traffic congestion as a measure to evaluate such loop 
layout. The congestion is defined as the number of times that a 
part traverses the loop before its processing is completed. There 
are two kinds of congestion measures commonly used in loop 
layout design: min_sum and min_max. 
 A min_sum problem attempts to minimize the total 

congestion of all parts;  
 A min_max problem attempts to minimize the maximum 

congestion among a family of parts. 
Afentakis proposed a graph-theoretic model for the min_sum 

loop layout problem. Leung [5] proposed a graph-theoretic 
model for the min_max loop layout problem. Bozer and Rim 
[6] used a branch and bound algorithm to solve the LLDP as 
well as Kouvelis and Kim [7]. As the problem has been proven 
to be NP-hard [7], the best way to tackle it is through heuristics 
techniques. Two heuristics called Move and Move/Interchange 
were presented by Tansel and Bilen [8]. Researchers started 
using meta-heuristics techniques inspired by nature, since those 
algorithms are well suited to deal with the combinatorial nature 
of the LLDP. The min_max congestion measure using a GA 
inspired by the analogy of population genetics and Darwin’s 
natural selection was proposed by Cheng and Gen [9] and 
Banerjee and Zhou [10]. Cheng and Gen [11] also used a hybrid 
GA and neighborhood search. Tian et al. [12] used the 
simulated annealing algorithm (SAA) which mimics the 
process of annealing metals. Bennell et al. [13] proposed tabu 
search (TS) algorithm and an iterated decent randomized 
insertion algorithm to solve the min_max LLDP. Nearchou [14] 
approached LLDP with a differential evolution algorithm 
(DEA), whereas Kumar et al. [15] proposed a particle swarm 
optimization algorithm (PSO) to solve the same LLDP with 
min_sum, as well as the artificial immune system (AIS) [16]. 
Ma et al. [17] proposed dual system method with differential 
evolution algorithm (DEA) and GA to solve the loop-based 
station sequencing problem. Zhang et al. [18] applied the GA to 
solve a concrete case of loop layout in the industry by 
optimizing a blade workshop, taking into account the material 
flow between machines. Niroomand and Vizvari [19] suggested 
a new mathematical model formulated for the closed loop 
layout with exact distances. Then, they implemented a modified 
Migrating Birds optimization algorithm to solve the exact 
distances LLDP [20]. Ramezani et al. [21] presented a robust 
design for a closed loop supply chain network under an 
uncertain environment. Saravanan and Kumar [22] also 

proposed the implementation of the sheep flock heredity 
algorithm (SFHA) to the LLP as well as Anandaraman [23]. 
Manita and Korbaa [24] applied the Ant Colony optimization 
algorithm to the LLP while taking into account proximity 
constraints and machine dimensions. Hou et al. [25] optimized 
a manufacturing system composed of multi loop layout around 
a transfer loop with co-evolutionary methodology.  

III. PROBLEM DESCRIPTION 

The LLDP solutions can be represented as a permutation of 
machines (m1, m2…mn) assigned to mn locations with an 
additional loading/unloading station at location 0. As 
previously explained, the optimization of the layout in this 
study will be centered on the improvement of the traffic 
congestion as introduced by Afentakis [4] with min-sum and 
min-max. Both indexes rely on the notion of additional circuits, 
or reloads, that occur when a part must travel from a machine 
on a given location to another machine on another location that 
is upstream of the unidirectional flow of the material handling 
equipment. The more reloads a given layout (represented as a 
permutation of machines π) needs, the more congested the 
traffic of the system will be.  

The reloads counting can be done by running a simple test. 
First, consider the given notations: 
 ܲ݇ ൌ ሼ1,… ,  ሽ : Set of products to be manufactured݌
 ܯ ൌ ሼ1,… ,݉ሽ : Set of machines to be arranged around the 

loop 
 ܯ௞ ൌ ሺߤଵ௞,… ,  ௡ೖ௞ሻ: Routing sequence through machinesߤ

 ݇ for a product ߤ
 ݊௞ : Number of operations required 
 ߨ : Ordering of the machines around the loop 
 ߣ௜ሺߨሻ: Location of machine ݅ in ordering ߨ, with ݅	 ∈  ܯ
 ߙ௝௞ሺߨሻ : Reload variable for product ݇  with respect to 

ordering ߨ  when moving from machine ߤ௝௞ to machine 
 ௝௞ାଵߤ

 ܿሺߨሻ: Cost of ordering ߨ (min-max and min-sum indexes) 
A reload for a given product ݇ occurs if, after completing 

operation on a machine ߤ௝,௞ located on location ߣஜೕ,ೖ , it needs 

to be transferred to another machine ߤ௝ାଵ,௞ located on ߣஜೕశభ,ೖ 

with ߣஜೕ,ೖ ൐  .ஜೕశభ,ೖߣ	

IV. MATHEMATICAL MODEL 

The problem’s formulation, for a given layout π:  
 

ሻߨሺ݆݇ߙ ൌ ൜
ሻߨμ݆,݇ሺߣ					݂݅		1 ൐ 	 ሻߨμ݆൅1,݇ሺߣ

0									otherwise
									        (1) 

 
with 

μ௝,௞ሺߨሻ ് μ௝ାଵ,௞ , ∀	݆ ∈  ௞                    ሺ2ሻܯ	
 

Equation (2) ensures that the consecutive machines’ 
locations stay different. This test is the base upon which the 
congestion indexes are then described, i.e. the number of 
reloads completed by product ݇ with respect to ordering ߨ: 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1450

ܿ௠௜௡ି௦௨௠ሺߨሻ ൌ ∑ ∑ 	ሻߨ௝௞ሺߙ
௡ೖିଵ
௝ୀଵ

௉
௞ୀଵ                  (3) 
 

or simplified as: 
 

																							ܿ௠௜௡ି௦௨௠ሺߨሻ ൌ ∑ ௉ݏ݀ܽ݋݈݁ݎ
௞ୀଵ                     (4) 

 
For min-max:  

 

ܿ௠௜௡ି௠௔௫ሺߨሻ ൌ maxቀ∑ ሻߨ௝௞ሺߙ
௡ೖିଵ
௝ୀଵ 	ቁ           (5) 

 
or simplified as: 

 
ܿ௠௜௡ି௠௔௫ሺߨሻ ൌ maxሺݏ݀ܽ݋݈݁ݎሻ                    (6) 

V. DESIGN OF IMPROVED GA 

Developed by Holland [26] in 1975, they have since been 
applied in a large range of domains such as engineering, social 
sciences, or physical sciences. It uses the same principle as the 
biological evolution in nature to improve generation after 
generation a given sets of solutions. It starts with a population 
in which each individual, called a chromosome, is a string of 
numbers corresponding to a layout combination of the 
facilities. Two chromosomes (called parents) are selected based 
on their score obtained via the fitness function (the lower the 
better). The parents mate and generate an offspring through an 
operation called crossover. Generation after generation, the 
stronger individuals, i.e. among the best solutions to the 
problem, are the survivors in a competitive environment. The 
population thus tends towards an optimal solution for the 
problem.  

A. TPC Crossover Process 

Unlike the available genetic operators previously proposed 
for the LLDP (such as partially mapped crossover, exchange 
crossover etc.), this study uses a crossover operator so as to 
search only the feasible space of offspring; thus, we save 
computational time by avoiding infeasible space. The TPC also 
considers the relative orders of genes within the two parents 
and thus creates better offspring able to intersect their parents’ 
characteristics. 

The idea of the TPC is to first randomly select two crossover 
points (gene number 3 and 7 in the following example Fig. 3). 
All the genes from parent 1 (P1) between those two points 
(genes 1, 5, 4) are then rearranged considering the order of 
those same genes in P2, which is 4, 1, 5. Same process for the 
genes of P2 is rearranged according to P1.  

B. Child Competition 

The presented algorithm features a selection within the 
crossover offspring sub-population to select the best children 
that will be reintroduced within the initial population, replacing 
the worst parents. A selected child is forbidden to be 
reintroduced if it already exists in the parents’ population. This 
mechanism ensures genetic variety and prevents premature 
convergence of the algorithm. 

 

 

Fig. 2 GA diagram 
 

 

Fig. 3 TPC  

C. Mutation Process 

A mutation operation is applied after crossover to ensure a 
greater diversity within the population and thus to consider a 
greater search space, as well as preventing the population from 
premature convergence. A chromosome is then randomly 
selected and two genes are swapped to create a mutant which is 
re-introduced in the population. The number of mutations 
occurring in one generation over the total size of the population 
is the mutation probability. The mutation occurs whether it 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1451

affects the quality of the population favorably or unfavorably. 
Its role is to induce changes and bring in new genetic features 
that increase the variety of the parents’ pool.  

The mutation process chosen here was the swap process 
because it provides a random change in the selected 
chromosome, where the crossover process uses logic and 
exchange between chromosomes. This chaotic factor breaks the 
overall generational continuity of the population and provides a 
greater genetic diversity. 

 

 

Fig. 4 Swap mutation process  

VI. COMPUTATIONAL EXPERIMENTS 

This section discusses the performance and computational 
efficiency of the proposed crossover operator in comparison to 
other meta-heuristics. Cheng and Gen’s GA [9] will be used as 
comparison against its PMX crossover. The results will be also 
compared with those of the SAA of Tian et al. [12], the DEA of 
Nearchou [14], and Kumar et al. studies algorithms (PSO, AIS, 
SFHA) [15], [16], [22]. All the results for those algorithms are 
taken from Kumar [22].  

The SAA study of Tian et al. [12] contained six different 
perturbation schemes (PS1–PS6) in order to generate random 
permutation solutions: random interchange of two adjacent 
terms (PS1), random interchange of two nonadjacent terms 
(PS2), single-term insertion (PS3), random movement of a 
subsequence of terms (PS4), reversion of a randomly selected 
subsequence of terms (PS5), reversion and/or movement of a 
randomly selected subsequence of terms (PS6). 

The comparison will be run on the examples taken from 
Nearchou [14] as it is the common examples used in the 
literature on the LLDP. It contains a wide variety of situations, 
with randomly generated problems ranging from 10 machines 
and three parts to 30 machines and 10 parts, described in Table 
I. Nearchou kept the GA from Cheng and Gen [11] with the 
original parameters, which are population size = 20, crossover 
probability Pc = 30% and mutation probability Pm = 30%. To 
be fair and produce an objective comparison, the different 
algorithms were left run for a maximum of 20,000 evaluations. 
An evaluation is defined as a single computation of the 
objective function of a candidate solution. This study will thus 
use the same parameters as Cheng and Gen run on the same 
examples described in Nearchou with the same evaluation 
limitation. 

The Kumar’s PSO and SFHA algorithms on the other hand 
were left running for 40,000 evaluations, so his comparison was 
obviously not fair compared to the one of Nearchou. A new 
comparison is then conducted with this new limitation factor 
for the hereby proposed TPC GA algorithm. The results also 
feature several measurements such as Solution Effort (SE) 
describing the efficiency of an algorithm to reach an optimal 
solution. This factor is calculated as below: 

ሺ%ሻܧܵ ൌ
௡௘೚೛೟
௡௘೟೚೟ೌ೗

ൈ 100                         (7) 

 
where ݊݁௢௣௧  is the number of evaluation performed by the 
algorithm to achieve its optimal solution, and ݊݁௧௢௧௔௟is the total 
number of evaluations. A low SE value could imply a fast 
convergence characterized as premature, whereas a high SE 
value could suggest that the algorithm has the ability to find 
even better solutions if running for a greater number of 
iterations.  

The CPU time in seconds until the convergence of the 
algorithm is also measured. Please note that the Nearchou’s 
results (DEA, GA and SAA) were obtained on a Pentium IV 
(1.7 GHz) personal computer and programmed in Pascal 
language. So, the CPU time results are obviously longer than 
our algorithm run on a Core i5 (2.5 GHz) processor under a 
Microsoft Windows 10 operating system and programmed in 
MATLAB. Kumar’s results (PSO, AIS and SFHA) are also 
obtained on a Pentium IV and programmed in Java language.  

VII. RESULTS AND DISCUSSION  

The different computation results are summed up into Table 
I. They are expressed into percentage of variation from the TPC 
GA compared to the previous best result from other algorithms 
on the same problem (a negative percentage means better). The 
results for the biggest problem (30 machines, 10 parts) are the 
most meaningful as the small dimension problems have lower 
values in congestion, which translates into huge variations in 
the percentages. It can thus be observed a fair improvement of 
the congestion on the biggest problem, which means the 
algorithms is worth studying and implementing. 

Usually one of the main drawbacks of the classic GA is its 
fast convergence rate, often premature in regard to the other 
algorithms rates. It usually prevents the algorithm to find an 
optimal solution as it is often trapped into a local optimum. But, 
it also allows it to produce good solutions quite fast compared 
to the other evolutionary algorithms. 

A big difference in SE% can be seen between GA and TPC 
GA: the original GA of Cheng and Gen tends to converge quite 
rapidly, while the TPC GA version used hereby has a slower 
convergence indicator. This is due to the selection process in 
the offspring population after crossover that refuses any 
offspring child that already exists in the initial parents’ 
population. This method considerably reduces premature 
convergence of the algorithm compared to the original version 
of Cheng and Gen. The genetic diversity is improved 
throughout the generations and leads to a greater pool of 
possible solutions. The high SE% observed for the improved 
GA signifies that the algorithm could be left running even 
longer to find better solutions. The cross over operator chosen 
also provides a faster calculation due to its anti-illegal offspring 
nature that saves the computation time necessary for test and 
replacement of infeasible children. It is also interesting to note 
the differences in CPU times measured, representing as 
previously stated the time for convergence of the algorithms. 
The large CPU times recorded for the improved algorithm are 
also a result of this high SE%. But, actually the overall 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1452

processing time of the studied GA is lesser than the other 
algorithms as calculated in Table VI on the most complex 
problem (30 machines, 10 parts) for meaningful results 
(deducted for other algorithms from SE% and convergence 
times). The improved GA is faster than the others algorithms. 
But, this difference can be attributed to the more powerful CPU 
used to run this algorithm compared to the previous studies of 
Nearchou and Kumar. 

 
TABLE I 

IMPROVEMENT PERCENTAGE FOR TPC GA  
Problem (No. of 

machines, No. of parts) 
No. of 

computations 
Min-Max Min-Sum 

10-3 
20,000 0 0 

40,000 0 0 

20-5 
20,000 +20 -20 

40,000 +6 0 

15-9 
20,000 0 -14 

40,000 +33 +33 

30-10 
20,000 -33 -11 

40,000 -2 -12.5 

 

VIII. CONCLUSION 

The improved GA presented hereby shows very good results 
in light of classical examples in literature on the subject. The 
different mechanisms used for optimization such as selection of 
offspring after crossover, elitism strategy, anti-illegal offspring 
crossover procedure and anti-reproduction of already existing 
chromosomes proved quite efficient and deserves to be 
implemented on further algorithms. It could also be interesting 
to apply to the other problems such as the bi-directional loop 
layout problem or with the other factors such as clearance 
limitations or multiple load/unload stations, or even shortcuts in 
the layout. Waiting times or limited capacity buffers could also 
be taken into account to better reflect the concrete operations in 
factories.  

APPENDIX 

This appendix presents the data input for computation (taken 
from [14]) and the results of calculation for each problem. Bold 
lines represent the best results. 

TABLE II 
MACHINE SEQUENCE 

Problem No. 
No. Of Machines, 

No. of Parts 
Part No. Required Machine Sequence 

1 10, 3 Part 1 2–1–6–5–8–9–3–4 

  Part 2 10–8–7–5–9–6–1 

  Part 3 9–2–7–4 

2 20, 5 Part 1 4–2–3–12–1–9–16–18–5–8–20–15–14–6–11 

  Part 2 10–9–1–3–18–17–5–6–2–11–4 

  Part 3 17–11–6–8–7–15–16–9–1–20 

  Part 4 14–17–11–3–16–5–13–18–20–19–12–10–6–8–15 

  Part 5 6–18–8–4–2–7–5–9–14–19–1–20–10–16–11–15–13–12 

3 15, 9 Part 1 4–2–5–1–6–8–14–9–11–3–15–12 

  Part 2 3–2–15–14–11–1–7–10–4–5–13–6–9 

  Part 3 5–6–11–15–2–12–3–4 

  Part 4 10–9–4–14–2–3–15–8 

  Part 5 11–2–4–14–5–3–15 

  Part 6 8–10–12–11–15–13–1–14–4–5–3 

  Part 7 5–11–10–3–7–13–8 

  Part 8 7–3–2–8–4–10–6–15–13–9–1 

  Part 9 11–13–3–1–12–14–4–8–9–2 

4 30, 10 Part 1 6–3–4–18–5–1–14–24–26–7–11–30–23–21–13–27–9–16–17–2–25–8–15 

  Part 2 17–9–11–8–10–22–24–13–2–29–23–21–25–16–4–20–26–18–15–12–27–6–3–7–28 

  Part 3 13–2–6–29–21–3–14–24–12–15–17–8–1–22–28–10–7–30–20–19 

  Part 4 7–2–6–11–21–8–16–30–1 

  Part 5 3–17–1–2–20–22–8–6–26–19–14–11–15–12–7–16–21–10–28–23–18–4–27–24–25–13–30– 9–5 

  Part 6 30–9–2 

  Part 7 15–9–30–19–12–3–6–5–8–14–7–28–23–1–29–24–27–2–13–4–26–16–11–10–25–21–22–20–18 

  Part 8 7–19–5–4–9–16–3–14–28–13–11–2–21–10–17–22–26–23–29–30 

  Part 9 21–4–1–6–11–22 

  Part 10 12–6–17–15–13–30–26–18–14–9–7–11–23–2–4–25–24 

 
 
 
 
 
 
 
 
 
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1453

TABLE III 
COMPARISON FOR THE 10-MACHINE, 3-PART PROBLEM 

Number of 
evaluations 

Algorithm 
Cost 

min_sum 
Cost 

min_max 
SE 
(%) 

CPU 
time 

Congestion for each part Optimal order of machines 

MIN_SUM approach 

20,000 

DEA_1 4 3 1.9 0.2 3–1–0 10–9–2–3–8–6–1–7–5–4 
DEA_2 3 2 22.5 2.0 1–2–0 6–5–10–8–9–3–2–7–1–4 

GA 3 2 1.0 0.0 1–2–0 10–5–8–9–3–2–7–4–1–6 
SA_PS1 5 2 5.2 1.4 2–2–1 6–5–10–8–1–9–7–3–4–2 
SA_PS2 5 2 0.4 0.2 2–2–1 3–2–6–1–7–5–10–8–4–9 
SA_PS3 3 2 24.1 0.4 1–2–0 10–8–9–2–7–1–3–6–4–5 
SA_PS4 3 2 9.9 1.3 2–1–0 5–10–8–9–2–3–7–6–4–1 
SA_PS5 3 2 3.7 0.8 2–1–0 5–10–8–9–2–6–1–3–7–4 
SA_PS6 3 2 32.6 3.3 2–1–0 8–9–5–10–1–4–2–6–7–3 
TPC GA 3 2 8.7 0.7 2-1-0 10–5–8–9–3–2–6–7–4–1 

40,000 

PSO 3 2 18.0 – 2–1–0 5–10–8–9–2–3–7–6–4–1 
AIS 3 2 7.2 0.0 2–1–0 10–5–8–9–2–7–3–4–6–1 

SFHA 3 2 6.7 0.0 1–2–0 10–6–5–8–9–2–7–3–4–1 
TPC GA 3 2 77.1 7.0 1–2–0 6–10–5–8–9–3–2–7–4–1 

MIN_MAX approach 
 DEA_1 6 2 12.8 0.9 2–2–2 2–3–4–6–7–5–10–8–9–1 

20,000 

DEA_2 4 2 0.1 0.0 2–2–0 9–2–6–3–7–10–5–1–4–8 
GA 6 2 0.4 0.0 2–2–2 2–10–8–3–4–1–9–6–7–5 

SA_PS1 5 2 2.3 0.7 2–2–1 7–5–10–8–9–1–3–4–6–2 
SA_PS2 4 2 0.4 0.5 2–2–0 9–10–6–2–7–5–3–4–1–8 
SA_PS3 3 2 0.1 0.5 2–1–0 5–10–8–9–2–6–3–7–1–4 
SA_PS4 6 2 0.1 0.7 2–2–2 10–7–2–5–6–8–9–3–1–4 
SA_PS5 7 3 0.1 0.2 3–3–1 1–5–8–10–9–4–2–7–6–3 
SA_PS6 5 2 0.2 1.3 2–2–1 10–6–2–3–7–1–4–5–8–9 
DEA_2 4 2 0.1 0.0 2–2–0 9–2–6–3–7–10–5–1–4–8 

 TPC GA 3 2 90.1 4.5 1–2–0 6–5–10–8–9–2–7–3–1–4 

40,000 
AIS 3 2 8.0 0.0 1–2–0 10–8–9–3–2–7–1–6–5–4 

SFHA 3 2 7.8 0.0 1–2–0 5–10–8–9–2–1–3–7–4–6 
TPC GA 3 2 91.5 9.5 1–2–0 6–5–10–8–9–2–3–7–4–1 

 
TABLE IV 

COMPARISON FOR THE 20-MACHINE, 5-PART PROBLEM 
Number of 
evaluations 

Algorithm 
Cost 

min_sum 
Cost 

min_max 
SE 
(%) 

CPU
time

Congestion for each part Optimal order of machines 

MIN_SUM approach 

20,000 

DEA_1 23 7 32.4 2.0 6–3–2–5–7 18–1–2–20–3–14–10–17–5–6–8–7–11–12–15–13–16–4–19–9 
DEA_2 17 6 66.6 3.3 4–2–2–3–6 14–10–18–17–5–6–8–4–2–7–9–1–20–11–3–15–19–13–16–12 

GA 18 5 3.4 1.1 4–2–3–4–5 10–9–14–6–19–2–16–12–18–1–17–5–8–11–20–3–7–15–4–13 
SA_PS1 22 7 53.0 0.6 5–4–2–4–7 12–2–14–6–8–7–1–17–20–10–15–11–3–16–19–18–5–9–13–4 
SA_PS2 22 6 38.8 5.9 6–4–4–4–4 14–13–3–16–17–19–9–1–7–11–5–18–6–8–15–20–4–12–10–2 
SA_PS3 21 5 80.8 6.9 4–4–3–5–5 20–14–2–6–19–17–15–7–10–18–8–12–11–1–9–5–4–3–16–13 
SA_PS4 21 6 27.3 2.3 6–4–3–4–4 10–6–2–17–16–1–18–8–20–11–7–15–5–13–19–12–4–9–3–14 
SA_PS5 22 6 20.1 1.5 4–4–4–6–4 13–4–9–7–14–19–1–2–3–6–12–20–10–16–18–17–11–15–5–8 
SA_PS6 22 5 20.7 3.0 4–4–4–5–5 10–4–16–14–7–2–19–17–5–1–3–6–11–9–18–8–13–12–20–15 
TPC GA 18 6 91.0 6.1 6–3–2–3–4 4–10–2–7–16–17–5–9–1–11–3–13–14–6–18–8–20–15–19–12 

40,000 

PSO 16 4 43.3 – 4–3–2–3–4 10–16–18–5–9–14–6–1–8–4–2–17–20–11–19–7–15–13–3–12 
AIS 16 4 55.4 2.8 4–2–2–4–4 10–16–18–17–5–6–9–8–4–1–2–7–11–20–15–14–19–13–3–12 

SFHA 16 4 41.2 2.5 4–2–2–4–4 10–16–18–17–5–6–9–8–1–4–2–7–11–20–15–14–19–13–3–12 
TPC GA 17 5 62.1 8.9 5–4–2–2–4 5–9–14–6–13–18–8–1–4–2–17–11–20–19–3–7–15–12–10–16 

Number of evaluations
MIN_MAX approach 

 DEA_1 28 7 1.3 0.9 6–5–4–7–6 6–12–17–9–20–3–15–14–19–1–16–8–10–11–13–4–2–18–7–5 

20,000 

DEA_2 23 5 21.4 2.2 5–5–4–4–5 1–4–10–3–2–16–9–17–14–6–18–11–20–5–8–15–19–7–13–12 
GA 24 5 4.1 2.9 5–5–4–5–5 11–9–2–3–18–13–15–20–10–4–17–6–16–14–5–7–8–1–19–12 

SA_PS1 24 5 45.2 2.7 5–5–4–5–5 6–17–13–2–7–18–5–11–20–3–19–12–9–15–10–1–8–16–14–4 
SA_PS2 25 5 62.2 8.0 5–5–5–5–5 3–8–9–12–13–10–14–20–5–15–18–7–6–17–11–16–2–19–1–4 
SA_PS3 24 5 3.8 2.8 5–4–5–5–5 9–3–10–17–14–16–7–5–8–6–19–4–2–13–12–1–11–18–15–20 
SA_PS4 24 5 6.2 1.4 4–5–5–5–5 19–6–13–16–18–4–2–7–5–11–12–10–8–15–1–9–20–3–14–17 
SA_PS5 28 6 42.4 5.7 6–4–6–6–6 3–16–5–9–20–10–15–7–14–1–6–18–8–11–19–4–13–2–17–12 
SA_PS6 28 5 45.9 3.1 4–5–5–5–5 20–15–4–9–16–12–5–11–2–1–13–18–7–17–19–6–14–3–8–10 
TPC GA 20 4 39.3 3.0 4–4–4–4–4 14 –4–2–10–16–19–17–7–5–1–3–6–13–18–8–9–20–11–12–15

40,000 
AIS 17 4 18.2 1.6 4–4–2–3–4 18–5–9–14–6–1–8–4–2–17–20–11–3–7–15–19–13–12–10–16 

SFHA 16 4 16.5 1.4 4–2–2–4–4 10–16–18–17–5–9–6–8–4–1–2–7–11–20–15–14–19–13–3–12 
TPC GA 16 4 70.3 11.5 3–2–4–3–4 4–10–9–1–14–6–2–3–16–7–18–17–11–5–8–20–15–13–19–12 

 
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1454

TABLE V 
COMPARISON FOR THE 15-MACHINE, 9-PART PROBLEM 

Number of 
evaluations 

Algorithm 
Cost  

min_sum 
Cost 

min_max 
SE 
(%) 

CPU
time

Congestion for each part Optimal order of machines 

MIN_SUM approach 

20,000 

DEA_1 28 4 47.8 12.0 3–4–4–4–2–4–2–3–2 9–4–5–11–13–7–10–3–1–2–12–6–8–15–14 

DEA_2 24 4 39.5 9.0 3–4–3–2–2–4–1–4–1 5–7–11–13–10–3–1–6–15–12–8–14–9–2–4 

GA 24 4 31.6 3.8 2–4–3–2–2–4–1–4–2 4–7–5–11–13–10–3–1–6–15–8–14–9–2–12 

SA_PS1 26 5 77.2 29.9 5–5–2–2–1–3–2–3–3 7–5–6–14–11–3–8–15–13–2–10–1–9–12–4 

SA_PS2 28 5 62.9 16.3 5–4–3–2–2–3–1–3–5 4–12–2–5–3–15–14–6–7–8–11–13–10–9–1 

SA_PS3 26 5 34.7 9.9 5–4–2–2–1–4–1–3–4 10–14–7–3–15–11–1–12–2–13–5–6–9–8–4 

SA_PS4 28 5 29.3 2.7 5–5–3–2–1–3–2–3–4 14–7–5–10–9–12–11–6–3–2–15–4–13–1–8 

SA_PS5 32 6 40.8 6.3 5–3–2–2–3–6–1–5–5 12–10–3–1–15–4–14–5–7–2–13–6–8–9–11 

SA_PS6 26 5 37.7 1.4 4–4–2–2–2–5–1–3–3 7–1–10–8–5–14–11–3–2–6–13–9–4–12–15 

TPC GA 24 4 27.4  1.2 2–4–3–2–3–4–1–4–1 5–7–11–13–10–3–1–6–15–8–12–14–9–4–2 

40,000 

PSO 24 4 33.3 – 2–4–4–2–2–3–1–4–2 4–5–11–7–10–3–15–13–1–12–6–8–14–9–2 

AIS 24 3 31.2 4.7 3–3–3–3–2–3–1–3–3 5–11–7–10–3–2–15–13–1–6–12–8–14–9–4 

SFHA 24 3 31.1 4.5 3–3–3–3–2–3–1–3–3 5–7–11–10–3–2–15–13–1–6–12–8–14–9–4 

TPC GA 24 4 46.9 4.2 2–4–4–2–2–4–1–4–1 4–5–7–11–10–13–3–1–6–15–12–8–14–9–2 

Number of evaluations 

MIN_MAX approach 

 DEA_1 33 6 47.7 12.5 4–6–4–4–3–4–2–4–3 9–4–5–11–13–7–10–3–1–2–12–6–8–15–14 

20,000 

DEA_2 28 4 10.7 14.9 3–4–3–3–3–3–3–3–3 7–11–3–4–2–15–5–13–8–1–10–9–6–12–14 

GA 28 4 13.3 13.3 4–4–3–3–2–4–2–3–3 7–14–4–11–2–10–5–13–12–3–6–8–9–1–15 

SA_PS1 32 4 64.7 17.0 4–3–3–4–3–4–3–4–4 8–7–11–10–3–5–2–15–14–13–1–6–9–12–4 

SA_PS2 31 4 23.7 1.9 4–4–3–4–2–4–3–4–3 4–5–10–13–1–7–8–6–9–11–3–2–12–15–14 

SA_PS3 32 4 20.1 1.5 4–4–4–3–4–4–2–3–4 15–7–5–10–12–14–13–11–9–1–4–3–6–2–8 

SA_PS4 34 4 36.1 2.3 4–4–4–4–3–4–3–4–4 15–13–11–10–4–5–1–7–12–3–6–2–14–8–9 

SA_PS5 30 4 41.8 7.2 4–4–4–3–2–4–2–4–3 14–4–11–5–10–3–2–1–15–13–12–8–9–6–7 

SA_PS6 30 4 45.2 8.3 4–4–4–3–1–3–3–4–4 4–13–1–8–14–7–10–6–9–5–11–12–3–2–15 

TPC GA 24 4 70.8  3.3 2–3–4–3–2–4–1–3–2 4–5–7–11–13–10–3–1–6–2–15–8–12–14–9 

40,000 

AIS 24 4 28.4 4.4 2–4–3–3–2–3–1–3–3 4–7–5–11–10–3–15–2–13–1–6–8–12–14–9 

SFHA 24 3 26.9  4.2 3–3–3–3–2–3–1–3–3 5–11–7–10–3–2–15–13–1–12–6–8–14–9–4 

TPC GA 24 4 34.4 3.2 3–4–3–2–2–4–1–4–1 7–5–11–10–13–3–1–6–15–8–12–14–9–2–4 

 
TABLE VI 

COMPARISON FOR THE 30-MACHINE, 10-PART PROBLEM 

Number of 
evaluations 

Algorithm 
Cost 

min_sum 
Cost 

min_max 
SE (%) 

CPU 
time (s)

Overall 
processing 

time (s) 

Congestion  
for each part 

Optimal order of machines 

MIN_SUM approach 

20,000 

DEA_1 69 12 40.5 3.3 8.1 
10–11–7–4–12 
–1–9–8–2–5 

 12–23–15–3–4–6–17–9–7–13–11–22–5–26–30–16– 
25–20–27–18–19–8–21–10–2–1–29–14–24–28 

DEA_2 53 12 74.7 3.6 4.8 
5–6–7–2–12 
–1–10–7–1–2 

12–13–6–29–3–14–27–17–9–7–11–30–23–5–2–21– 
4–10–25–1–22–8–20–24–26–19–18–15–28–16 

GA 61 12 8.5 3.0 35.3 
8–7–8–3–12 
–0–10–6–1–6 

7–30–17–19–27–14–28–15–9–23–5–21–8–1–24–16– 
12–13–6–11–10–3–2–4–22–20–29–26–25–18 

SA_PS1 68 14 74.2 16.5 22.2 
8–9–7–3–11 
–1–14–8–1–6 

21–9–24–12–19–7–25–3–6–11–28–5–10–4–29–13– 
23–17–8–2–18–1–16–27–30–22–15–14–20–26 

SA_PS2 68 11 81.5 11.0 13.5 
8–9–8–3–11 
–1–11–8–2–7 

20–8–23–12–24–9–30–6–29–1–28–5–26–25–19–3– 
11–16–4–10–7–14–17–13–18–27–15–21–2–22 

SA_PS3 69 12 61.6 15.2 24.6 
10–9–7–4–12 
–0–10–7–3–7 

4–3–14–27–13–6–28–30–5–10–17–1–22–29–15–8– 
25–12–6–9–23–16–11–20–2–21–7–24–18–19 

SA_PS4 68 13 34.9 6.6 18.9 
9–7–8–3–13 
–1–11–7–2–7 

6–13–18–21–3–5–26–28–11–16–29–23–12–8–10–25–
17–4–14–7–22–19–15–27–9–30–1–2–20–24 

SA_PS5 69 14 37.7 1.5 4.0 
8–9–8–4–14 
–1–10–7–2–6 

17–1–28–7–21–15–18–26–29–24–14–9–30–27–20– 
19–3–16–22–25–10–11–13–8–5–6–23–2–4–12 

SA_PS6 68 12 35.9 9.3 25.9 
8–9–9–3–12 
–1–10–8–2–6 

26–28–22–25–8–15–4–7–9–2–11–30–13–18–1–6– 
27–16–10–12–5–3–17–19–23–29–14–24–21–20 

TPC GA 53 8 92.1 7.7 8.4 
8–8–6–2–7

–1–8–6–2–5 
10–3–18–14–20–15–13–12–4–17–27–9–2–6–29–7–

16–11–21–22–25–30–28–24–26–19–5–23–8–1 

40,000 
PSO 53 12 63.3 – – 

5–6–7–2–12 
–1–10–7–1–2 

13–12–6–3–14–29–17–27–9–7–11–30–5–23–2–21– 
10–4–1–22–25–20–8–24–26–18–19–28–16–15 

AIS 50 8 27.9 6.4 22.9 
7–6–6–2–8 

–0–8–7–1–5 
21–8–15–12–13–30–3–4–10–17–27–1–14–9–22– 
7–2–6–25–20–29–24–26–16–11–19–28–23–18–5 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1455

Number of 
evaluations 

Algorithm 
Cost 

min_sum 
Cost 

min_max 
SE (%) 

CPU 
time (s)

Overall 
processing 

time (s) 

Congestion  
for each part 

Optimal order of machines 

SFHA 50 8 26.3 6.0 22.8 
7–6–6–2–8 

–0–8–7–1–5 
21–8–15–12–13–10–3–4–30–17–27–1–14–9–22– 
7–2–6–25–20–29–24–26–16–11–19–28–23–18–5 

TPC GA 49  8 76.1 12.5 16.4 
7–7–7–3–7 

–1–8–5–1–3 
26–15–16–18–12–21–6–3–5–4–10–27–17–14–9–7–

28–13–11–30–23–1–2–20–25–29–22–8–19–24 

MIN_MAX approach 

 DEA_1 79 12 40.5 3.7 9.1 
9–10–9–5–12 
–1–11–9–3–10 

6–16–20–4–28–17–9–23–21–1–8–18–22–24–11– 
28–10–30–13–27–25–3–19–29–15–14–2–12–5–7 

20,000 

DEA_2 68 9 36.2 2.4 6.6 
9–9–9–4–9 

–1–9–8–3–7 
12–28–27–8–11–23–30–3–17–1–18–4–2–21–10– 
14–29–7–15–9–6–22–24–20–25–5–13–26–16–19 

GA 74 10 14.6 6.5 44.5 
10–10–10–4–10 

–1–10–7–2–7 
6–9–7–18–10–3–15–17–28–23–19–25–1–13–16– 21–

14–4–29–11–22–30–12–24–2–6–20–27–5–8 

SA_PS1 77 11 14.2 7.8 54.9 
11–11–8–5–11 
–1–10–10–2–8 

3–25–17–1–29–16–14–20–18–13–11–6–21–5–9–27– 
22–8–10–2–24–4–19–7–15–30–28–23–12–26 

SA_PS2 76 11 17.0 1.7 10.0 
10–8–11–4–11 
–1–11–9–2–9 

–15–10–21–24–19–12–17–9–4–7–20–5–2–1–25– 29–
26–14–28–16–22–3–27–23–13–18–11–8–30 

SA_PS3 73 11 3.4 3.9 114.7 
10–9–10–2–11 
–1–11–8–3–8 

–13–17–8–1–20–18–15–3–30–28–6–21–14–10–12– 4–
22–9–26–29–5–19–2–16–24–11–23–27–25 

SA_PS4 78 11 5.1 6.1 119.6 
11–11–9–5–11 
–0–11–10–2–8 

–13–17–8–1–20–18–15–3–30–28–6–21–14–10–12– 4–
22–9–26–29–5–19–2–16–24–11–23–27–25 

SA_PS5 76 11 10.3 3.3 32.0 
10–10–9–4–11 
–1–11–10–1–9 

6–9–20–5–28–11–14–3–29–15–26–10–24–2–25–16– 
19–23–13–8–12–30–17–18–21–4–1–27–7–22 

SA_PS6 71 11 7.9 1.0 12.6 
10–10–8–4–11 
–1–11–7–3–6 

4–3–25–20–16–23–21–10–6–14–15–22–26–29–9–18– 
24–17–13––7–27–11–1–19–30–5–2–12–8–28 

TPC GA 56 8 92.1  7.4 8.0 
7–8–8–4–7 

–1–7–7–1–6 
20–26–19–23–8–1–18–15–14–12–25–6–9–29–7–16–

5–21–10–11–22–3–30–28–24–13–4–27–17–2 

40,000 

AIS 51 8 21.8 5.8 26.6 
8–7–6–2–8 

–0–8–6–1–5 
21–8–15–12–3–13–10–4–30–17–1–22–27–14–9–7–2– 

20–28–25–6–26–11–23–29–24–19–18–5 

SFHA 50 8 19.4 5.5 28.4 
7–6–6–2–8 

–0–8–7–1–5 
21–8–15–13–12–30–3–4–10–17–27–1–14–9–22–7–2– 

6–25–20–29–24–26–16–11–19–28–23–18–5 

TPC GA 50 7 93.5 15.5 16.6 
7–7–7–3–7 

–0–7–7–1–4 
6–21–3–13–5–4–11–17–30–20–1–25–22–26–8–18–

19–15–14–24–12–10–9–7–28–23–27–2–16–29 

 
REFERENCES  

[1] Tompkins J. A., White J. A., Bozer Y. A., Tanchoco J. M. A. (2003) 
Facilities planning, 3rd edn. Wiley, New York.  

[2] Huang, C., Wong, C. K., & Tam, C. M. (2010). Optimization of material 
hoisting operations and storage locations in multi-storey building 
construction by mixed-integer programming. Automation in 
Construction, 19(5), 656–663.  

[3] Tompkins J. A., White J. A. (1984) Facilities planning. Wiley, New York 
[4] Afentakis, P. (1989): A loop layout design problem for flexible 

manufacturing systems, International Journal of Flexible Manufacturing 
Systems, 1, 2 175-196. 

[5] Leung, J. (1992) A graph-theoretic heuristic for designing loop-layout 
manufacturing systems. European Journal of Operational Research, 57, 
243-252. 

[6] Bozer Y. A., Rim S. C. (1989) Exact solution procedures for the circular 
layout problem. Technical Report 8933. University of Michigan. 

[7] Kouvelis P., Kim M. W. (1992). Unidirectional loop network layout 
problem in automated manufacturing systems. Oper Res 40:533–550. 

[8] Tansel B. C., Bilen C. (1998) Move based heuristics for the unidirectional 
loop network layout problem. Eur J Oper Res 108(1):36–48. 

[9] Cheng, R. and Gen, M. Genetic algorithms for designing loop layout 
manufacturing systems, in Proceedings of the 18th International 
Conference on Computer and Industrial Engineering, 1995, pp. 187 191. 

[10] Banerjee P., Zhou Y. (1995) Facilities layout design optimization with 
single loop material flow path configuration. Int J Prod Res 33(1):183–
203. 

[11] Cheng, R., Gen, M. (1998): Loop layout design problem in flexible 
manufacturing systems using genetic algorithms, Computers and 
Industrial Engineering, 34, 1 53-61. 

[12] Tian, P., Ma, J., Zhang, D.-Mo., 1999. Application of simulated annealing 
to the combinatorial optimization problem with permutation property: An 
investigation of generation mechanism. European Journal of Operational 
Research 118, 81–94. 

[13] Bennell J. A., Potts C. N., Whitehead J. D. (2002) Local search algorithms 
for the min–max loop layout problem. J Oper Res Soc 53:1109–1117. 

[14]  Nearchou A. C. (2006): Meta-heuristics from nature for the loop layout 
design problem. Int J Prod Econ 101:312–328. 

[15] Kumar R. M. S., Asokan P., Kumanan S. (2008) Design of loop layout in 
flexible manufacturing system using non-traditional optimization 
technique. Int J Adv Manuf Technol 38(5–6):594–599. 

[16] Kumar R. M. S., Asokan P., Kumanan S. (2009) Artificial immune 
system based algorithm for the unidirectional loop layout problem in a 
flexible manufacturing system. Int J Adv Manuf Technol 40(56):553–
565. 

[17] Ma S., Liu Z. C., Shi Y. J. (2013) A dual system method with differential 
evolution and genetic algorithm for loop-based station sequencing 
problem. Inf Technol J 12(4):728–734. 

[18] Hu Zhang, Min-min Xia, Li-ling Jiang, Yi Zhang, Tong-tong Lu, (2009) 
“Research on Applying Unidirectional Loop Layout to Optimize Facility 
Layout in Workshop Based on Improved Genetic Algorithm”. 

[19] Niroomand S, Vizvari B (2013) A mixed integer linear programming 
formulation of closed loop layout with exact distances. J Ind Prod Eng 
30(3):190–201. 

[20] Niroomand S., Vizvari B. (2016) Modified migrating birds optimization 
algorithm for closed loop layout with exact distances in flexible 
manufacturing systems. Expert Systems with Applications, Vol.42 (19) 
:6586-6597. 

[21] Ramezani M., Bashiri M., Moghaddam R. T. (2012) A robust design for a 
closed loop supply chain network under an uncertain environment. Int J 
Adv Manuf Technol. 1–19 M.  

[22] Saravanan & S. Ganesh Kumar (2014): Design and optimisation of loop 
layout problems flexible manufacturing system using sheep flock heredity 
algorithm. 

[23] Anandaraman C. (2011) An improved sheep flock heredity algorithm for 
job shop scheduling and flow shop scheduling problems. Int J Ind Eng 
Comput 2(4):749–764. 

[24] Manita G., Korbaa O., (2013), A Min-Max ANT colony algorithm for 
machine loop layout problem, 21st Mediterranean Conference on Control 
& Automation 978-1-4799-0997. 

[25] Hou L., Liu Z., Shi Y., Zheng X., (2016) Optimizing Machine 
Assignment and Loop Layout in Tandem AGV Workshop by 
Co-Evolutionary Methodology, 20th International Conference on 
Computer Supported Cooperative Work in Design 978-1-5090-1915. 

[26] Holland, J. H., (1975). Adaptation in Natural and Artificial Systems. The 
University of Michigan Press, Ann Arbor, MI. 


