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 
Abstract—Voltage sag, voltage swell, high-frequency noise and 

voltage transients are kinds of disturbances in power quality. They 
are also known as power quality events. Equipment used in the 
industry nowadays has become more sensitive to these events with 
the increasing complexity of equipment. This leads to the importance 
of distributing clean power quality to the consumer. To provide better 
service, the best analysis on power quality is very vital. Thus, this 
paper presents the events detection focusing on voltage sag and swell. 
The method is developed by applying time domain signal analysis 
using wavelet transform approach in MATLAB. Four types of mother 
wavelet namely Haar, Dmey, Daubechies, and Symlet are used to 
detect the events. This project analyzed real interrupted signal 
obtained from 22 kV transmission line in Skudai, Johor Bahru, 
Malaysia. The signals will be decomposed through the wavelet 
mothers. The best mother is the one that is capable to detect the time 
location of the event accurately. 

 
Keywords—Power quality, voltage sag, voltage swell, wavelet 

transform. 

I. INTRODUCTION 

LECTRIC utilities control voltage levels and quality but 
they are unable to control current [1]. It can be concluded 

that power quality is equal to voltage quality. Thus, to 
investigate voltage quality in a power system, it is adequate by 
focusing on analyzing voltage sag and voltage swell occur in 
the system. Obviously, before analyzing any power quality 
disturbance, a very important process is the detection. 
Accurate detection of undesired transient disturbances is very 
vital. 

Wavelet transforms are mathematic tools which can be 
exercised in the detection of transient events. They have been 
developed since many years back and are very useful tools to 
solve frequency-dependent problems in many areas. The main 
advantage of wavelet transforms over the traditional Fourier 
transforms is its ability to identify the locations containing 
observed frequency content. Wavelet decomposition also 
allows a signal to be analyzed at different resolution levels. 
For a broad range of real-world signals, a discrete wavelet 
transform (DWT) is capable to provide a very efficient 
representation [2]. 

II. VOLTAGE SAG 

Voltage sag is the most common disturbance and very 
important aspect of power quality. Depending on the source of 
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the system faults, it can occur randomly and this makes it 
really hard to predict [1]. In IEEE Standard 1159-1995, IEEE 
Recommended Practice for Monitoring Electric Power 
Quality, voltage sag was defined as a reduction in the RMS 
voltage. This event normally occurs at the power frequency 
between 0.1 pu and 0.9 pu for between half cycle and one 
minute [3]. Fig. 1 shows voltage sag signal obtained from a 22 
kV transmission line, which later is to be analyzed. 

III. VOLTAGE SWELL 

According to the IEEE Standard 1159-1995, the IEEE 
Recommended Practice for Monitoring Electric Power 
Quality, a voltage or current swell is an increase in the RMS 
value between 1.1 pu and 1.8 pu at the power frequency. It can 
happen in durations less than one minute [3]. Swell is 
commonly caused by system fault conditions, switching off a 
large load or energizing a large capacitor bank [1]. But it is 
less common compared to voltage sag. On the normal phases, 
it also can occur during a single line-to-ground fault (SLGF) 
with a temporary voltage rise. Its characteristics are described 
by both of the magnitude and duration. Fig. 2 shows the 
voltage swell signal which is also obtained from 22 kV 
transmission line. 

IV. THE DWT 

The DWT is a unique wavelet transform that is capable to 
provide a compact representation of a signal in terms of 
frequency and time [4]. It can be computed efficiently by 
successive low pass and high pass filtering of the discrete 
time-domain. The DWT is calculated based on two 
fundamental equations: The scaling function ߶ (t) and the 
wavelet function ψ (t), where:  

 

߶ሺݐሻ ൌ √2∑ ݄௞௞ ߶ሺ2ݐ െ ݇ሻ  
 

ψሺݐሻ ൌ √2∑ ݃௞௞ ψሺ2ݐ െ ݇ሻ  
 

These functions are two-scale difference equations based on 
a chosen mother wavelet, with properties that satisfy the 
conditions: 

 

∑ ݄௞ே
௞ିଵ ൌ √2  

 

∑ ݄௞
ே
௞ିଵ ݄௞ାଶ௟ ൌ 1	݂݅	݈ ൌ 0	 ൌ 0	݂݅	݈	߳	ܼ, ݈ ് 0  

 

The discrete sequences ݄௞  and ݃௞  represent discrete filters 
that solve each equation, where N is the sampling number and  

 

݃௞ ൌ 	 ሺെ1ሻ୩	݄ே	ିଵି௞. 
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Fig. 1 Voltage sag 
 

 

Fig. 2 Voltage swell 
 

Orthonormal basis functions come in a few classes. The 
scaling and wavelet functions are the prototype of a class for 
the following form: 

 

߶௝,௞ሺݐሻ ൌ 2
ೕ
మ	߶ሺ	2௝ݐ െ ݇ሻ; 	݆, ݇ ∈ ܼ  

 

߰	௝,௞ሺݐሻ ൌ 2
ೕ
మ	߰ሺ	2௝ݐ െ ݇ሻ; 	݆, ݇ ∈ ܼ  

 
Z is set of integers for ݆ and ݇. The purpose of parameter j is 

to control the dilation or compression of the function in scale 
of time and amplitude. While the translation of the function in 
time, will be controlled by parameter k. 

V. MULTI-RESOLUTION ANALYSIS DECOMPOSITION 

There is an algorithm with a capability to decompose an 
original signal into several other signals with different levels 
of resolution. It is called the multi resolution analysis (MRA) 
algorithm. When the original signal is decomposed, 
approximation coefficients and detailed coefficients are 
obtained. A filter bank with low and high pass filter is needed 
to excerpt details and approximations from the original 
signals. The low pass filter will remove high frequency 
components and the high pass filter will pick out the high 
frequency contents in the signal being analyzed. DWT uses 
the scaling function ߶ (t), and the wavelet function ψ (t), to 
perform simultaneously the MRA decomposition of a 
measured signal. From the decomposed signal, the original 
time domain signal can be recovered without losing any 
information. The recursive mathematical representation of the 
MRA is as: 

 

௝ܸ ൌ ௝ܹାଵ⨁ ௝ܸାଵ ൌ ௝ܹାଵ⨁ ௝ܹାଶ⨁…	⨁ ௝ܹା௡⨁ ௝ܸା௡ 
 
where ௝ܸାଵ is the approximated version of the given signal at 
scale j+1, ௝ܹାଵ  is the detailed version that displays all 

transient phenomena of the given signal at scale j+1, ⨁ 
denotes a summation of two decomposed signals, n is the 
decomposition level. 

MRA will find the average features and the details of the 
signal. The concept used is via the scalar products with scaling 
signals and wavelets [5]. Every mother wavelet functions such 
as Haar, Dmey, Daubechies, and Symlet are different to each 
other depending on the characteristic of the wavelet. 

VI. MOTHER WAVELET FUNCTIONS 

The very first known and the simplest wavelet is Haar and it 
is similar to Daubechies, Db1 [6]. Fig. 3 shows the 
characteristic as discontinuous step function. It has 
asymmetric, orthogonal, biorthogonal properties of 
decomposition.  

 

 

Fig. 3 Characteristic of mother wavelet Haar 
 

Dmey wavelet is a Finite Impulse Response (FIR). By 
applying DWT, it allows fast wavelet coefficients calculation. 
Its properties are symmetric, orthogonal and biorthogonal. The 
Dmey wavelet characteristic can be seen in Fig. 4. 

Except for Db1, Daubechies wavelets have no explicit 
expression. Their properties are exactly the same with Haar. 
Daubechies introduces modifications of the wavelets that 
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increase their symmetry and yet retain their simplicity. Here in 
Fig. 5 are the wavelet functions of the three members of the 
family which are presented in this paper.  

 

 

Fig. 4 Characteristic of mother wavelet Dmey 
 

 

Fig. 5 Characteristic of mother wavelet Daubechies 
 

The properties of the Daubechies and Symlet wavelet 
families are similar. This is because Symlets are modifications 
to the Daubechies family. Yet, Symlets are more symmetrical. 
For Symlets, this paper presents three members of the family, 
as shown in Fig. 6. 

 

 

Fig. 6 Characteristic of mother wavelet Symlets 

VII. LITERATURE REVIEW 

In 2010, Lachman et al. conducted a procedure of software-
based approach techniques for detection of power disturbances 
by time and frequency analysis with wavelet transform. The 
purpose is to provide a promising tool in detecting power 
quality problems. They generate several disturbances 
including notch, harmonic, interharmonic and DC offset noise. 
To get sufficient information, they used Daubechies 4 wavelet 
up to level six. Their procedures showed that the accuracy of 
disturbance time localization decreases as scale increases. 
They obtained that time detection of disturbances more 
accurate at lower scales and frequency at high scales. It was 
concluded that the use of scaling makes detection of power 
disturbances easier and essential in the detection process is the 
choice of appropriate mother wavelet [7]. 

Haar and Daubechies 4 are chosen by Gonzalez and Moreno 
from University of Cordoba as the mother wavelet in 
analyzing voltage disturbances. They were applied to detect 

and localize disturbances in voltage waveform. Frequency 
variations, slow and fast voltage variations, flicker, sags, 
swells and harmonics were developed by using MATLAB. In 
order to detect the disturbances, they applied the first level of 
decomposition for both wavelets. Only then, they found that 
Daubechies 4 is better than Haar in determining the time in 
which the disturbance appears and disappears [8]. 

Sushama and Tulasi from Hyderabad, India proposed two 
prominent methods for detection and classification of power 
quality disturbance. The first method is based on adaptive 
decomposition signal and the second method is based on 
wavelet transform. The proposed scheme is implemented 
using MATLAB. They considered voltage swell for 
comparing both approaches. By using statistical analysis of 
adaptive decomposition signal and Daubechies 4 wavelets 
with four levels of decomposition, they successfully proved 
that both methods can effectively detect any type of power 
quality disturbances at a faster rate [9]. 

In August 2007, Ying et al. from North China developed an 
efficient approach which is capable to detect and identify 
different disturbances in high accuracy and rapid speed. 
Wavelet decomposition is used for extracting the features of 
various disturbances. Then, decision tree method was used for 
classifying the disturbances. Voltage interrupt, swell, sag, and 
harmonics are generated in simulation experiment to show the 
effectiveness of proposed method. For online application, 
sliding window model and one-pass scan algorithms for 
wavelet decompositions are used [10]. 

Electrical Engineering professors, Chandrasekar and 
Kamaraj proposed a fresh method for detecting and classifying 
power disturbances. They used modified wavelet transform 
(MWT) for detection process and artificial neural network 
(ANN) to classify the disturbances. The proposed method is 
proven to provide better detection for both low and high 
frequency disturbances at different levels of noise. Besides, 
the combination of MWT and ANN developed a powerful tool 
for detection ad classification of power disturbances in all 
conditions and all types of transmission lines [11]. 

Sharmeela et al. from University of Anna, Chennai 
presented a procedure to detect and classify power quality 
disturbances using wavelets. They applied various types of 
wavelets and 8th level of decomposition each for a particular 
class of disturbances. Wavelets used are Haar, Bior, Coif, 
Sym5, DMeyer and Daubechies. Qualitatively compared, the 
results show the advantages and drawbacks of each wavelet 
when applied to detect the disturbances. Obtained that, Db3 
detects transients, Db10 and Sym8 detect voltage flicker, 
Dmey detects harmonics and Db4 detects voltage Sag/Swell 
accurately. This procedure was tested for a large class of test 
conditions simulated in MATLAB [12].  

In this study, Haar, Dmey, Daubechies and Symlet will be 
exercised as mother wavelets. While for the level of 
decomposition, decided that level 5 is sufficient to be applied. 
Most of the works in previous studies were implemented using 
simulated source signal of disturbance events. To make it 
more reliable, a real sample data recorded from 22 kV 
transmission line in Skudai, Johor Bahru will be analyzed.  
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VIII. METHODOLOGY 

Applied as an original real sample data, the interrupted 
signals were recorded using Reliable Power Meter (RPM) 
equipment at 22 kV of transmission line in Skudai, Johor 
Bahru on February 2, 2001. Then, the obtained data displayed 
into CBEMA curve in RPM, as shown in Fig. 7.  
 

 

Fig. 7 CBEMA curve 
 
Events at the upper boundary of the curve are over voltage 

events where we can find voltage swell. On the contrary, 
voltage sag can be found at the lower side of the boundary 
where there are under voltage events occurred. Over voltage 
and under voltage events data were extracted into Excel which 
to be plotted in MATLAB workspace.  

Then the plotted signal will be decomposed using the four 
wavelet mothers which have been mentioned before. To find 
out the accuracy for every mother wavelet in voltage sag and 
swell detection, time location for signal peaks from the 
original signals were compared to the signal peaks that had 
changed abruptly after the decomposition process. Only four 
adjacent peaks will take into account.  

IX. RESULTS 

The interrupted signals were decomposed until level five 
for every mother. Among those levels, observed that level 2 
gives the best view to compare the accuracy of all the wavelet 
mothers. 

Fig. 8 shows the results for level 2 from decomposition 
process of real voltage sag signal as shown in Fig. 1.  

 

 

(a) 

 

(b) 
 

 

(c) 
 

 

(d) 
 

 

(e) 
 

 

(f) 
 

 

(g) 
 

 

(h) 

Fig. 8 Detail coefficient of level 2 decomposition signals for voltage 
sag obtained from mother wavelet (a) Haar, (b) Dmey (c) Daubechies 
2, (d) Daubechies 3, (e) Daubechies 4, (f) Symlet 2, (g) Symlet 3, (h) 

Symlet 4 
 

The decomposition process is repeated for the real voltage 
swell signal as shown in Fig. 2. The following are the results 
for level 2 from the decomposition process. 

 

 

(a) 
 

 

(b) 

 

(c) 
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(d) 
 

 

(e) 
 

 

(f) 
 

 

(g) 
 

 

(h) 

Fig. 9 Detail coefficient of level 2 decomposition signals for voltage 
swell obtained from mother wavelet (a) Haar, (b) Dmey (c) 

Daubechies 2, (d) Daubechies 3, (e) Daubechies 4, (f) Symlet 2, (g) 
Symlet 3, (h) Symlet 4 

 
Referring to the original voltage sag signal, as shown in Fig. 

1, the event occurred half of the sample signal on the left. The 
other half on the right is smooth signal. The x-axis represents 
time location for the signal and the same goes to Figs. 8 and 9. 
In Fig. 8, all the signals (a) until (h) have an abrupt change of 
signal peak every time the event occurred as observed on the 
half left side of the signal. While, in the real sample of voltage 
swell signal in Fig. 2, the event occurred on the half right side 
of the signal and the other half is smooth signal. Again, in Fig. 
9, all the signal peaks in (a) until (h) changed abruptly every 
time the event occurred as observed on the half right side of 
the signal. Therefore, it was assumed that the significant 
changes are the time location for the disturbances occurred. 

For voltage sag event, time location for signal peaks were 
obtained from Fig. 1 and time location for the decomposed 
signal peaks were obtained from Fig. 8. As mentioned before, 
only four adjacent peaks are taken into account. All the data 
were recorded in Table I. 

While for voltage swell event, time location for signal peaks 
were obtained from Fig. 2 and time location for the 
decomposed signal peaks were obtained from Fig. 9. All the 
data were recorded in Table II. 
 

 

TABLE I 
TIME LOCATION FOR ORIGINAL VOLTAGE SAG SIGNAL PEAKS AND 

DECOMPOSED SIGNAL PEAKS FOR EACH MOTHER WAVELET 

Signal 
Time location fault (μs) 

1st peak 2nd peak 3rd peak 4th peak 
Original voltage 

sag event 
47.57 176.50 303.70 433.70 

HAAR 43.62 172.20 297.90 438.00 

DMEY 48.00 170.70 297.90 440.00 

DB2 48.00 176.00 304.00 435.90 

DB3 46.00 174.00 302.00 434.00 

DB4 50.10 178.00 306.00 432.90 

SYM2 48.00 175.90 303.90 436.00 

SYM3 46.00 173.90 302.00 434.00 

SYM4 49.00 177.00 304.90 433.00 

 
TABLE II 

TIME LOCATION FOR ORIGINAL VOLTAGE SWELL SIGNAL PEAKS AND 

DECOMPOSED SIGNAL PEAKS FOR EACH MOTHER WAVELET 

Signal 
Time location fault(μs) 

1st peak 2nd peak 3rd peak 4th peak 
Original voltage 

swell event 
471.30 600.00 729.90 858.50 

HAAR 435.10 562.30 690.90 823.80 

DMEY 444.90 558.00 701.00 824.90 

DB2 440.00 568.00 696.00 828.00 

DB3 437.90 581.90 693.90 826.00 

DB4 436.90 565.00 693.00 825.00 

SYM2 440.00 567.90 695.90 827.90 

SYM3 438.00 581.90 694.00 825.90 

SYM4 436.90 564.90 692.90 824.90 

 
TABLE III 

VOLTAGE SAG.: PERCENTAGE DIFFERENCE OF THE TIME LOCATIONS 

BETWEEN THE SIGNAL PEAKS OF THE DECOMPOSED AND THE ORIGINAL 

SIGNAL 

Mother 
wavelet 

Percentage of difference (%) Average of 
percentage of 
difference (%) 

1st 
peak 

2nd 
peak 

3rd 
peak 

4th 
peak 

HAAR 8.30 2.44 1.91 0.99 3.41 

DMEY 0.90 3.29 1.91 1.45 1.89 

DB2 0.90 0.28 0.10 0.51 0.45 

DB3 3.30 1.42 0.56 0.07 1.34 

DB4 5.32 0.85 0.76 0.18 1.78 

SYM2 0.90 0.34 0.07 0.53 0.46 

SYM3 3.30 1.47 0.56 0.07 1.35 

SYM4 3.01 0.28 0.40 0.16 0.96 

 
TABLE IV 

VOLTAGE SWELL: PERCENTAGE DIFFERENCE OF THE TIME LOCATIONS 

BETWEEN THE SIGNAL PEAKS OF THE DECOMPOSED AND THE ORIGINAL 

SIGNAL 

Mother 
wavelet 

Percentage of difference (%) Average of 
percentage of 
difference (%) 

1st 
peak 

2nd 
peak 

3rd 
peak 

4th 
peak 

HAAR 7.68 6.28 5.34 4.04 5.84 

DMEY 5.60 7.00 3.96 3.91 5.12 

DB2 6.64 5.33 4.64 3.55 5.04 

DB3 7.09 3.02 4.93 3.79 4.71 

DB4 7.30 5.83 5.06 3.90 5.52 

SYM2 6.64 5.35 4.66 3.56 5.05 

SYM3 7.07 3.02 4.92 3.80 4.70 

SYM4 7.30 5.85 5.07 3.91 5.53 
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Then, the time location obtained from the decomposed 
signal peaks were compared to the original event signal peaks 
in order to calculate the accuracy for each mother wavelet in 
detection of voltage sag and voltage swell. The differences of 
the time locations were recorded in percentage for voltage sag 
and voltage swell events in Tables III and IV, respectively. 

X. CONCLUSION 

From Table III, it can be concluded that Db2 is the most 
accurate mother wavelet to detect voltage sag events occurring 
in the 22 kV transmission line of Skudai, Johor Bahru. It is 
because it has 0.25%, which is the least average value of the 
difference between decomposed and original voltage sag 
signal peaks. While in Table IV, it can be observed that Sym3 
is the most accurate mother wavelet for detection of voltage 
swell events. It gave the least value which is 4.70% of average 
percentage difference of time location between decomposed 
and original voltage swell signal peaks. Yet, all four mothers 
are not suitable enough to be applied in voltage swell events 
detection. This is because they produced large difference of 
time location for the events between the real voltage event 
signals and decomposed signal. 
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