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Abstract—Although environmental concern is on the rise across 

Europe, current market data indicate that adoption rates of 
environmentally friendly vehicles remain extremely low. Against this 
background, the aim of this paper is to a) assess preferences of 
European consumers for clean-fuel cars and their characteristics and 
b) design car lines that optimize the combination of fuel types among 
models in the line-up. In this direction, the authors introduce a new 
evolutionary mechanism and implement it to stated-preference data 
derived from a large-scale choice-based conjoint experiment that 
measures consumer preferences for various factors affecting clean-
fuel vehicle (CFV) adoption. The proposed two-step methodology 
provides interesting insights into how new and existing fuel-types can 
be combined in a car line that maximizes customer satisfaction. 
 

Keywords—Clean-fuel vehicles, product line design, conjoint 
analysis, choice experiment, differential evolution. 

I. INTRODUCTION 

RANSPORT has been one of the sectors most resilient to 
efforts to reduce CO2 emissions due to its strong 

dependence on fossil energy sources and its steady growth. 
Cars continue to be the most popular passenger mode across 
the EU, representing about 72% of all passenger kilometres 
and are in-turn responsible for approximately 12% of total EU 
CO2 emissions [5]. European Nations have seemingly led the 
way in terms of awareness and concern for the environment, 
yet it has been argued that there continues to exist an “attitude-
action gap” between European consumers’ rising 
environmental consciousness, and willingness to switch from 
their conventional petrol/diesel, to “greener” fuel vehicles [9]. 
By approaching CFVs as eco-innovations, the purpose of this 
study is to a) examine consumer preferences for various 
factors affecting CFV adoption in the European car market, 
and b) design consumer driven car lines that optimize the 
combination of fuel types among models in the line-up. To 
address these objectives, first, a choice-based conjoint 
experiment was carried out in two large European countries, 
namely United Kingdom and Germany. Second, a state-of-the-
art, evolutionary mechanism, namely Differential Evolution 
(DE), is implemented to the preference data in an attempt to 
design consumer-driven car lines that optimize the 
combination of fuel-types among car models in the line-up.  

II. THEORETICAL BACKGROUND 

Literature on CFV choice experiments suggests that there 
are substantial regional differences in consumer stated 
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preferences for CFV characteristics, and hence, results from 
different countries are not interchangeable. This study extends 
research on consumer preferences for CFVs in two ways. 
First, the sample was drawn in two large European countries, 
namely Germany and UK, where a large-scale investigation of 
preferences for CFVs has not been undertaken before. Existing 
research on CFVs has been conducted in high fossil-fuel 
pollution areas, such as the USA [12], Canada [6], and China 
[3]. Second, our choice experiment includes a variety of 
factors based on the innovation adoption literature. In addition 
to the typical vehicle-specific predictors (e.g., price), we 
consider factors with important implications for policy 
makers.  

Literature on optimal product line design has so far utilized 
a variety of heuristic mechanisms, such as Dynamic 
Programming [7], Beam Search [8], and Lagrangian 
Relaxation with Branch and Bound [2]. Nature-inspired 
approaches have been also introduced to the problem, 
including Genetic Algorithms [1], and Particle Swarm 
Optimization [13]. Our study extends research on product line 
design in two ways. First, we introduce a new mechanism, 
namely Differential Evolution, for the first time in the area of 
marketing. Second, this is the first application of a product 
line optimization mechanism in the area of CFVs.  

III. METHODOLOGY 

A. Conjoint Experiment 

Our study considers eight attributes, ranging across 3 to 4 
levels each, resulting in a total of 26 attribute levels (see Table 
I). Attributes were grouped into five categories; called facets. 
The facet and attribute selection is based on the innovation 
adoption literature [10] and a series of in-depth interviews 
with consumers. 

Our choice-based conjoint experiment estimates preferences 
for vehicle attributes related to four possible fuel types, 
namely, petrol, diesel, hybrid electric and alternative fuel 
(such as liquefied petroleum gas, compressed natural gas, or 
organic biodiesel). Each choice task contained three out of the 
four fuel types and each participant was randomly assigned to 
evaluate a total of 12 choice tasks (ordering was also 
randomized). Our choice-based conjoint experiment was 
carried out in two EU member states, namely, United 
Kingdom and Germany and could be accessed online via a 
closed Web page. A total of 285 respondents participated in 
our online experiment (153 valid responses were secured from 
the UK, whilst 132 participants were recruited from 
Germany). A Hierarchical Bayes model was developed which 
consists of two levels: At the higher level we assume that 
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individual part-worths are described by a multivariate normal 

distribution,  Dα,Normal~i , where i  is a vector of part-

worths for the ith individual,   is a vector of means of the 

distribution of individuals’ part-worths, and D  is a matrix of 
variances and covariances of the distribution of part-worths 
across individuals. At the lower, individual level, it is assumed 

that given an individual’s part-worths, his/her probability of 
choosing a particular alternative is described by a multinomial 
logit model. The Dα,,  parameters were estimated using 

the Monte Carlo Markov Chain iterative process. A detailed 
explanation of this algorithm is beyond the purpose of this 
paper. 

 
TABLE I 

THE 8 VEHICLE ATTRIBUTES AND 26 ASSOCIATED LEVELS, CATEGORIZED UNDER 4 FACETS 

Facet Attribute Level 1 Level 2 Level 3 Level 4 

 Fuel type Petrol Diesel Hybrid Electric 
Alternative Fuel (such as LPG, CNG, 

or organic biodiesel) 
Relative advantage Vehicle’s purchase price £14,000 £17,000 £21,000  

 Fuel cost (per 100km) £5 £10 £20  

 CO2 emissions (per km) 95g 130g 170g 250g 

Compatibility Vehicle’s fuel availability At all filling stations 
At 3 out of 4 filling 

stations 
At 1 out of 4 filling 

stations 
 

Ease of use Vehicle’s maintenance effort Easy to maintain Standard to maintain Complex to maintain  

Trialability Test drive opportunity Week-long trial 1 hour test-drive Test-drive not possible  

Financial risk Tax breaks on fuel Guaranteed until 2020 Guaranteed until 2015 No tax-breaks  

 
B. Differential Evolution: Implementation to the Car Line 

Design Problem 

DE was introduced by [11] and belongs to the class of 
Evolutionary Algorithms (EAs). Evolution is the process of 
adaptation with the aim of improving the survival capabilities 
through mechanisms such as natural selection, survival of the 
fittest, reproduction, mutation, competition and symbiosis [4]. 
Companies and products strive to adapt and survive in fast 
changing and highly competitive global markets, in the same 
way that species and individual organisms do in the natural 
environment. In both cases the goal is the determination of the 
strongest individuals (i.e., products) that possess the most 
desirable genetic material (i.e., characteristics), and have the 
best probabilities to survive, in accordance with Charles 
Darwin’s theories on “natural selection” and “survival of the 
fittest”. EAs are applied to complex real world problems, 
representing candidate problem solutions with individuals that 
recombine their genetic material. Like almost all EAs, DE 
“attacks” the problem space from multiple locations by 
generating a population of individuals. Each individual 
represents a potential solution to the problem, whose 
performance is evaluated against the problem’s objective 
function. An initial population is generated randomly and an 
iterative procedure follows, where a set of operators is applied. 
A distinct feature of DE is that the mutation is applied first 
(unlike most of the other EAs that first apply crossover) to 
produce a trial vector, which is used in the crossover process. 

Mutation: In DE, the mutation process comprises three 
different vectors. Specifically, for every individual i in the 
population, a target vector i1, as well as two differential 
vectors i2 and i3 are selected from the population such that 
i≠i1≠i2≠i3. The trial vector ti for individual i is generated by 
adding a scaled perturbation of vectors i2 and i3 to the target 
vector i1: 

 
ti= x i1 + β * (x i2 – x i3)                                   (1) 

 

where the scale factor β is a positive real number in [0, 2] that 
controls the amplification of the differential variation, which 
in turn controls the rate at which the population evolves. Small 
values of β favour local search, while large values favour 
global search. A value of 0.5 is usually employed to achieve 
balance between the two. 

Crossover: Once the trial vector is created for individual i, 
the crossover operator is applied as a discrete recombination 
of the material of the two vectors: 

 
Crrandift

otherwisexij
jij

ij
x

 ,

,
' {                                  (2) 

 
where xij corresponds to the jth element of vector xi.  Cr[0,1] 
is the crossover probability, a user defined parameter, and 
randj is the output of a uniform random number generator in 
(0, 1). This refers to the uniform crossover used in the original 
version of the algorithm. The higher the value of Cr, the larger 
the fraction of values that are taken from the trial vector. 

Selection: The individual that will survive to the next 
generation’s population is deterministically selected. That is, 

the performance of the offspring (
'
ix ) on the problem’s 

objective function is compared to that of the parent ( ix ). The 

one that performs better is added to the next generation. The 
individuals of the next generation also undergo mutation, 
crossover and selection, and the algorithm iterates until a 
terminating condition is met. 

To design a consumer-driven line of cars that optimizes the 
combination of fuel types offered, we apply the DE algorithm 
to the empirical stated-preference data set. We employ a 
binary representation scheme, where each element of the 
solution vector represents an attribute level. For a single-car 
line the number of elements (i.e., vector’s length) is 26, which 
is the total number of attribute levels included in the conjoint 
experiment. Under such a representation scheme a constraint 
must be applied which ensures that within each attribute only 
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a single element takes the value of 1 (a single level is chosen). 
For example, a Diesel car, priced at £21,000, with £5 fuel cost 
per 100 km, 95g CO2 emissions per km, fuel availability at all 
filling stations, standard maintenance effort, 1 hour test drive 
opportunity, and no tax-breaks, would be represented as [0100 
001 100 1000 100 010 010 001]. For multiple-car lines the 
vector’s length is 26*l where l is the number of different car 
models in the line. That is, elements 1-26 correspond to the 
attributes levels of the first car model, elements 27-52 
correspond to the attributes levels of the second car model, 
and so on. DE operates in a continuous space, and hence, for a 
two-decimal points representation, a potential vector for a 
single-car line could be: y = [1.54 0.24 -8.24 4.25 1.66 0.87 -
0.54 6.78 6.25 -1.53 3.02 7.01 8.30 0.88 -4.28 1.47 -2.93 2.60 
4.58 -3.54 5.67 0.11 -3.27 0.78 -0.88 4.38]. To convert such a 
vector to the required binary representation, we employ the 
modified Smallest Position Value (SPV) rule: within each 
attribute, the element with the smallest value takes a value of 
1, and the rest take a value of 0. In that case, vector y is 
converted to [0010 001 001 0001 100 001 001 010]. With 
regard to the DE control parameters, [11] indicated that a 
reasonable choice for NP is between 5D and 10D (where D is 
the dimensionality of the problem), and β = 0.5 is usually a 
good choice. We tested different values for NP, Cr, and 
maximum number of iterations. The algorithm worked well 
with a population size at the lower end of the range [5D, 10D], 
that is NP=130 for a single-car line problem, NP=260 for a 
two-car line problem, and so on. The best performance was 
achieved for Cr=0.8, and the algorithm converged to a 
solution at 1000-1200 iterations, so we set the maximum 
number of iterations to 1500. To define the problem’s 
objective function we employ the “buyers’ welfare criterion”, 
where the objective is the maximization of the total utility of 
all buyers that comprise the market. We employ the first 
choice (maximum utility) rule, according to which each buyer 
will deterministically choose the car that gives him/her 
maximum utility. Hence, for every solution that the algorithm 
produces, we calculate the utility value uij that each car j in the 
line offers to a customer i as the sum of the part-worths of the 

chosen attribute levels: uij = ijkk w 
8

1 , where wijk is the part-

worth that customer i assigns to the level that is chosen for the 
kth attribute of the jth car in the line. From all the cars in the 
line each customer is assigned the one that maximizes his/her 
utility. Finally, the fitness of a candidate solution is the sum of 
the utilities of all customers. 

IV. RESULTS 

A. Facet and Attribute Importances 

Facet importances are presented in Fig. 1. Results suggest 
that the most important facet in both markets is the vehicle’s 
“Relative advantage”, followed by “Compatibility” and “Ease 
of use”. Fig. 2 illustrates the importances of the eight 
attributes. “Fuel cost” is the most important determinant of 
vehicle choice in both markets, followed by “fuel type” and 
“purchase price”. Also, it is evident that British consumers 

place more emphasis on the vehicle’s fuel cost compared to 
German consumers, while German consumers seem to place 
more emphasis on the vehicle’s purchase price compared to 
British consumers. Also, fuel availability seems to be much 
more important among British consumers than it is among 
German consumers. 

 

 

Fig. 1 Estimated facet importances 
 

 

Fig. 2 Estimated attribute importances 

B. Derived Optimal Car Lines 

The results show that for n=5 cars in the line, the gain in the 
total utility of the line is too small. Thus, the length of the car 
line should be chosen among 1, 2, 3, and 4. Tables II and III 
report the configurations of the car models in the line for the 
best solutions reached by the algorithm, for the whole 
consumer group, and the two countries separately. The choice 
share of each model (i.e., percentage of consumer that are 
assigned to), and the total line utility (i.e., fitness of the 
solution), are also presented. Table II presents the derived 
optimal car lines for the whole consumer sample. It is evident 
that the car configuration of the single-car line solution is also 
included in the two-car line solution; the car configurations of 
the two-car line solution are also included in the three-car line 
solution, and so on. This pattern illustrates how new and 
existing fuel-types must be combined in a car line-up which 
successively extends to include new car models. More 
specifically, the single-car line solution represents a diesel car, 
priced at £14,000, which costs £5 to run per 100km and emits 
95gr of CO2 per km. The two-car line solution includes the 
diesel car of the single car line and is also extended to include 
a hybrid electric car as a second option. Finally, an alternative 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:11, No:8, 2017

2044

fuel vehicle is added in the three-car line solution, and a petrol 
car (highly priced at £21,000), is added as a last option in the 
four-car line solution. All four available fuel-types are 

included in the four-car line solution. This is logical as our 
sample is diverse and consists of both British and German 
consumers. 

 
TABLE II 

CONFIGURATION OF CAR MODELS FOR LINES OF DIFFERENT LENGTHS 

   Fuel type 
Vehicle’s 
purchase 

price 

Fuel cost 
(per 

100km) 

CO2 

emissions 
(per km) 

Vehicle’s 
fuel 

availability 

Vehicle’s 
maintenance 

effort 

Test drive 
opportunity 

Tax 
breaks on 

fuel 

Choice 
Share 

Total Line 
utility 

All 

Single-
car line 

1st Diesel £14,000 5 95g All Easy Week 2020 100% 33690 

Two-car 
line 

1st Hybrid Electric £14,000 5 95g All Easy Hour 2020 50% 
37778 

2nd Diesel £14,000 5 95g All Easy Week 2020 50% 

Three-car 
line 

1st Hybrid Electric £14,000 5 95g All Easy Hour 2020 42.8% 

39287 2nd Diesel £14,000 5 95g All Easy Week 2020 42.5% 

3rd Alternative Fuel £14,000 5 95g 3/4 Easy Week 2020 14.7% 

Four-car 
line 

1st Hybrid Electric £14,000 5 95g All Easy Hour 2020 41.1% 

39887 
2nd Diesel £14,000 5 95g All Easy Week 2020 38.2% 

3rd Alternative Fuel £14,000 5 95g 3/4 Easy Week 2020 13.3% 

4th Petrol £21,000 10 95g All Easy Week 2020 7.4% 

 
TABLE III 

CONFIGURATION OF CAR MODELS FOR LINES OF DIFFERENT LENGTHS 

   Fuel type 
Vehicle’s 
purchase 

price 

Fuel cost 
(per 

100km) 

CO2 

emissions 
(per km) 

Vehicle’s 
fuel 

availability

Vehicle’s 
maintenance 

effort 

Test drive 
opportunity 

Tax 
breaks 
on fuel 

Choice 
Share 

Total 
Line 

utility 

UK 

Single-
car line 

1st Diesel £14,000 5 95g All Easy Week 2020 100% 16715 

Two-car 
line 

1st Hybrid Electric £14,000 5 95g All Easy Hour 2020 54.2% 
19078 

2nd Diesel £14,000 5 95g All Easy Week 2020 45.8% 

Three-
car line 

1st Hybrid Electric £14,000 5 95g All Easy Hour 2020 48.4% 

19682 2nd Diesel £14,000 5 95g All Easy Week 2020 41.8% 

3rd Petrol £21,000 10 95g 3/4 Easy Hour 2020 9.8% 

Four-car 
line 

1st Diesel £14,000 5 95g All Easy Week 2020 43.1% 

19991 
2nd Hybrid Electric £14,000 5 95g All Easy Hour 2015 24.2% 

3rd Hybrid Electric £14,000 5 95g 3/4 Easy Hour 2020 23.5% 

4th Petrol £21,000 10 95g 3/4 Easy Hour 2020 9.2% 

Germany 

Single-
car line 

1st Hybrid Electric £14,000 5 95g All Easy Week 2020 100% 17024 

Two-car 
line 

1st Diesel £14,000 5 95g All Easy Hour 2020 62.9% 
18980 

2nd Alternative Fuel £14,000 5 95g 3/4 Easy Week 2020 37.1% 

Three-
car line 

1st Diesel £14,000 5 95g All Easy Week 2020 40.9% 

20163 2nd Hybrid Electric £14,000 5 95g All Easy Hour 2020 32.6% 

3rd Alternative Fuel £14,000 5 95g 3/4 Easy Week 2020 26.5% 

Four-car 
line 

1st Hybrid Electric £14,000 5 95g All Easy Hour 2020 35.6% 

20500 
2nd Diesel £14,000 5 130g All Easy Week 2015 26.5% 

3rd Alternative Fuel £14,000 5 95g 3/4 Easy Week 2020 26.5% 

4th Diesel £14,000 10 95g All Standard Hour 2020 11.4% 

 

We now turn to derive localized car line solutions. Table III 
reveals that the two markets differ significantly with each 
other.  

First, the optimal car lines of the German market differ 
across the derived solutions. For example, the car 
configuration of the single-car line solution is not included in 
the two-car line solution, suggesting discrepancies between a 
uniform and a differentiated approach to the market. More 
specifically, the single-car line solution represents a hybrid 
electric car, while the two-car line solution represents a diesel 
and an alternative fuel vehicle. On the other hand, the UK 
market requires a more uniform approach, as the car 
configuration of the single-car line (i.e., diesel car) is also 

included in the two-car line solution. Second, the car lines of 
the UK market include at least one diesel car in every car line 
solution, but this is not the case in the German market, which 
includes a hybrid car in the single car line solution. Third, the 
UK market’s three- and four-car line solutions include a 
petrol-fuelled car, but the latter fuel type does not appear in 
any of the German market’s solutions. Fourth, the German 
market’s two-, three- and four-car line solutions include an 
alternative fuel vehicle, but the latter fuel type does not appear 
in any of the UK market’s derived solutions. Fifth, UK 
consumers seem more willing to accept a higher price for a 
car, as there are two car configurations priced at £21,000 (both 
of them represent petrol cars), which do not appear in any of 
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the German market’s optimal solutions. Evidently, German 
consumers are more price-conscious and prone to buy CFVs 
compared to their UK counterparts, who are willing to pay a 
higher price for a petrol car. Also, the German market is more 
heterogeneous as few of the derived car-line solutions share 
common car configurations. The UK market is less 
heterogeneous as the variant of the single-car line solution is 
included in the diversified car-line solutions. Obviously, car 
manufacturers must use different diversification strategies in 
the two regions, which involve much more complex decisions 
than merely adding new variants in existing car lines. 

V. CONCLUSION 

The EU’s emission limits are set according to the mass of 
the vehicle, using a limit value curve. Only the fleet average is 
regulated, therefore manufacturers are able to make vehicles 
with emissions above the limit value curve provided these are 
balanced by vehicles below the curve [5]. Our proposed two-
step methodology provides interesting insights into how 
conventional and clean-fuel types must be combined in a 
diversified car line that maximizes customer satisfaction. This 
mechanism can be useful for car manufacturers who want to 
design balanced car line-ups by combining vehicles with 
emissions above and below the limit value carve imposed by 
the EU. Although manufacturers have still a long way to go in 
their effort to meet European Commission’s climate and 
energy regulations, we believe that studies like this one are 
particularly useful. We hope that our ideas will stimulate more 
work in this important and quite neglected area of research. 
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