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 
Abstract—The influence of inhomogeneities of plasma and 

statistical characteristics on the propagation of signal is very actual in 
wireless communication systems. While propagating in the media, 
the deformation and evaluation of the signal in time and space take 
place and on the receiver we get a deformed signal. The present 
article is dedicated to studying the space-time evolution of 
rectangular, sinusoidal, exponential and bi-exponential impulses via 
numerical experiment in the collisional, cold plasma. The presented 
method is not based on the Fourier-presentation of the signal. 
Analytically, we have received the general image depicting the space-
time evolution of the radio impulse amplitude that gives an 
opportunity to analyze the concrete results in the case of primary 
impulse. 
 

Keywords—Collisional, cold plasma, rectangular pulse signal, 
impulse envelope.  

I. INTRODUCTION 

HE study of the distortion of radio impulses in a 
dispersing plasma began a long time ago [1], [2], although 

the issue is still authentic due to its practical value. The 
objectives on the distribution of radio impulses through the 
ionosphere are also very important. In this direction, studies 
take into account the analysis of the frequency spectrum data 
of the scattered signal, which can be obtained through the 
analytical or numerical Fourier transformation [3]-[6]. In 
many of them, narrow band linear approximation of the signal 
is used, which greatly simplifies the analysis of distortion or 
Gaussian rectangular impulse analysis. Usually, there are 
many works that are devoted to the impulse propagation in 
non-collisional plasma, but in the communications, broadband 
linear impulses are mostly used during locating and sounding 
the surrounding environment, and therefore, the approximate 
assumptions made for the narrowband linear signals are 
unacceptable and unused. Fourier reversal transformation for 
wideband linear impulses can be done only with numerical 
methods. The results are partially presented in works [7]-[11]. 

II. PROBLEM STATEMENT: RECEIVE A GENERAL IMAGE FOR THE 

IMPULSE ENVELOPE 

Let us say we have an impulse, the propagation of which is 

 
N. Kh. Gomidze is with the Physics Department of Batumi Shota Rustaveli 

State University, Batumi, 6010 Georgia (corresponding author, phone: +995 
77 17-97-27, e-mail: gomidze@ bsu.edu.ge).  

I. N. Jabnidze and K. A. Makharadze are with the Physics Department of 
Batumi Shota Rustaveli State University, Batumi, 6010 Georgia (e-mail: 
izolda.jabnidze@bsu.edu.ge, k.makharadze.01@gmail.com). 

described as a wave equation [12]: 
 

2

2

22

2

22

2 41

t

P

ct

E

cz

E













                     (1) 

 

where E


 is tension of electric field, c  is the speed of light 
propagation in the media, z  is the direction of the radio 
impulse propagation, t  is the time of propagation, and P


 is 

the polarization of the unit volume in the media. Let us 
assume that media contains free charges, then the polarization 
vector P


 satisfies the equation [12]: 
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where e  and n  are the charge of the electron and mass, N  is 
the electronic concentration, and v  is the effective frequency 
of collision, which envisages the loss of energy during the 
collision with the ions of electrons and neutral molecules. 

On the boarder of 0z  half-plane, on which an impulse is 
propagated, a field is created, the tension of which can be 
represented in the following way: 

 
     titAtE exp,0,0  , 0t                       (3) 

 
where f 2 ; f  is a carrier signal of the impulse.  tA ;0  is 

an impulse envelope, when 0z . It is obvious that the 
impulse is propagated by c speed, so it is advisable to look for 
the  tzE ,  field in the following form. 

 

      








00

0exp,
,

t

tkztitzA
tzE


.                  (4) 

 
Consider in (1) and (2) that:  
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Insert (4) in (1) and (2) and we receive:  
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Let us say the duration of impulse it - satisfies the 

inequality: 
 

1ift                                         (8) 
 

and the impulse z  takes an interval on the axis: 
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Therefore, the following condition is fulfilled: 
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The (10) condition allows to ignore the first member in the 

image (6). Since the location and speed of the electron cannot 
be changed immediately, at the time of transmitting impulse in 
the cold plasma, the following equation is fulfilled in the z
point: 
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By the strength of (11), the solution of (7) can be written as 

the following: 
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Insert the solution of (12) in (6) and take into consideration 

(10), then for the impulse envelope, the equation becomes: 
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For (13), let us use the Laplace transformation towards the 

t  variable, we get [13]: 
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where the following indications are introduced: 
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where,  cp 2/2  , mNep /)4( 22    [5]; when 0t impulse 

still is not in the media, and therefore   0/0;  zzA . Now, 
let us make Laplace's Reverse Transformation: 
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where,  xJ k  is Bessel function [13].  

III. SPATIAL-TIME AND SPATIAL-FREQUENCY EVOLUTION 

FOR BI-EXPONENTIAL, SINUSOIDAL AND RECTANGULAR PULSE 

SIGNALS IN DISPERSIVE PLASMA  

Let us write down the solution of (15) for the initial 
envelopes which have bi-exponential form:  
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Fig. 1 The spatial-frequency evolution of the real and imaginary parts 

of the impulse envelope in collisional isotropic plasma when 710   

Hz, 4000  z m, 81040  sec-1 
 

 

Fig. 2 (a) )(A  attitude for different values of distance 100z  m 

(red line) and 1000z m (dotted line), when 710  Hz; (b) )(zA

attitude for different values of collision frequency 
710   Hz (red 

line) and 7102  Hz (dotted line) 

 
Here, ,,0A numbers determine the curvature of the front 

and rear fronts of the impulse. Let us introduce a new variable 

ݔ ൌ ඥτ/t and insert (16) in (15). We get:  
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Consider the occasion when the initial impulse is of a 

sinusoidal form, then its initial envelope can be written down 
as following: 
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Let us introduce (19) as follows:  
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Let us put (21) in (15) and do the same operations as above, 

then for the envelope of a deformed sinusoid impulse we get: 
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Now, go to the case of rectangular impulse envelope: 
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After the distortion, such impulse can be described as: 
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In the case of finding  tzg ,  function, we should pay 

attention to the fact that, at the same time, when 0  and 
 , the bi-exponential impulse is transformed into a step-

function signal with the height of 0A , at the same time 0A , 

when 0t . In (18) and (19) expressions after performing the 
corresponding transformations, when we get 0t , and we get 
the envelope of the step-function signal  10 A : 
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It should be noted that each of the above solutions can be 

presented as a combination of Lomel’s function [14]. With t 
growing, the task on the fall of the step-function signal on the 
semi-infinite boundary of homogeneous media is simplified 
and transfers onto the task of propagating the flat wave in a 
homogeneous media. Let us show that the obtained result 
satisfies this requirement. Apply (15) that takes the following 
image for the step-function signal: 
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It is easy to notice that in (26) and (27) the correlations are 

equal. In the last equation t ; then the integral on the 
right side will be reduced to a tabular form. According to its 
calculations, we get: 
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where, )/()( 22 cp   - is plasma absorption coefficient and 

)( - is the optical depth on the z distance the wave passes 

through. 
In Fig. 1, the space-frequency evolution of the impulse 

envelope is represented as a three-dimensional schedule. The 
real part indicates at the change of impulse amplitude, and the 
imaginary - at the reduction, which is caused by relaxation 

processes. In this case, 4000  z m, 81040  sec-1. For 

better observation on the picture, the value 710 Hz has 
been chosen for frequency of the collision. Fig. 2 shows )(A  

and )(zA   attitudes on the plane in the section. In Fig. 2 (a), it 
is possible to see the frequency dispersion effect, in particular, 

during value of 100z m (unbroken line), the envelope 
aspires towards saturation along with the frequency increase 
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or when  , then 1)( A , and when 1000z m (dotted 
line), additional oscillations generate the amplitude of which 
increases slowly along with the frequency increase. From Fig. 
2 (b) it is clear that the increase of the frequency of collisions 
causes the rapid reduction of oscillations of impulse; with the 
purpose of good visualization, we have brought here the 

values of the frequencies of 710 Hz (dotted line) and 
7102  Hz (red line) collisions.  

IV. EVALUATION OF THE IMPULSE PROPAGATION RATE IN THE 

DISPERSIVE PLASMA 

Let us find the analytical expression for the speed of the 
radio impulse propagation. Let us use (26) and calculate the 
integral applying Bessel’s well- known ratio: 
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As a result we receive:  
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The following equality will always be on the ionospheric 

track:
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Let us apply the asymptotic representation of the Bessel’s 
function, for the greater value of the argument [14]: 
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Insert (31) in (30), then for  tzA , to get the expression: 
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From (32), we can see that on z  axis, the impulse is 

concentrated near the point the coordinate of which satisfies 
the condition: 
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From here, we receive that the front of the rectangular 

impulse propagates with the speed: 
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Equation (34) shows that the effects of collision effect on 

the speed of the impulse speed, when   , i.e. while the 
impulse is strongly absorbed during propagation from the 
plasma media.  

With the minimum losses for the impulse propagation, it is 
necessary to fulfill the following condition v , therefore:  
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Equation (35) shows that the time required to overcome the 

distance by the impulse on a fixed length increases as a result 
of the frequency decrease and the increase of electronic 
concentration.  

Fig. 3 shows the change of impulse speed in collisional 
plasma according to a frequency for different number of 
collisions. The wave propagates if the condition f   is 

fulfilled, when f   the speed of the signal propagation is 
minimal, as the absorption processes are important. 

 

 

Fig. 3 Change of impulse speed according to a wave frequency 
during different frequencies of collisions 710   Hz (red line); 

82 10    Hz (blue dotted line); 84 10    Hz (black dotted line) 

V.  OUTCOMES OF NUMERICAL EXPERIMENT 

Image (15) gives an opportunity to evaluate the change of 
the shape of the envelope of pulse signals of different shapes 
and durations in time at different altitudes from the Earth's 
surface. Numerical experiments are for the impulses of 410 , 
and 510 seconds when the frequency of the carrier signal 

10f   MHz has been studied in [8]. The case of the 

numerical experiment when the frequency of the carrier signal 
is close to the plasma frequency, i.e. when: 0 2.84f   MHz (

3f  MHz) is represented [14], [15], it is obvious that the 

condition 0f f  must be fulfilled, otherwise the impulse 

cannot be propagated in the plasma layer. 
Suppose the impulse signal emits from the source of the 

Earth's surface. The objective of the current research is to 
determine the change of the impulse shape (distortion) in the 
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lower layers of the ionosphere at the altitude of 100 1000z    

km. Numerical calculations were carried out for the following 
parameters of the plasma media: Number of collisions 

3 410 , 10  sec-1, concentration - 510N  . 

We have studied the relationship of the radiation power 
2

A

on the time at different distances from the source, for different 
forms of impulse. It has been established that an increase in 
the number of collisions causes the distortion of the shape of 
the impulse, which is naturally explained by the emergence of 
dissipation processes. 

Fig. 4 shows the change of the sinusoidal impulse envelope 
in the dispersive plasma layer at different altitudes. The 
impulse of 310it

 sec of the duration at the altitude of 

200z   km still maintains the sinusoidal shape, and by the 

increase of the height ( 700z   km), the cyclical oscillations 
will be created in the impulse envelope. The back front of the 
impulse is basically distorted. And by shortening the impulse, 
on the contrary, the oscillations disappear and the 
displacement of the maximum can be noticed. Together with 
the rise of collisions, these oscillations disappear, but the 
impulse is sharply narrowed and the amplitude falls. 

It should be noted that among the discussed impulses, the 
bi-exponential impulse can be distinguished by its steady 
shape, which is different from others with less oscillations 
than rectangular or sinusoidal impulses. In this case, the 
dissipative processes caused by the collisional effects are 
manifested primarily in a decrease in the intensity of the pulse 
signal. 

 

 

(a)                                                                                        (b) 

Fig. 4 Evaluation of envelope of sinusoidal pulse signal in collisional, isotropic cold plasma at the altitude 200z  km (dot line) and 700z 

km (solid line), when 410  sec-1, 710f  Hz, for impulse durations (a) 310it
 sec and (b) 410it

  sec 
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