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Generalization of Clustering Coefficient on Lattice
Networks Applied to Criminal Networks

Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla

Abstract—A lattice network is a special type of network in
which all nodes have the same number of links, and its boundary
conditions are periodic. The most basic lattice network is the ring, a
one-dimensional network with periodic border conditions. In contrast,
the Cartesian product of d rings forms a d-dimensional lattice
network. An analytical expression currently exists for the clustering
coefficient in this type of network, but the theoretical value is valid
only up to certain connectivity value; in other words, the analytical
expression is incomplete. Here we obtain analytically the clustering
coefficient expression in d-dimensional lattice networks for any link
density. Our analytical results show that the clustering coefficient for
a lattice network with density of links that tend to 1, leads to the
value of the clustering coefficient of a fully connected network. We
developed a model on criminology in which the generalized clustering
coefficient expression is applied. The model states that delinquents
learn the know-how of crime business by sharing knowledge, directly
or indirectly, with their friends of the gang. This generalization shed
light on the network properties, which is important to develop new
models in different fields where network structure plays an important
role in the system dynamic, such as criminology, evolutionary game
theory, econophysics, among others.

Keywords—Clustering coefficient, criminology, generalized,
regular network d-dimensional.

I. INTRODUCTION

LATTICE NETWORKS are those in which all nodes have

the same number of links, and its boundary conditions

are periodic. They were the first networks studied in the

field of complex networks and are currently used in different

areas within physics [1]-[4]. The clustering coefficient, a

measurement of how many triangles are formed in a network,

has been analytically calculated for this type of network

[5]-[7]. However, this theoretical value is only valid below

a certain link density. Vega-Redondo [5] stated that in

a one-dimensional case the clustering coefficient is valid

for average connectivity values (z) less than 2N/3; we

demonstrate that for a lattice network of d dimension the z
value is 2dN1/d/3. This means that the clustering coefficient

analytical function is not a generalized function for any

link density, and is therefore incomplete. In this study, we

demonstrate a generalization of the clustering coefficient for

any link density, and lattice networks of any dimension. This

fills a void in current theory of the clustering coefficient

in lattice networks. First, we demonstrate the generalization
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for a one-dimensional lattice network, and second for a

d-dimensional lattice network.

The clustering coefficient is a key property to understand

tightly knit groups in the network. In consequence this

concept can be specially useful to understand the criminal

network structure. Calvo-Armengo and Zenou proposed a

model [8] in which the expertise of criminals is shared

due to interactions among gang members. In this work

we modified this model using the clustering coefficient to

characterize the indirect transfer of crime knowledge among

the delinquents. Additionally, clustering coefficient is used to

relate the probability of being caught with the gang structure

[9].

II. CLUSTERING COEFFICIENT ON LATTICE NETWORKS

A. One-Dimensional Lattice Network

In a ring or one-dimensional lattice network, the nodes are

arranged in a circular configuration and each has z = 2r links,

which are linked to their r nearest neighbors (Fig. 1 (a)).We

calculated the local clustering coefficient (Ci) for node i using

the general formula:

Ci =
λG(i)

τG(i)
, (1)

where λG(i) is the number of triangles over i, that is, the

number of subnetworks with 3 links and 3 nodes, one of which

is i. τG(i) is the number of triples in i, i.e. the number of

subnetworks with 2 links and 3 nodes, one of which is i and

the other two of which are connected to i. Once the local

clustering coefficient is calculated, the clustering coefficient

for the whole network (C) is calculated as the average over

the local clustering coefficients:

C =
1

N

N∑
i=1

Ci. (2)

For lattice networks, the local clustering coefficient is the

same as the network average clustering coefficient (Ci =
C, ∀i). Therefore, λG(i) and τG(i) must only be calculated for

a single node, which we did at different connectivity values.

In a one-dimensional lattice network, the τG(i) value is the

combination C(z, 2):

τG(i) = C(z, 2) =
z(z − 1)

2
. (3)

By keeping the number of nodes in network N fixed, and

counting the triangles in node i for different connectivity
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Fig. 1 Schematic illustration of one-dimensional (ring) and two-dimensional
(square) lattice networks. (a) 12-node, one-dimensional network with a
four-link connectivity of z = 2r; that is, each node links to its two first

neighbors r = 2. (b) Triangle formed by a one-dimensional lattice network
when z = z∗ = 2N/3 (in this example, the network consists of 12 nodes,

therefore z∗ = 8, r∗ = 4).At this z∗ value the theoretical clustering
coefficient is no longer valid, thus, this calculation does not consider this

triangle. (c) Triangles not counted (total = 10) when z = z∗ + 2. (d) Link
arrangement for one node in a two-dimensional lattice network with N

nodes and 8 links, 4 per ring. This network is the Cartesian product of two
one-dimensional (or ring) lattice networks with N1/2 nodes. Generally, a
d-dimensional network is generated by the Cartesian product of d rings

values (starting with z = 4, then z = 6, z = 8 and successively

until z < 2N/3), it can be shown simply that λG(i) is:

λG(i) = 3

r−1∑
j=0

j =
3r(r − 1)

2
, (4)

Taking into account that z = 2r, we can rewrite (4) as

λG(i) =
3

8
z(z − 2). (5)

The local clustering coefficient, and therefore the network

average clustering coefficient, is:

Ci = C =
3(z − 2)

4(z − 1)
, (6)

which is well known as the clustering coefficient found in the

current literature [4]-[7]. As mentioned above, this clustering

coefficient is only valid for z < 2N/3, since in z = z∗ =
2N/3 (5) does not count the triangle formed by nodes (i, i+
r∗, i+ 2r∗) (Fig. 1 (b)). In terms of distance between nodes,

denoted here as d(i, j), (6) ceases to be valid when the distance

between node i and node i+ 2r∗ satisfies.

d(i, i+ 2r∗) = 2r∗ = N − r∗, then r∗ =
N

3
. (7)

Therefore, beginning with z∗ and onwards, we must add the

triangles not accounted for in (5) to that equation. For example,

in z∗ the triangle formed by the nodes (i, i+r∗, i+2r∗) is not

included, while in z∗ + 2 the 10 triangles formed by a series

of nodes - {(i, i+ r∗− 2, i+2r∗− 1); (i, i+ r∗− 1, i+2r∗−
1); (i, i+ r∗− 1, i+2r∗); (i, i+ r∗, i+2r∗− 1); (i, i+ r∗, i+
2r∗); (i, i+r∗, i+2r∗+1); (i, i+r∗+1, i+2r∗−1); (i, i+r∗+
1, i+2r∗); (i, i+r∗+1, i+2r∗+1)and(i, i+r∗+1, i+2r∗+2)}
- are not counted (Fig. 1 (c)). The triangles not counted by

(5), denoted as λc
G(i), take the following form:

λc
G(i) = 1 + 9

r′∑
j=0

j, con r′ = r − r∗. (8)

Calculating the sum and replacing both r and r∗, results in

λc
G(i) = 1 +

9

2

(
z

2
− N

3

)(
z

2
− N

3
+ 1

)
, (9)

This in turn leads to reformulation of (5) as

λG(i) =
3

8
z(z − 2) +Hz∗(z)

[
1 +

9

8
(z − z∗)(z − z∗ + 2)

]
,

(10)

where Hz∗(z) is the Heaviside step function. Therefore the

generalized clustering coefficient for any link density is:

C =
3(z − 2)

4(z − 1)
+

2Hz∗(z)

z(z − 1)

[
1 +

9

8
(z − z∗)(z − z∗ + 2)

]
.

(11)

It is easy to test that when z → N the clustering coefficient

is C → 1. This makes sense since the network is becoming

a fully connected network and the clustering coefficient of a

fully connected network is 1.

B. The d-Dimensional Lattice Network

To generalize the clustering coefficient to d dimensions, we

must first define a d-dimensional lattice network. In general

terms, a d-dimensional lattice network is the Cartesian product

of d ring-type one-dimensional networks, which form toroidal

topologies. The total number of nodes in the network is the

product of the number of nodes in each of the rings:

N =

d∏
n=1

Ln, (12)

where Ln is the number of nodes of the n-th ring. Also,

connectivity z is defined as the sum of the connectivities of

each ring:

z =

d∑
n=1

zn, by definition zn = 2rn, then z = 2
d∑

n=1

rn.

(13)

In the example provided here (Fig. 1 (d)), we show the

links of one node from a two-dimensional network with 8
links where each ring has 4 links (z1 = z2 = 4). Each node

links to its second neighbors in each ring (r1 = r2 = 2). For

this type of network, the clustering coefficient is the average

of the clustering coefficients of the d rings:

C =
1

d

d∑
n=1

Cn, (14)
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where Cn is the clustering coefficient of the n-th ring, as

follows:

Cn =
3(zn − 2)

4(zn − 1)
+

2Hz∗
n
(zn)

zn(zn − 1)

[
1 +

9

8
(zn − z∗n)(zn − z∗n + 2)

]
,

(15)

that is, the coefficient calculated in (11), but replacing z → zn
and z∗ → z∗n.

In a particular case, the d rings have the same number of

nodes (i.e. N = Ld) and each ring links to r neighbors, then

z = 2rd, where d is the network dimension. Therefore, the

network’s clustering coefficient is the same as in each ring

(i.e. C = Cn ∀n). We then replace zn → z/d and z∗n → z∗/d
in (15) to produce the clustering coefficient:

C =
3(z − 2d)

4(z − d)
+
2d2Hz∗(z)

z(z − d)

[
1 +

9

8d2
(z − z∗)(z − z∗ + 2d)

]
,

(16)

where z∗ = 2dN1/d/3. The first term in the above equation is

the clustering coefficient of a d-dimensional lattice network,

with z = 2rd. This can be found in the current literature

[5]-[7] and is valid for values of z < z∗.

The maximum link value for a node in this d-dimensional

lattice network (called zmax) is the sum of the maximum

link value of this node in each of the d rings (zmax
n ). If

all the rings have the same number of nodes (N1/d), then

zmax
n = (N1/d − 1) and therefore zmax = d(N1/d − 1). It is

important to note that due to the lattice network’s topology the

maximum number of links differs from N − 1, which would

be the number of links in a fully connected network, except

for a one-dimensional case (d = 1).

The link density in this type of network is D =
z/(d(N1/d − 1)) and this density tends toward 1 when

z → zmax. In (16), when the link density tends toward 1

(i.e. z → zmax) the clustering coefficient also tends toward 1

(C → 1).

To test our equation we simulated lattice networks with N
nodes and different dimensions that begin with a minimum

amount of links per node (z0). Keeping N fixed, we calculated

the clustering coefficient. We then increased the number of

links per node by Δz and calculated the clustering coefficient

after each increase. This continues until the number of

links per node nears d(N1/d − 1), which would be a fully

connected, d-dimensional lattice network. In the resulting

plot for one-dimensional and two-dimensional networks with

N = 7056 nodes (Fig. 2), the points represent the clustering

coefficient values calculated from the simulations and the

continuous line shows the clustering coefficient generated by

(16) using d = 1 and d = 2. The clustering coefficient clearly

tends towards 1 more rapidly in the two-dimensional network

than in the one-dimensional network; this occurs because the

z∗ = 2N/3 value in the one-dimensional network is 4074
while in the two-dimensional network the z∗ = 4N1/2/3 value

is 112.

III. APPLICATION TO CRIMINOLOGY

We applied this clustering generalization in criminology.

Calvo-Armengo and Zenou developed a model [8], based on

game theory and social networks, in which the delinquents
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Fig. 2 Computational calculation of clustering coefficient (C) as a function
of network connectivity (z) for one-dimensional and two-dimensional

networks with N = 7056 nodes. The circles represent the one-dimensional
(ring) network clustering coefficient and the squares represent the

two-dimensional (square) network clustering coefficient. The continuous red
line is the analytical expression generated by (16) for d = 1, and the
continuous green line is the same analytical expression but for d = 2

learn the know-how of crime from experiences shared by

criminals that belong to the same gang. The model uses regular

networks. The criminal’s expected payoff for each agent is a

function of crime level e, marginal expected punishment cost

φ and network’s degree k.

Individuals may either be criminals or participate in labor

market. Individuals in the labor force earn a wage w, while

those involved in criminal market receive an expected payoff

di given by

di(e, φ) = ei

⎛
⎝1−

∑
j∈N

ej

⎞
⎠− φei

⎛
⎝1−

∑
j∈N

aijej

⎞
⎠ , (17)

where aij is an element of the adjacency matrix, which takes

the value of 1 if there is a link between i and j, otherwise

aij = 0. Each agent seeks to maximize her payoff, then the

expected payoff of agent i is πi(di, w) = max{di, w}.

We have modified the model proposed by Calvo-Armengo

and Zenou to incorporate two facts. First, the know-how of

crime is transmitted not only directly, but also indirectly. The

model stated that know-how sharing is possible only if the

two person know each other. Nevertheless, members of the

same gang can share their experience indirectly through a third

person. Second, the gang has a structure which is composed

by a hard core and a clique structure. The hard core structure

includes the individuals who are culturally and criminally

enmeshed in the gang and are at risk of being so for life, the

clique structure considers individuals who gravitate around one

or more of the hard core agents [9]. Therefore the structure is

related to the marginal expected punishment cost. Individuals

into the hard core have a minor probability of being caught

than the others which are in the clique structure.

In consequence (17) is modified to introduce a term that

describes the indirect sharing of knowledge among the gang

members. In addition, we have expressed φ in terms of the

clustering coefficient as φ(C) = 1−C. When the network has

a high connectivity (hard core) the probability of being caught

is lower than a network with a low connectivity (clique).
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Individual payoff is written as:

di(e, φ) =ei

⎛
⎝1−

∑
j∈N

ej

⎞
⎠

− φ(C)ei

⎛
⎝1−

∑
j∈N

(aij + (1− aij)C)ej

⎞
⎠ .

(18)

From (18), the crime level at equilibrium e∗i such that

πi(0, w) = max{0, w} is

e∗i =
1− φ(C)

N − φk + φ(C)C(N − k)
, (19)

where k is network’s degree. From (19) e∗i increases

with network’s degree, which is comprehensible since high

connectivity corresponds to a hard core structure and a low

probability of being caught φ. Fig. 3 shows the crime level as

a function of φ for a network with 512 nodes. The continuous

line is crime level at equilibrium given by (19). This line

divides the labor market from the criminal market phase. That

means a value of e above of e∗ makes all agents get into labor

market. As φ increases, the crime level decreases in such a way

that the best option for the agent is to choose the labor force.

Fig. 3 Crime level e as a function of marginal expected punishment cost φ
for a network with N = 512 nodes. The continuous line is the analytical
expression generated by (19), which separates the space in two phases:

criminal and labor market

IV. CONCLUSION

We developed a general formula to calculate the clustering

coefficient for d-dimensional lattice networks with any link

density. This fills a theoretical void because the current

clustering coefficient theory for d-dimensional lattice networks

is valid only to a connectivity value less than 2dN1/d/3.

This generalization allows us to analytically demonstrate the

transition from a lattice network to a fully connected network,

at least in terms of the clustering coefficient. When the link

density tends to 1 the clustering coefficient produced with the

generalized formula also tends to 1. This is not possible using

current theory since as the link density tends to 1 the clustering

coefficient tends toward 3/4.

We applied this generalization to criminology where we

have modified the model proposed by Calvo-Armengo and

Zenou introducing the clustering coefficient to describe not

only the direct but also the indirect sharing of the know-how

of crime experience and the relation of the probability of being

caught with the gang structure. Our model shows that the crime

level at equilibrium, which separates the labor market from

criminal market phase, increases as the marginal expected

punishment cost decreases. Hence individuals in the hard core

structure have more probabilities to stay in criminal market

that individuals in the clique structure.

This generalization of the clustering coefficient is applicable

in several fields. For example, in econophysics, this

generalization can be used to propose a model to understand

how network structure affects the money condensation of a

system. Under certain economic exchange conditions among

a population of agents, one of these agents attains control

of all the money in the system, a phenomenon known as

wealth condensation [10]. However, when the same population

is located in a spatial network under the same exchange

conditions, this condensation does not occur [11].

On the other hand, in the field of evolutionary game

theory [12], the players are located in a spatial structure

(or network) and use a strategy (e.g. replicate, unconditional

imitation, etc.) to update the action to take; to cooperate or to

defect. In the prisoner dilemma, for example, it is known that

under the replicator strategy the cooperator fraction is zero

in a well-mixed population [13], that is, a fully connected

network. However, this cooperator fraction differs from zero

when players are located in a lattice network [13], [14].

This suggests a model in which the network can change its

clustering coefficient within a one-dimensional lattice network,

increasing its link density until it is fully connected, in such a

way that the cooperator fraction varies in response to network

structure modification.
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