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 
Abstract—Propagation of nonlinear acoustic wave in dense 

electron-positron (e-p) plasmas in the presence of an external 
magnetic field and stationary ions (to neutralize the plasma 
background) is studied. By means of the quantum hydrodynamics 
model and applying the reductive perturbation method, the Zakharov-
Kuznetsov equation is derived. Using the bifurcation theory of planar 
dynamical systems, the compressive structure of electrostatic solitary 
wave and periodic travelling waves is found. The numerical results 
show how the ion density ratio, the ion cyclotron frequency, and the 
direction cosines of the wave vector affect the nonlinear electrostatic 
travelling waves. The obtained results may be useful to better 
understand the obliquely nonlinear electrostatic travelling wave of 
small amplitude localized structures in dense magnetized quantum e-
p plasmas and may be applicable to study the particle and energy 
transport mechanism in compact stars such as the interior of massive 
white dwarfs etc. 
 

Keywords—Bifurcation theory, magnetized electron-positron 
plasma, phase portrait, the Zakharov-Kuznetsov equation.  

I. INTRODUCTION 

INCE the past decade, the study of linear and the nonlinear 
electrostatic and electromagnetic waves in quantum 

plasmas using the quantum hydrodynamic (QHD) [1], [2] has 
highly come to the attention of researchers because they have 
many uses in several physical systems including ordinary 
metals, semiconductors, super dense astrophysical 
environments (e.g. neutron stars, white dwarfs, etc.), nano-
devices, and laser-plasma experiments [1]-[6]. In these 
systems which have high densities, plasma acts as a 
degenerate fluid, and quantum mechanical effects (i.e. when 
the average inter-particle distance is equal to or smaller than 
the de Broglie thermal wavelength of the charged particles) 
play an important role in the plasma dynamics [7]. One can 
generalize the QHD model by adding the quantum statistical 
pressure term (the Fermi-Dirac distribution), the quantum 
diffraction term (the Bohm potential) and the exchange-
correlation effects [8]-[11] to the fluid model. By studying the 
nonlinear wave phenomenon in these systems, it is 
demonstrated that the inclusion of quantum effects is 
important to study a nonlinear wave phenomenon in a 
quantum plasma [1], [2]. The QHD was used to investigate the 
quantum ion acoustic waves, and a deformed Korteweg-de 
Vries (KdV) equation was derived by Haas et al. [12]. 
Although the nonlinear effects can result in a shock formation 
due to the large amplitude of oscillations, in the presence of 
dispersion effects in the system they balance each other, and 

 
A. Abdikian is with the Department of Physics, Malayer University, 

Malayer 65719-95863, Iran (e-mail: abdykian@malayeru.ac.ir). 

soliton structure will be emerged. In classical plasmas, the 
KdV equation is well-known for small but finite amplitudes 
for ion acoustic wave [13], [14]. In quantum plasma, several 
authors have studied linear and nonlinear low-frequency 
waves such as ion acoustic waves, drift waves, and so on and 
so forth [12], [15]-[17]. 

It has been proved that by adding positrons to usual plasmas 
(including linear and nonlinear electrostatic and 
electromagnetic waves), their collective behavior has 
significantly changed [18]-[21]. The existence and significant 
role of electron-positron (e-p) plasmas (which consists of 
identical mass but opposite charged particles) in the early 
universe [22] is incontrovertible [21], [23]. Although the 
existing of the e-p plasma in most astrophysical environments 
can be considered in the relativistic regime [24], [25] (and the 
references therein), the collective behavior of e-p plasma in 
the nonrelativistic regimes is also significant for realization of 
some aspects of astrophysical plasma [23], [26]. Verheest et 
al. studied large amplitude solitary electromagnetic waves in 
electron-positron plasmas via a reductive perturbation analysis 
and obtained a modified Korteweg-de Vries (mKdV) equation 
[27]. Using a two-fluid plasma model, Kourakis et al. [28] 
studied the nonlinear propagation of electrostatic wave packets 
parallel to the external magnetic field in pair plasmas. With 
this approach, Esfandyari-Kalejahi et al. considered the 
nonlinear propagation of amplitude-modulated electrostatic 
wave-packets in e-p-i plasma [29]. Esfandyari-Kalejahi et al. 
[30] studied the nonlinear amplitude modulation of 
electrostatic waves which propagate in unmagnetized 
collisionless pair plasma.  

Furthermore, the solitary wave structures in magnetized 
plasma have been studied by many researchers, and they 
derived Zakharov-Kuznetsov (ZK) equation in different 
mediums. For instance, Kourakis et al. have studied the 
nonlinear propagation of electrostatic excitations in rotating 
magnetized doped pair-ion plasmas and they have derived the 
equation on the formation of multidimensional solitons [31]. 
The propagation of the shear Alfvén waves in a strongly 
magnetized e-p-i plasmas has been investigated by Yu et al. 
[32], and also the solitary waves in quantum e-p-i plasmas 
were investigated [15], [23], [33]. Mahmood et al., by 
employing the QHD, have studied ZK equation for nonlinear 
acoustic wave propagation in dense magnetized e-p plasmas in 
the presence of stationary ions and found that an increase in 
positron concentration decreases the wave amplitude [23]. 
Moreover, the dynamics of linear and nonlinear ionic-scale 
electrostatic excitations propagating in magnetized and 
unmagnetized relativistic quantum plasma have been studied, 
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and ZK and KdV equations have been derived, respectively 
[34]-[36]. On the other hand, in recent years, many researchers 
are interested to study the solitary waves by bifurcation theory 
of planar dynamical systems [37]-[40] (see references there 
in). The bifurcation theory [41] is a well-known powerful 
technique for studying the dynamical behavior for several 
models of plasmas. Samanta et al. [37], by applying the 
bifurcation theory and using the reductive perturbation 
method, have derived a Kadomtsev-Petviashili (KP) equation 
for dust ion acoustic waves in a magnetized dusty plasma with 
q-nonextensive velocity distributed electrons, and the 
existence of two solitary wave and periodic travelling wave 
solutions is proved. They obtained the parameters that affect 
the nature of solitary waves and periodic travelling waves. 

Samanta et al. [42] have investigated ion acoustic waves in 
two component plasma with cold ions and kappa distributed 
electron in the presence of an external static magnetic field 
and derived the ZK equation. Very recently, El-Shamy [39] 
analyzed nonlinear ion-acoustic cnoidal waves in a dense 
relativistic degenerate magnetoplasma consisting of relativistic 
degenerate electrons and nondegenerate cold ions. He has 
analytically derived modified KdV equation and by means of 
the Sagdeev potential approach, numerically studied the 
various solutions of nonlinear ion-acoustic cnoidal and solitary 
waves. With that method, El-Shamy et al. [40] have studied 
the nonlinear propagation of electrostatic travelling wave 
structures in degenerate dense magnetoplasmas consisting of 
relativistic degenerate inertialess electrons and positrons, as 
well as nondegenerate inertial cold ions and obtained the ZK 
equation. The aim of this paper is to investigate the bifurcation 
behavior of acoustic traveling waves in the quantum 
magnetized e-p plasma. We obtain solitary and periodic wave 
solution of the ZK equation. 

The paper is organized as follows. In Section II, the basic 
equations for a quantum e-p magnetoplasma have given, and 
using the reductive perturbation method, the ZK equation has 
derived. Section III is devoted to the equilibrium points which 
obtained by bifurcation theory. The possibility of the existence 
of solitary wave structures and periodic travelling wave 
solutions are discussed in Section IV. Section V reported the 
numerical analysis and results. Finally, the conclusion is 
presented in Section VI. 

II. MATHEMATICAL MODEL AND DERIVATION OF THE 

NONLINEAR EQUATION 

We consider a fully ionized three-dimensional collisionless 
plasma with stationary ions, the quantum e-p plasma in the 
presence of the external magnetic field is directed along the x-
axis, i.e., xB ˆ00 B . The wave phase velocity kvph /  is 

assumed to be in the range FpFeph vvv , , where 

2/1)/2( eFjFj mv   (here j=e, p) are the ion thermal speed 

and electron/positron Fermi speed, respectively, and 

ejFj mn 2/)3( 3/2
0

22    is the Fermi energy of the jth 

species. The dynamic equations for magnetized quantum 
electron and positron plasmas are governed by the continuity, 

the momentum-balance and the Poisson equations [23], [31], 
[33], [36]: 
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where   is the electrostatic potential and perturbed densities   
(

jn ) and velocities (
jv


) of the jth species, eqe   ( eq p  ) 

is the electric charge for electron (positron),   is the Planck 
constant (h) divided by 2 , and c is the speed of light in 
vacuum. The third term in (2) is Bohm potential, which 
appears to be due to tunneling effects in quantum plasmas 
[43]. The Fermi pressure for electron and positron quantum 
fluids is defined as 3/53/2

0
2 )5/()( jjFjj nnmvp  . In a degenerate 

gas, the Fermi temperature and density of the jth species are 
related as mnTk jFjB 2/)3( 3/2

0
22  , and FjT  is the particle 

temperature, 
Bk  is the Boltzmann constant. In equilibrium 

state, we have 000 eip nnn  , where 
00 , pe nn , and 0in  are 

the unperturbed (equilibrium) densities of electrons, positrons 
and ions, respectively. The last term in (2) is the electron 
exchange-correlation potential which is a function of electron 
density and is given by 
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which can be obtained via the adiabatic local-density 

approximation, where 22 / ema eB   is the Bohr radius, 

and 
04   is the effective dielectric permeability of 

material [11], [44]-[47]. Since 137.18 3/1 Ban , Taylor 

expanding up to second order, (4) turns to 
 

3/2223/1 )(65.5/)(6.1 nmenV exc   ,      (5) 

 
Now, we assume that wave propagation is in two 

dimensions, i.e. )0,,( yx  , and we use the following 

normalized parameters to normalize (1)-(3) 
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It should be noted that 10   . The normalized equations 

for the electron quantum fluid in the component form can be 
described as 
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and the normalized equations for the positron quantum fluid in 
the component form can be written as 
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The normalized form of the Poisson equation is  
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To obtain dynamic nonlinear equation for the electrostatic 

potential in magnetized quantum e-p-i plasmas, we employ the 
stretching of independent variables as [36], [48], [49] 
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One can use the reductive perturbation method [50] to 

derive the perturbation expansions. By keeping terms of 

lowest order ( 2/3 ) of the continuity and momentum 
equations of electrons and positrons, we get the following 
equations 
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and 
)1(

pzv  appears due to 
0BE  drift in magnetized plasma. 

The linear phase speed of the acoustic wave in magnetized 
dense pair plasmas is obtained by using the lowest-order ( ) 

from the Poisson equation as 0)1( )1()1(  pe nn   and 

substitute the expressions (18) and (23) in it, as follows 
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equation gives 
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From (25)-(31), we obtain, after some simplification, the 

ZK equation for acoustic waves in magnetized e-p plasmas in 

the presence of stationary ions in terms of )1(  as follows 
 

  0)1(22)1()1()1(  YXXXT CBA ,   (32) 
 
where the nonlinear coefficient A and the dispersive 
coefficients B and C are defined as 
 





















32

2

32

2

)3(

)27(
)1(

)3(

)27(3









p

Txcpp

e

xceexcev

K
A , 

(33) 
 



)936244()3(

)3(9
)3()3(4

1

2242222

222
2222

Tpppe

pe
pe

H

H
K

B












, (34) 






















































2222
42

2

22

22

22

22222

)3(

1

)3(

1
9

4

)3(

9

)3(

9

4

)3()3(













pe
c

c

p

Tp

e

eep HH

K
C

, 

 
where 



















2222 )3(

1

)3(

1
18







pe

K .         (35) 

III. BIFURCATION OF ZKB EQUATION 

By introducing the transformation of the independent 
variables X , Y , and T  into the one variable 

 TUYlXl yx    where U  is the normalized constant 

speed, and )( yx ll  is the direction cosine of the wave vector 

along the x (y) and 122  yx ll , we would be able to study the 

possibility of the existence of solitary wave solutions and 
periodic travelling wave solutions. By considering 

),,()( )1( TYX  , integrating (32) with respect to   and 

neglecting the integration constant, one can derive the form of 
an ordinary differential equation as follows: 
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Now, one can rewrite (34) as the following dynamical system 
of travelling wave equations varied by plasma parameters 
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The last equation defines a planar Hamiltonian system with 

the following Hamiltonian function 
 

1
2
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It should note that the phase orbits determined by the vector 

fields of (35) define all traveling wave solutions of (32). By 
changing the plasma parameters, one can investigate the 
bifurcations of phase portrait of (35) in the ),( z  phase plane. 

So, our studies have been restricted to the bounded traveling 
wave solutions of (32). According to the bifurcation theory, a 
homoclinic orbit of (35) corresponds to a solitary wave 
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solution of (32). A periodic orbit of (35) corresponds to a 
periodic traveling wave solution of (32) [41], [51], [52]. Using 
the bifurcation theory [41], [51], [52] of phase portraits of 
(35), there are two equilibrium points at )0,( 00 E  and 

)0,( 11 E , where 00   and )/(21 AlU x . If we consider 

that )0,( iM   is the coefficient matrix of the linearized 

system of (35) at an equilibrium point )0,( iiE  , then we have 

 

ii baMJ  2)0,(det , 

 
By the theory of planar dynamical systems [41], [51], [52], 

it is well known that the equilibrium point )0,( iiE   of the 

Hamiltonian system will be a saddle point, a center or 
Poincaré index if 0J , 0J  or 0J  (cusp point), 
respectively. 

IV. EXACT EXPLICIT TRAVELLING WAVE SOLUTION OF ZK 

EQUATION 

By applying the planar dynamical system (35) and 
Hamiltonian (36) with 01 h , one can obtain that there are 

two types of solitary wave solution and periodic travelling 
wave solution of (32) for described magnetoplasma systems 
depending on different parameters. 

When the condition 
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)1(  is satisfied, (32) 

has the following compressive solitary wave solution [36], 
[40], [42]  

 

)/(sec)( 2 Whm   ,       (39) 

 
where )/(3 AlU xm   is the maximum amplitude and is 

UlClBlW yxx /)(4 222    width of solitary wave in a 

magnetic quantum plasma with degenerated electrons and 
positrons.  

Otherwise, (32) has the periodic travelling wave solution in 
terms of Jacobian elliptic functions [38]-[40], [42] 
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m . It important to notice that the elliptic 

parameters ( m ) and the periodic solution, (39), satisfy the 
conditions 10  m  and 

210  , respectively. 

V. NUMERICAL RESULTS AND DISCUSSION 

In this section, we have studied numerically the effects of 
some parameters on the characteristics of solitary wave and 

periodic travelling solutions such as the ion to electron 

equilibrium density ratio  , the electron cyclotron to electron 
plasma frequency ratio 

c , and the direction cosines of the 

wave vector along the x axis 
xl . For this purpose, we choose 

some of the typical plasma parameters found in astrophysical 
environments in which they are important [15], [23], [33], 
ne0=5.9×1028cm−3, np0=5.32×1028cm−3, ni0=5.8×1027cm−3 and 
B0=109G. The Fermi temperatures of electrons and positrons at 
such densities are KTFe

81096.1   and KTFp
81069.1  ; the 

quantum parameters for electrons and positrons at these 
densities are 1097.0eH  and 1138.0pH ; Fermi lengths are 

cmFe
910367.1   and cmFp

910419.1  . 

By helping of the systematic analysis, the phase portraits of 
the dynamical system of travelling wave, i.e. (35), are plotted 
in Figs. 1 and 2. They show that waves depend numerically on 

parameters   and c . 

 

 

Fig. 1 Phase orbits with 2 , 2.0 , 2.0xl , 4.0, pxce , 

1.0, pxce , 0003.0c
 and 17.2U  

 

 

Fig. 2 Phase curves for 2 , 2.0 , 2.0xl , 4.0, pxce , 

1.0, pxce , 007.0c
 and 17.2U  
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Fig. 1 illustrates phase portrait of (35) for some particular 
parameter values. For plotting these figures, by considering 
the following relationship 

Txcpp
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coefficient is always positive. Hence, they suggest that there 
exists a homoclinic orbit (at the equilibrium point )0,( 00 E  

which it is a saddle point) and a family of periodic orbits (
)0,( 11 E  which it is a center point). 

Fig. 2 illustrates phase portrait of (35) for some particular 
parameter values. The three-dimensional profile of the 
amplitude and the width of the quantum e-p acoustic solitary 

versus the ion equilibrium density ratio   is plotted in Fig. 3. 
For plotting, the obliqueness of the wave lx=0.4, 4.0, pxce , 

1.0, pxce , 4.1U  with the electron cyclotron ratio (

004.0c ) is chosen. It is found that the both wave 

amplitude and width of the soliton are increased with 

decreasing of  . This behavior arises due to the fact that the 
electron pressure creates the restoring force of solitary wave, 
which enhances by increasing (decreasing) the value of ion 
(positron) density ratio. Hence, the increase of restoring force 
leads to an increase in the amplitude of solitary wave. The 
result shows that the ion (positrons) density ratio has an 
important effect in the solitary wave propagation. 

 

 

Fig. 3 The variations of solitary wave versus   for 4.0xl , 4.0, pxce , 1.0, pxce , 004.0c
 and 4.1U  

 

 

Fig. 4 The variations of solitary wave versus 
xl  with 2.0 , 4.0, pxce , 1.0, pxce , 004.0c

 and 17.2U  

 
The effect of the direction cosines of the wave vector along the x axis xl  on the profile of solitary wave is investigated in 
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Fig. 4. For plotting, the ion equilibrium density ratio 2.0 , 

4.0, pxce , 1.0, pxce , 17.2U  with the electron 

cyclotron ratio ( 004.0c ) are chosen. It is found that the 

both wave amplitude and width of the soliton are increased as 

the ion equilibrium density ratio   is enhanced. 

Fig. 5 shows the variation of the amplitude and the width of 
the quantum e-p acoustic solitary versus the electron cyclotron 

ratio c . As it can be seen, by increasing the value of the 

electron cyclotron frequency c , the width of solitary wave 

increased. 
 

 
Fig. 5 The variations of solitary wave versus c  with 2.0 , 4.0, pxce , 1.0, pxce , 4.0xl  and 17.2U . 

 
The periodic travelling wave solutions of (32) are plotted 

versus of different parameters in Figs. 6-8. 
The periodic travelling wave solutions ( ) with respect to 

the space coordinate () are plotted for two different values of 

the obliqueness of the wave, i.e. 4.0xl  and 5.0xl  in Fig. 

6. For plotting, the following parameters 2 , 2.0 , 

4.0, pxce , 1.0, pxce , 4.1U  with the electron cyclotron 

ratio ( 004.0c
) are chosen. It is observed that the 

increasing xl  causes to the both amplitude and the width of 

solitary wave decrease. 

The effects of the ion equilibrium density ratio   on the 
periodic travelling wave solution are observed in Fig. 7. The 
value of parameters for plotting 2 , 4.0xl , 4.0, pxce , 

1.0, pxce , 4.0U  with the electron cyclotron ratio (

004.0c
) are chosen. Comparing the two cases, it is easily 

found that the amplitude and the width of the periodic wave 

grow up due to the increase of the ion density ratio  . 
Physically, the driving force produced by ion inertia which 
increases by the reduction in the positron of the plasma 
system, leads to increase the amplitudes of the periodic 
traveling waves. 

Fig. 7 exhibits the impact of the electron cyclotron 

frequency c  on the periodic traveling waves. It is seen that 

the amplitude and width of the periodic travelling waves are 

enhancing with the increasing of c .  

 

 

Fig. 6 Variation of periodic travelling wave   versus   for 2 , 

2.0 , 4.0, pxce , 1.0, pxce , 4.0U  and 004.0c
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Fig. 7 Variation of periodic travelling wave   versus   for 2 , 

4.0xl , 4.0, pxce , 1.0, pxce , 4.0U  and 004.0c
 

 

 

Fig. 8 Variation of periodic travelling wave   versus   for 2 , 

2.0 , 2.0xl , 4.0, pxce , 1.0, pxce  and 4.0U  

VI. CONCLUSION 

We have investigated the obliquely nonlinear electrostatic 
wave structures in a dense quantum e-p plasma in the presence 
of the external magnetic field (is directed along the x-axis, i.e., 

xB ˆ00 B ) with stationary ions. By using the standard 

reductive perturbation technique and the hydrodynamics 
model for the dynamic of the fluid e-p, the Zakharov-
Kuznetsov (ZK) equation, which represents the dynamics of 
small as well as finite amplitudes of quantum e-p acoustic 
solitary wave, is founded. The bifurcation theory of planar 
dynamical systems was used to illustrate the compressive 
structure of electrostatic solitary wave and periodic travelling 
waves may exist in such plasmas. By the numerical results, the 
dependence of the nonlinear electrostatic travelling waves on 
the ion density ratio, the ion cyclotron frequency, and the 
direction cosines of the wave vector effect on the nonlinear 

electrostatic travelling waves have studied. The results may be 
important to study the obliquely nonlinear electrostatic 
travelling wave in dense magnetized quantum e-p plasmas 
which may exist in compact stars such as the massive white 
dwarfs, etc. 
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