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Abstract—A quantum breathing mode has been theatrically 

studied in quantum dusty plasma. By using linear quantum 
hydrodynamic model, not only the quantum dispersion relation of 
rotation mode but also void structure has been derived in the presence 
of an external magnetic field. Although the phase velocity of the 
magnetized quantum breathing mode is greater than that of 
unmagnetized quantum breathing mode, attenuation of the 
magnetized quantum breathing mode along radial distance seems to 
be slower than that of unmagnetized quantum breathing mode. 
Clearly, drawing the quantum breathing mode in the presence and 
absence of a magnetic field, we found that the magnetic field alters 
the distribution of dust particles and changes the radial and azimuthal 
velocities around the axis. Because the magnetic field rotates the dust 
particles and collects them, it could compensate the void structure. 
 

Keywords—The linear quantum hydrodynamic model, the 
magnetized quantum breathing mode, the quantum dispersion relation 
of rotation mode, void structure.  

I. INTRODUCTION 

HEN the tiny dust particulates of carbon, silicon, etc. 
from nano to micron sizes enter into the plasma, dusty 

plasma is formed [1]. In recent years, extensive researches in 
theoretical [2], [3] and laboratory [4], [5] fields have been 
done on the dusty plasma due to the wide range of its 
applications in different environments. Classical plasma is 
associated with high temperatures and the low density of 
particle number [6]. The effects of quantum mechanics will 
appear when the plasma is extremely cooled and the density of 
particle number is high so that the de Broglie wavelengths of 
the charge carriers could be comparable to the dimensions of 
the system. Such system is called the quantum plasma [7]. The 
dynamics of quantum plasma could be investigated by using 
the Poisson-Schrödinger model, the Wigner-Poisson model 
and the Quantum Hydrodynamic Equations (QHD) [8]-[10]. 
Quantum effects play a crucial role in the manufacture of 
microelectronic devices and in the study of dense 
astrophysical systems and plasma lasers [11]. The reason for 
the importance of these studies is that these particles can 
sometimes be useful (for example, in producing solar cells), 
and sometimes harmful (as they become contaminants in 
reactors or as they decrease the efficiency of surface processes 
with the growth of micro-particles). Therefore, controlling 
such particles in the laboratory seems to be an important issue 
in improving the quality of semiconductors or computer 
microchips etc. [1]. The QHD model is widely used in 
studying quantum effects in dusty plasma. For instance, in 
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recent years, by using this model, Shukla et al. derived the 
linear dispersion relation of dust quantum acoustic waves and 
then studied the soliton solutions in the form of very cold dust 
plasma [11]. In addition, many researchers have investigated 
wave propagation in single and double wall carbon nanotubes 
by using QHD model [12], [13]. On the other hand, the 
collective excitations of the quantum dusty plasma have been 
investigated [14], [15]. Excitation of the quantum breathing 
mode has been reported in the laboratory [14], [16]. It has 
been shown that the quantum breathing mode can be created 
in a system of particles trapped in a harmonic potential whose 
particles interact with each other in the form of either r/1     

( 0 ) or rlog  [17], [18]. In this way, when this mode is 

propagated towards the outside, the boundary conditions that 
can be a circular potential barrier cause the wave to return. 
Hence, it can produce propagation like a uniform expansion 
and contraction along the radial. The propagation of this mode 
causes the distribution of the particle density to be in the radial 
direction. Because of the quantum breathing mode, a void is 
formed in the center of vibration. The creation of void has 
been reported experimentally. Firstly, during growth of carbon 
nanoparticles on direct electrical discharge, Arnas et al. [19] 
found that the void would be formed. Then, Kumar et al. [20] 
noticed that the void is created in the process of growth of 
tungsten particles. Investigating these types of modes is 
important in the production of experimental and laboratory 
instruments. These modes disturb the distribution of plasma 
particles and disrupt the measurement parameters. And 
because a void is created in the plasma center, it can facilitate 
the removal of micro particles (impurities) of the production 
process. Therefore, studying these modes is useful for both 
scientific researches and for plasma technology applications. 

In this paper, it has been theoretically attempted to study the 
quantum breathing mode by using a set of QHD equations in 
the presence of a static and constant magnetic field. The 
structure of this paper is as follows: in Section II, QHD model 
is used for an electron fluid in the presence of a magnetic field 
to obtain the dispersion relation of rotation modes. Section III 
is devoted to the numerical analysis of the dispersion relation. 
The last section is the conclusion. 

II. FUNDAMENTAL EQUATION 

We assume that dusty plasma includes the dust particles 
with mass M  and negative charges Ze  ( Z  is integer) 
confined in a cylindrical geometry which are subjected to a 
constant and axial magnetic field zB 0 ˆ0B


. It is also 

assumed that the charge of the electron is e  and the ion 
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charge is e . We have assumed that the plasma particles 
obey the Fermi gas state equation in zero temperature 
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where diej ,,  and 
jFjBFj mTkv /22   is the Fermi speed 

defined in terms of Boltzmann constant 
Bk , FjT is Fermi 

temperature , jm is mass, jn is the number density, and 0jn  

is its equilibrium value which satisfies the charge neutrality 

condition 000 dei Znnn  . 

The set of equations of quantum dusty plasma governing in 
cylindrical coordinates assuming the low phase velocity and 
low frequency are [21] 
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where u


 and   represent the dust fluid velocity and the 

electrostatic potential, respectively. And also 0 and   are the 

dielectric costant and the Planck constant divided by 2  , 
respectively. The linear set of the above equations in the 
cylindrical coordinate with axial symmetry (we can ignore 

z /  in our model) can be normalized and written as follows 
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The parameters in the above equations are normalized as: 
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Using the Fourier transformations, the radial and angular 

terms can be separated 
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Since we have cylindrical symmetry, the variables should 
have the same value at   and  2 , so the mode number (

 ) must be an integer. Equations (6)-(11) give 
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And combining (12), (13) and (8) 
 












 d

d
d

cd
d n

H
n

i
n 4

2
22

22 2



,   (14) 

 
The normalized Poisson’s equation for the dust particles is 
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Substituting (15) into (14) 
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By combining (15) and (16), we obtain 
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where the expressions are chosen as 2/2
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which   is obtained through zeros of the Bessel function 
originated from satisfying [22], [23]  
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in which we look for those roots which are purely real and 

positive ( 0 ) because this condition gives us a stable 

mode. By substituting 2k  into (18), one can obtain the 
dispersion relation of rotation mode. Using (16) and (18), one 
can obtain the density of dust particles as  
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From (19), it can be observed that the density of the dust 

particles of the quantum breathing modes depends on the 
wavelength, the magnetic field, and the distance from the axis 
in cylinder devices. 

III. DISCUSSION 

The normalized frequency pd /  of magnetized and 

unmagnetized cases in terms of normalized wave numbers 

Dk   are plotted in Fig. 1. It should be mentioned that this 

figure is valid only for 0  and the phase velocity of the 
magnetized waves is always greater than that of the 
unmagnetized wave, and as the magnetic field increases, the 
phase velocity increases. Besides, the cut-off frequency in the 
two cases is not equal. The cut-off frequency of the 
unmagnetized case is zero while that of the magnetized one is 
not zero and has the value of cdcutoff   . If a small 

magnetic field is applied, the magnetized modes tend to 
converge into the unmagnetized mode by increasing the 
wavenumber. 

 

 

Fig. 1 The normalized frequency pd /  as a function of the 

normalized wavenumber 
Dk   for the magnetized                               

( 5.0/ pdcd  ) and unmagnetized ( 0/ pdcd  ) 

quantum breathing modes 
 

Fig. 2 shows the arbitrary spatial distribution of the 

normalized density of dust numbers ( 0/ dd nn ) in terms of the 

normalized distance from the axis of the cylinder ( Dr / ) for 

0  and pd 4.0 . Although the amplitude of the 

unmagnetized quantum breathing mode ( 0/ pdcd   i.e. 

which is shown as a dash blue line) is greater than that of the 
magnetized one ( 75.0/ pdcd  i.e. which is shown as a 

red line), the magnetized quantum breathing mode attenuates 
more slowly in the radial distance than the unmagnetized one. 

 

 
Fig. 2 The normalized spatial distribution of dust density 0/ dD nn  

in terms of the normalized distance Dr /  for two cases of the 

magnetized and unmagnetized quantum breathing modes 
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:7, 2017

280

 

 

For the case of 0 , fluctuations of the density of number 
and their contours are depicted for the two cases of the 
magnetized and the unmagnetized quantum breathing modes 
in Figs. 3 and 4. It is clear that the magnetic field not only 
alters the distribution of dust in cylindrical devices but also 
changes the radial and azimuthal velocities around the axis. 

Using Fig. 2, it can be stated that the void structure can 
exist in a larger radial by applying the magnetic field. In other 
words, the magnetic field compensates the void-like structure 
by rotating and gathering the particles. 

 

 

Fig. 3 The spatial distribution of the perturbed density and its contour 
for the unmagnetized quantum breathing mode 

 

 

Fig. 4 The spatial distribution of the perturbed density and its contour 
for the magnetized quantum breathing mode 

IV. CONCLUSION 

Using the linear QHDs, the behavior of the quantum 
breathing mode, the dispersion relation of rotation mode, and 
the void-like structure in the presence of an external magnetic 
field have been studied. It was found that the perturbed density 
function of dust particles depends on the parameters of the 
wave number, the magnetic field, and the distance from the 
cylindrical axis. By plotting the dispersion relation, it was 
shown that the phase velocity of the magnetized quantum 

breathing mode is greater than that of the unmagnetized one 
and increases in proportion to the external magnetic field. 
Besides, the cut-off frequency on the magnetized quantum 
breathing mode is not zero and has the value of 

cdcutoff   . 

In addition, the attenuation of the magnetized quantum 
breathing mode is more than that of the unmagnetized one and 
takes places along the radial distance of cylindrical axis and in 
some radial distances, dust particles cannot exist. By drawing 
the counter of the magnetized quantum breathing mode it was 
found that the applied magnetic field alters the distribution of 
dust particles and tends to change the radial and azimuthal 
velocities around cylindrical axis because the magnetic field 
collects the rotated dust particles and compensates void-like 
structure. 

REFERENCES  
[1] P. K. Shukla and A. Mamun, Introduction to dusty plasma physics: CRC 

Press, 2001. 
[2] B. Farokhi and A. Abdikian, "Modulational instabilities in two-

dimensional magnetized dust-lattice," Physics of Plasmas, vol. 18, p. 
113705, 2011. 

[3] N. Rao, P. Shukla, and M. Y. Yu, "Dust-acoustic waves in dusty 
plasmas," Planetary and space science, vol. 38, p. 543, 1990. 

[4] A. Barkan, N. D'Angelo, and R. Merlino, "Experiments on ion-acoustic 
waves in dusty plasmas," Planetary and Space Science, vol. 44, p. 239, 
1996. 

[5] P. Bandyopadhyay, G. Prasad, A. Sen, and P. Kaw, "Experimental study 
of nonlinear dust acoustic solitary waves in a dusty plasma," Physical 
review letters, vol. 101, p. 065006, 2008. 

[6] F. Chen, Introduction to plasma physics and controlled fusion. New 
York: Plenum Press, 1984. 

[7] Y.-y. Wang and J.-f. Zhang, "Cylindrical dust acoustic waves in 
quantum dusty plasmas," Physics Letters A, vol. 372, pp. 3707-3713, 
2008. 

[8] G. Manfredi and F. Haas, "Self-consistent fluid model for a quantum 
electron gas," Physical Review B, vol. 64, p. 075316, 2001. 

[9] P. Holland, "The Quantum Theory of Motion," Cambridge, New York, 
1993. 

[10] G. Manfredi, "How to model quantum plasmas," Fields Inst. Commun., 
vol. 46, p. 263, 2005. 

[11] S. Ali and P. Shukla, "Dust acoustic solitary waves in a quantum 
plasma," Physics of Plasmas, vol. 13, p. 022313, 2006. 

[12] L. Wei and Y.-N. Wang, "Quantum ion-acoustic waves in single-walled 
carbon nanotubes studied with a quantum hydrodynamic model," Phys. 
Rev. B, vol. 75, p. 193407, 05/18/ 2007. 

[13] A. Abdikian and M. Bagheri, "Electrostatic waves in carbon nanotubes 
with an axial magnetic field," Phys. Plasmas, vol. 20, p. 102103, 2013. 

[14] H. Moritz, T. Stöferle, M. Köhl, and T. Esslinger, "Exciting collective 
oscillations in a trapped 1D gas," Physical review letters, vol. 91, p. 
250402, 2003. 

[15] S. P. Tewari, H. Joshi, and K. Bera, "Wavevector- and frequency-
dependent collective modes in one-component rare hot quantum and 
classical plasmas," Journal of Physics: Condensed Matter, vol. 7, p. 
8405, 1995. 

[16] S. Bauch, K. Balzer, C. Henning, and M. Bonitz, "Quantum breathing 
mode of trapped bosons and fermions at arbitrary coupling," Physical 
Review B, vol. 80, p. 054515, 2009. 

[17] C. Henning, K. Fujioka, P. Ludwig, A. Piel, A. Melzer, and M. Bonitz, 
"Existence and vanishing of the breathing mode in strongly correlated 
finite systems," Physical review letters, vol. 101, p. 045002, 2008. 

[18] M. R. Geller and G. Vignale, "Quantum breathing mode for electrons 
with 1/${\mathit{r}}^{2}$ interaction," Physical Review B, vol. 53, p. 
6979, 03/15/ 1996. 

[19] C. Arnas, A. Michau, G. Lombardi, L. Couëdel, and K. Kumar K, 
"Effects of the growth and the charge of carbon nanoparticles on direct 
current discharges," Physics of Plasmas vol. 20, p. 013705, 2013. 

[20] K. Kumar, L. Couëdel, and C. Arnas, "Growth of tungsten nanoparticles 
in direct-current argon glow discharges," Physics of Plasmas vol. 20, p. 
043707, 2013. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:7, 2017

281

 

 

[21] S. Khan, S. Mahmood, and A. M. Mirza, "Cylindrical and spherical dust 
ion-acoustic solitary waves in quantum plasmas," Physics Letters A, vol. 
372, p. 148, 2008. 

[22] G. N. Watson, A treatise on the theory of Bessel functions: Cambridge 
university press, 1995. 

[23] M. Bagheri and A. Abdikian, "Space-charge waves in magnetized and 
collisional quantum plasma columns confined in carbon nanotubes," 
Phys. Plasmas, vol. 21, p. 042506, 2014. 

 

 


