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A Transform Domain Function Controlled VSSLMS
Algorithm for Sparse System Identification

Cemil Turan, Mohammad Shukri Salman

Abstract—The convergence rate of the least-mean-square (LMS)
algorithm deteriorates if the input signal to the filter is correlated.
In a system identification problem, this convergence rate can be
improved if the signal is white and/or if the system is sparse. We
recently proposed a sparse transform domain LMS-type algorithm
that uses a variable step-size for a sparse system identification.
The proposed algorithm provided high performance even if the
input signal is highly correlated. In this work, we investigate the
performance of the proposed TD-LMS algorithm for a large number
of filter tap which is also a critical issue for standard LMS algorithm.
Additionally, the optimum value of the most important parameter is
calculated for all experiments. Moreover, the convergence analysis
of the proposed algorithm is provided. The performance of the
proposed algorithm has been compared to different algorithms in a
sparse system identification setting of different sparsity levels and
different number of filter taps. Simulations have shown that the
proposed algorithm has prominent performance compared to the other
algorithms.

Keywords—Adaptive filtering, sparse system identification,
VSSLMS algorithm, TD-LMS algorithm.

I. INTRODUCTION

LEAST-MEAN-SQUARE (LMS)-type algorithms are very

popular due to their simplicity and robustness in adaptive

filtering technology [1], [2]. Since they are stochastic gradient

based algorithms, they usually have a trade-off between

the convergence rate and the misadjustment because of the

constant step-size [3]. To enhance the performance of the

LMS algorithm, several variable step-size algorithms have

been developed [4]-[6]. In [7], authors proposed a function

controlled variable step-size LMS algorithm. The algorithm

is, basically, based on appropriately selecting a function to

control the value of the step-size. It has a high performance

compared to many similar algorithms.

Recently, many proposals have shown that the performances

of such algorithms can be improved further in system

identification settings when the system is sparse (digital tv

transmission channel [8], echo paths [9], etc.). In [10], the

authors have proposed sparse LMS algorithms that exploit

the sparsity of the system. However, still these algorithms

suffer from the constant step-size problem. In [11], we

have proposed a sparse function controlled variable step-size

LMS (SFC-VSSLMS) algorithm. The algorithm takes the

advantages of sparsity and variable step-size, and provides

prominent results, when the additive noise is white. However,

similar to the other algorithms, the performance of the
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SFC-VSSLMS algorithm deteriorates when the input signal

and/or the additive noise are/is correlated (i.e., the eigenvalue

spread of the input correlation matrix is relatively high [12]).

Many proposals appeared to deal with the problem of the

high eigenvalue spread of the correlation matrix [13]-[16].

For example, the authors in [15] used the transformed input

signal in another domain to reduce the eigenvalue spread of

its correlation matrix and as a result the performance of the

adaptive filter was enhanced. In order to exploit sparsity on

top of the transformation, authors in [16] propose a transform

domain reweighted zero attracting LMS (TD-RZALMS)

algorithm. Still this algorithm suffers from the constant

step-size.

Up to our knowledge, there was no algorithm that exploits

the sparsity of the system, uses a variable step-size and

transformation of the input signal to reduce the eigenvalue

spread of the autocorrelation matrix at the same time.

Therefore, in [17], we proposed a transform domain sparse

function controlled variable step-size algorithm that combines

all of the above mentioned properties. The proposed algorithm

imposes an approximate l0−norm penalty in the cost function

of the transform domain FC-VSSLMS algorithm in order

to enhance its performance when the unknown system is

sparse. In this paper, we examine the convergence rate and

mean-square deviation (MSD) performance of the proposed

TD-LMS algorithm for a higher number of filter taps. In

addition, the most critical parameter of the algorithm is

optimized for better results. Furthermore, the convergence

analysis in the mean sense is presented.

The next sections of the paper provides the followings: In

Section II, short reviews of the TD-LMS and SFC-VSSLMS

algorithms are explained, and the proposed algorithm is

presented. In Section III, the convergence analysis of the

proposed algorithm is carried out in the mean sense. In

Section IV, the procedures of the experiments are explained

by comparing the performance of the proposed algorithm to

other algorithms by means of simulations in MATLAB and

the results are provided and discussed. Finally, conclusions

and recommendations are drawn.

II. THE PROPOSED ALGORITHM

A. Review of the Transform Domain LMS Algorithm

Consider a linear system with input-tap vector x (k) =
[x0, ..., xM−1]

T and output d(k) related by

d (k) = hT x (k) + n (k) (1)

where h = [h0, . . . , hM−1]
T is the unknown system

coefficients with length M, T is the transposition operator
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and n(k) is the observation noise. In order to use the input

vector x(k) in the TD-LMS algorithm, it can be processed by a

unitary transform such as discrete Fourier transform (DFT) or

discrete cosine transform (DCT). If the filter length is specified

as (M) then the transform matrix T will be in a dimension

of M ×M with orthonormal rows. So the transformed vector

may be calculated as

X(k) = Tx(k), (2)

where T is a unitary matrix (i.e., TT T = TTT ). The filter

output is given as

y(k) = WT (k)X(k) (3)

and the corresponding estimation error is

e(k) = d(k)− y(k) (4)

where W(k) is the transform domain filter coefficients vector.

It is important to note that although X(k) is in the transform

domain, y(k) and e(k) are both in time domain. The filter

coefficients of TD-LMS are then updated as

W(k + 1) = W(k) + μD−1e(k)X(k), (5)

where D is an M×M diagonal matrix whose elements are the

transform signal power components
(
E[|Xi|2]

)
[16]. It is clear

that the convergence speed of TD-LMS algorithm depends on

D−1RXX . Appendix A shows that, with a proper orthogonal

transformation, the eigenvalue spread of the autocorrelation

matrix of the input signal can be reduced.

B. Proposed Algorithm

In the SFC-VSSLMS algorithm, the aim is to find the

optimum vector of h as h(k),

h(k) = argmin
w(k)

{
1

2
|e (k)|2 + ξ‖w (k) ‖0

}
, (6)

where e(k) is defined in (4), ξ is a small positive constant and

‖.‖0 denotes the l0-norm of the weights vector. Since (6) is

an NP-hard problem, ‖w (k) ‖0 is approximated in [18] as

‖w (k) ‖0 �
M−1∑
k=0

(1− e−λ|w(k)|), (7)

where λ > 0. The update equation of the SFC-VSSLMS

algorithm is written as:

w (k + 1) = w (k)+μ (k) e (k) x (k)−ρ(k)sgn [w (k)] e−λ|w(k)|,
(8)

where ρ(k) = ξλμ(k) and μ (k) is the variable step-size

parameter and given by [7] as,

μ(k + 1) = αμ(k) + γsf(k)
|e(k)|2
ê2ms(k)

, (9)

where 0 < α < 1, γs > 0 is an updating parameter, f(k) =
1/k if k < L else f(k) = 1/L and ê2ms(k) is the estimated

MSE defined as,

ê2ms(k) = βê2ms(k − 1) + (1− β)|e(k)|2. (10)

where β is the weighting factor 0 � β < 1.

In this paper, we propose a new cost function using inverse

TD coefficient vector W(k) obtained by TD input vector X(k),

hence

H(k) = argmin
W(k)

{1
2
|e (k)|2 + ξ‖TT W (k) ‖0}. (11)

Deriving (11) with respect to W (k) and substituting in W(k+

1) = W(k)− μ (k)
∂J (W (k))

∂W (k)
yields

W (k + 1) = W (k) + μ (k)D−1e (k)X (k)

− ρ(k)D−1TT sgn[TT W(k)]e−λ|TT W(k)|,(12)

where X(k) is given in (2) and W(k) is the TD vector of

w(k). In this paper we use the DCT due to its real valued

components.

III. CONVERGENCE ANALYSIS OF THE PROPOSED

ALGORITHM

In this section we present the convergence analysis of the

proposed algorithm assuming that the input signal and noise

are statistically mutually independent. Denoting H to be the

transformed optimal filter coefficients, as

H = Th. (13)

Substituting (13) and (2) into (1) yields

d(k) = HT X(k) + n(k). (14)

The TD misalignment vector of the LMS algorithm is defined

as

θ (k) = W (k)− H, (15)

combining (3), (4), (14)and (15 gives

e(k) = −XT (k)θ (k) + n(k), (16)

substituting the results of (15) and (16) in (12) provide,

θ (k + 1) =[IM − μ (k)D−1X (k)XT (k)]θ (k)

+ μ (k)D−1X (k)n (k)

− ρ(k)D−1TT sgn[TT W(k)]e−λ|TT W(k)|,

(17)

taking the expectation of (17) with the independence

assumption we obtain,

E[θ(k + 1)] = [IM − μ (k)D−1RXX ]E[θ (k)]

− ρ(k)D−1TTE[sgn[TT W(k)]e−λ|TT W(k)|].
(18)

In (18), ρ(k)D−1TTE[sgn[TT W(k)]e−λ|TT W(k)|] is bounded

and hence E[θ (k)] converges if the maximum eigenvalue of
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[IM − μ (k)D−1RXX ] in-between (−1, 1) and this, in turn,

guarantees the convergence of the algorithm in the mean sense.

Fig. 1 Optimum ρ for all algorithms by extensive simulations in the first
experiment

IV. SIMULATIONS AND RESULTS

In this section, to verify the performance of the proposed

algorithm, we compare the results with those of the

SFC-VSSLMS and TD-RZALMS algorithms (see Table I) in

sparse system identification settings where the colored input

signal is used. All the experiments are implemented with 300

independent runs.

In the first experiment, three unknown time varying systems

of 16 coefficients with different sparsity levels are assumed.

In the first 15000 iterations, 1 randomly placed coefficient

with value “1” is assumed (15/16 sparsity). In the next 15000

iterations, 4 randomly placed coefficients with values “1” per

each are used (12/16 sparsity). In the last 15000 iterations, 8

randomly distributed coefficients with “1” value per each (8/16

sparsity) are used. The tap-input vector x(k) is considered to

be an autoregressive process of order four obtained by filtered

white Gaussian noise from a fourth order system such that

x(k) = 1.79x(k − 1) − 1.85x(k − 2) + 1.27x(k − 3) −
0.41x(k − 4) + n0(k), where n0(k) is a zero mean white

Gaussian sequence with 0.15 variance.The eigenvalue spread

ratio of the input correlation matrix is measured to be 944.

The observed noise is assumed to be a white Gaussian random

sequence with a variance regulated for a signal-to-noise ratio

(SNR) of 30 dB. The performance criteria for comparisons

is mean-square-deviation (MSD = E{‖H − W(k)‖2}). The

parameters used in simulations are given in the following: For

SFC-VSSLMS: α = 0.999, β = 0.75, γ = 0.004, L = 200,

λ = 8 and ρ = 5×10−4. For TD-RZALMS: ρ = 10−5, ε = 10
and μ = 0.003. For the proposed algorithm: α = 0.997 and the

other parameters are the same that of SFC-VSSLMS. The most

important parameter selection is the sparsity-aware parameter

ρ. We select ρ by assuming 1/16 sparsity of the unknown

system and find ρ that gives minimum MSD as shown in Fig. 1

and generalized to the other parts of the experiment. However,

for TD-RZALMS, we found that ρ needs to be regularized

if the sparsity changes, so we have selected different ρ than

the found optimum one in order to guarantee the convergence

of the algorithm in the other sparsity regions. Fig. 2 shows

the tracking versus MSD curves for all algorithms. It is seen

that the proposed algorithm provides a higher convergence

speed and a lower MSD than those of the other algorithms

in all regions. However, it should be noted that, in region

3; where the sparsity is relatively low, the performance of

the TD-RZALMS and SFC-VSSLMS algorithms severely

deteriorate whereas the proposed algorithm is not so affected.

Fig. 2 Tracking and steady state behaviors of the algorithms for 94%, 75%
and 50% sparsity with an adaptive filter driven by a colored input signal

In the second experiment, in order to observe the

performance of the algorithms for a higher number of filter

taps and with a correlated Gaussian noise, their performances

are compared for a 150 taps filter with thirty randomly

distributed coefficients with value “1” (80 % sparsity) and the

SNR 30 dB. The algorithms are simulated with the following

parameters. For the TD-RZALMS: ρ = 10−5, ε = 10 and

μ = 0.003. For SFC-VSSLMS and the proposed algorithms:

α = 0.99, β = 0.75, γ = 0.003, L = 200, λ = 8 and

ρ = 5 × 10−4. Note that ρ is selected in the same way

explained in experiment I (please see Fig. 3). Fig. 4 shows

that the convergence of SFC-VSSLMS is very slow (here

the advantage of the transformation is very clear). Whereas,

the proposed algorithm has a convergence than that of the

TD-RZALMS algorithm by almost 1000 iteration and 6 dB

lower MSD.
From experiments I and II we see the virtues of combining

variable step-size (faster convergence) and transform domain

(lower MSD) very clearly.

V. CONCLUSIONS

In this paper, the performance of recently proposed

TD-LMS algorithm is investigated for a sparse system
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TABLE I
SUMMARY OF THE COMPARED ALGORITHMS

TD-RZALMS SFC-VSSLMS Proposed
Initialize: Initialize: Initialize:
μ, ρ ems(−1) = 0, μ(−1) = 0, ρ ems(−1) = 0, μ(−1) = 0, ρ
for k = 1, ..., N for k = 1, ..., N for k = 1, ..., N
e(k) = d(k)− w(k)T x(k) ems(k) = βems(k − 1) + (1− β)|e(k)|2 ems(k) = βems(k − 1) + (1− β)|e(k)|2
X(k) = Tx(k) and W(k) = Tw(k) μ(k) = αμ(k − 1) + γf(k)|e(k)|2/ems(k) μ(k) = αμ(k − 1) + γf(k)|e(k)|2/ems(k)
W(k + 1) = W(k) + μD−1· where e(k) = d(k)− w(k)T x(k) where e(k) = d(k)− w(k)T x(k)
e(k)X(k)− ρD−1TT sgn(TT W(k)) f(k) = 1/k if k < L else f(k) = 1/L f(k) = 1/k if k < L else f(k) = 1/L

w(k + 1) = w(k) + μ(k)e(k)x(k) X(k) = Tx(k) and W(k) = Tw(k)

−ρ(k)sgn(w(k))e−λ|w(k)| W(k + 1) = W(k) + μ(k)D−1e(k)X(k)

−ρ(k)D−1TT sgn(TT W(k))e−λ|TT W(k)|

Fig. 3 Optimum ρ for all algorithms by extensive simulations in the second
experiment

having a large number of filter taps. An optimum value is

searched out for the critical parameter and employed for an

enhanced steady state performance. The convergence analysis

provided in the mean sense guarantees the convergence

having the similar conditions of those in conventional LMS

algorithm. The results show that the proposed algorithm has

a prominent performance compared to the SFC-VSSLMS

and TD-RZALMS in sparse system identification settings of

different sparsity levels and different number of filter taps with

correlated input and/or noise.

APPENDIX

Without loss of generality, assume that the power of the

input signal is unity, i.e, E(x2
n) = 1. From matrix theory

[19], for any square matrix A with size N ×N , a maximum

eigenvalue (λmax) and a minimum eigenvalue (λmin),

λmax ≤ Tr(A) (19)

and for N ≥ 2
λmin ≥ Det(A) (20)

where Tr and Det are trace and determinant operators,

respectively. Therefore the ratio of

ψ(A) =
Tr(A)

Det(A)
≥ λmax

λmin
(21)

Fig. 4 MSD learning curves of the algorithms for a 150 taps filter with 30
random coefficients as “1”

Defining

RXX = E[XXT ] = TRxxTT (22)

where RXX and Rxx are the autocorrelation matrices of the

transformed and non-transformed input signals, respectively.

Tr(D−1RXX) = Tr(Rxx) = N (23)

and

Det(D−1RXX) = Det(D−1)Det(Rxx) (24)

Therefore, dividing (23) by (24)

ψ(D−1RXX) =
N

Det(D−1)Det(Rxx)

= Det(D)ψ(Rxx)

(25)

Since the Det(D) is always assured to be less than or equal

to unity , hence

ψ(D−1RXX) ≤ ψ(Rxx) (26)

In other words, (26) shows that, with a proper orthogonal

transform, eigenvalue spread can be reduced.
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