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 
Abstract—Reversible logic as a new favorable design domain 

can be used for various fields especially creating quantum computers 
because of its speed and intangible power consumption. However, its 
susceptibility to a variety of environmental effects may lead to yield 
the incorrect results. In this paper, because of the importance of 
multiplication operation in various computing systems, some novel 
reversible logic array multipliers are proposed with error detection 
capability by incorporating the parity-preserving gates. The new 
designs are presented for two main parts of array multipliers, partial 
product generation and multi-operand addition, by exploiting the new 
arrangements of existing gates, which results in two signed parity-
preserving array multipliers. The experimental results reveal that the 
best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 
26% enhancements in the number of constant inputs, number of 
required gates, and quantum cost, respectively, compared to previous 
design. Moreover, the best proposed design is generalized for n×n 
multipliers with general formulations to estimate the main reversible 
logic criteria as the functions of the multiplier size. 
 

Keywords—Array multipliers, Baugh-Wooley method, error 
detection, parity-preserving gates, quantum computers, reversible 
logic.  

I. INTRODUCTION 

OWADAYS, the power consumption receives 
considerable attention because of its growth in different 

Very-Large-Scale Integration (VLSI) circuits. The reversible 
logic design domain is a good candidate to overcome the high 
power consumption because there is not any information loss 
in these circuits. This is based on the fact that the one-bit 
information loss results in kTln2 joules of energy dissipation 
in which k is the Boltzmann’s constant and T is the absolute 
temperature at which the computation is performed [1]. 
Therefore, different from ordinary logic circuits in which 
information is lost, the circuits made of only reversible logic 
gates do not dissipate this type of energy as the internal power. 
Therefore, reversible circuits are eligible for more research 
despite having the physical and implementation problems.  

Each gate or circuit requires having a one-to-one mapping 
between its input vector and output vector to be accounted as 
reversible. In this manner, the number of outputs is equal to 
the number of inputs. In addition, the input vector can be 
recovered from the output vector, which means no information 
is lost in these circuits. Regarding the main property of 
reversible logic circuits, these circuits can be thought for using 
in different applications such as DNA computations, nano-
computing, quantum computing, and low power circuits.  
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Basically, the external noises and environmental effects can 
result in a fault and cause a reversible circuit to deviate from 
producing correct outputs. Moreover, in this case, the 
information is lost because the input vector cannot be retrieved 
from the output vector. Thus, similar to irreversible circuits, 
the fault-tolerance capability at least in the form of error 
detection should be considered in reversible circuits. A cost-
effective approach to detect errors in reversible circuits is the 
use of parity-preserving gates. This approach is based on the 
parity-based coding which is a low-cost method to detect 
errors in irreversible circuits. A gate having this characteristic 
is called a parity-preserving reversible gate. In this paper, this 
characteristic is the main property which will be focused on. 
However, it should be considered that the implementation of 
reversible circuits is more complicated in comparison with 
irreversible circuits because two simple concepts including 
fan-out and feedback are not allowed in reversible logic [2].  

The multiplication is one of the most important arithmetic 
operations in different computing systems. Among different 
types of multipliers, the array multipliers have received more 
attention as the fast multipliers. Therefore, in reversible logic 
domain, array multipliers should be considered especially 
respecting error detection capability. So far, different types of 
reversible multipliers have been designed as exemplified in 
[3]-[9]. Even though many of these designs are related to array 
multipliers, in most of them the parity-preserving gates 
required for error detection capability have not been used. 
Therefore, in this paper, some novel parity-preserving 
reversible logic array multipliers are proposed with the 
emphasis on requiring lower costs especially the quantum cost 
(QC) compared to the few previous parity-preserving designs. 
In this manner, respecting the main parts of array multipliers, 
the new designs for partial product generation (PPG) and 
multi-operand addition (MOA) are presented by exploiting 
better and newer parity-preserving gates as well as some new 
arrangements of the existing gates. Based on the results 
analysis, the proposed designs show more optimized criteria 
compared to their previous counterparts especially regarding 
gate count and QC.  

The rest of the paper is organized as follows. In Section II, 
some basic concepts and definitions as well as the parity-
preserving reversible gates are described. In Section III, the 
related works are discussed. In Section IV, the new designs for 
the PPG part, and in Section V, the new designs for the MOA 
part are proposed. Constructing the new signed parity-
preserving array multipliers by combining the proposed PPGs 
and MOAs is shown and evaluated in Section VI. Finally, 
some conclusions are drawn in Section VII.  
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II. BACKGROUND 

A. Basic Concepts and Definitions 

A reversible gate is an n×n circuit so that, for any n-tuple 
input vector, a unique n-tuple output vector will appear at the 
circuit's output. Since the input vector can be retrieved by the 
output vector, we can write Iv ↔ Ov in which Iv = (I0,I1,…,In-1) 
and Ov = (O0,O1,…,On-1) are the input and output vectors, 
respectively. A parity-preserving reversible gate is a gate in 
which the parity of the inputs is equal to the parity of the 
outputs according to the following equation in which ⊕ 
represents for the XOR operation: 

 
I0⊕I1⊕…⊕In-1= O0⊕O1⊕…⊕On-1                 (1) 

 
The parity-preserving property for a gate makes possible all 

single error detection and somehow multiple error detection at 
its outputs. It is worth mentioning that a reversible circuit 
containing only the parity-preserving gates has itself the 
parity-preserving property. Therefore, to obtain an error-
detecting reversible circuit, only the parity-preserving gates 
should be used. In a reversible gate, the constant inputs are the 
inputs whose values do not change in a gate and are 
maintained at either 0 or 1 in order to perform the intended 
functions. These inputs are also added to a gate to make it 
reversible [10]. In addition, the outputs that would not be used 
in the subsequent computations are called the garbage outputs. 
In the other words, the garbage outputs are needed just to 
maintain the circuit's reversibility or to make it parity-
preserving [11]. Another parameter considered in reversible 
circuits is the hardware complexity which is the number of 
AND, XOR and NOT operations, separately, appeared in the 
output expressions. In other words, the hardware complexity 
shows the computational complexity of a reversible circuit 
that can be important in some implementations. In this way, 
the symbols α, β, and γ may be used as the representatives for 
XOR, AND, and NOT operations in the outputs, respectively. 
As stated in [12], in calculating the hardware complexity, it 
will be better and more precise if the common operations in 
the output expressions would be accounted once. Therefore, in 
this paper, the calculation approach presented in [12] is used.  

The QC is the most important parameter in designing the 
reversible circuits. This criterion is defined as the number of 
1×1 and 2×2 quantum primitives required for implementing a 
reversible circuit. The NOT gate is the only 1×1 quantum 
primitive which has the QC of one unit. However, for 
constructing the reversible gates bigger than 2×2, different 
quantum primitives should be used. The reversible gates can 
be classified in two groups, parity-preserving and non-parity-
preserving reversible gates. As in this paper we are only 
dealing with the parity-preserving circuits, the main parity-
preserving gates are introduced.  

B. Parity-Preserving Reversible Gates 

1. Double Feynman gate (F2G) [13] as a parity-preserving 
3×3 reversible gate with the QC of two is shown in Fig. 1 
(a). The hardware complexity of this gate equals 2α. This 
gate can be used as a fan-out generator in reversible 

circuits. 
2. Fredkin gate (FRG) [14] (Fig. 1 (b)) as the oldest parity-

preserving reversible gate with the QC of five has the 
hardware complexity equal to 2ߙ ൅ ߚ4 ൅  due to the ߛ1
fact that there exist two distinct XOR operations, four 
distinct AND operations, and only a NOT operation in its 
outputs. This gate is a universal gate which means that all 
reversible logic circuits can be implemented by using only 
this type of gates. 

 

   

(a)                                                               (b) 

Fig. 1 Block diagrams of (a) F2G, and (b) FRG 
 

3. New fault-tolerant gate (NFT) [15] as another parity-
preserving reversible gate with the QC of five has the 
hardware complexity equal to 3ߙ ൅ ߚ3 ൅  according to ߛ2
its outputs shown in Fig. 2 (a). Similar to FRG, this gate is 
a universal gate.  

4. Modified Islam gate (MIG) [16] (Fig. 2 (b)) is a 4×4 
parity-preserving reversible gate with the QC of 7 and the 
hardware complexity equal to 3ߙ ൅ ߚ2 ൅  This gate is .ߛ1
a universal gate, as well. In addition, this gate can be used 
as a parity-preserving half adder when its C and D inputs 
are set to zero. In this case, the output sum and carry are 
produced on Q and R outputs, respectively. 

 

     

(a)                                                               (b) 

Fig. 2 Block diagrams of (a) NFT, and (b) MIG 
 

5. Lafifa-Mushfiq-Hafiz (LMH) [17] shown in Fig. 3 (a) is a 
4×4 parity-preserving reversible gate with the QC of six 
and the hardware complexity equal to 3ߙ ൅ ߚ2 ൅  The .ߛ1
obtained hardware complexity is based on the fact that the 
common or the same operations in the outputs are 
accounted once according to the approach presented in 
[12]. Thus, since two XOR operations in the output 
expressions operate on the same operands (in R and S 
outputs shown in Fig. 3 (a)), this gate includes three 
distinct XOR operations, which results in 3α instead of 
4α. In addition, two same AഥC operations and two same 
AB operations exist in the output expressions which result 
in a simpler term 2β instead of 4β. Finally, a distinct NOT 
operation (Aഥ) results in 1γ. 

6. ZPLG [18] shown in Fig. 3 (b) is another 5×5 parity-
preserving reversible gate with the QC of eight and its 
hardware complexity is equal to 8ߙ ൅ ߚ3 ൅  Similar to .ߛ1
F2PG, this gate can be used as a parity-preserving full 
adder when the D and E inputs are set to zero. In this case, 
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the output sum and carry are produced on the R and S 
outputs, respectively. In addition, this gate produces the 
full adder with minimum QC. 

7. ZCG [18] shown in Fig. 3 (c) is a 4×4 parity-preserving 
reversible gate with the QC of six. The hardware 
complexity of this gate is equal to 5ߙ ൅ ߚ2 ൅  Similar .ߛ1
to MIG, this gate can be used as a parity-preserving half 
adder when its C and D inputs are set to zero. In addition, 
this gate produces the minimum cost half adder. 

 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 3 Block diagrams of (a) LMH gate, (b) ZPLG, and (c) ZCG 

III. RELATED WORKS 

A. Parity-Preserving Reversible Full Adders 

All types of multipliers, i.e. serial, parallel, and array 
multipliers, in some manner require the addition operation. 
This operation is usually performed by using full adders and 
half adders. There exist some parity-preserving gates that can 
perform the operation of a parity-preserving full adder (such 
as F2PG [6], LCG [12] and ZPLG [18]) or half adder (MIG 
[16] and ZCG [18]) after setting some of their inputs to zero as 
the constant inputs. However, a full adder can be constructed 
by connecting two half adders, as well. In addition, a parity-
preserving full adder may be constructed by using a few 
parity-preserving gates similar to single NFT full adder 
(SNFA) [19] which includes three F2Gs and a NFT gate. This 
gate has the QC of 11, which is more than that of LCG and 
ZPLG but less than that of F2PG, and its hardware complexity 
is equal to 9ߙ ൅ ߚ3 ൅  .ߜ2

B. Parity-Preserving Reversible Multipliers 

Due to the fact that the multiplication is a vital operation in 
most of processing system, many studies have been performed 
to design optimal multipliers including reversible designs. The 
multipliers are designed in two manners, serial or parallel in 

which the array multipliers can be considered as the most 
important sub-group of parallel multipliers. These different 
types of multipliers can be utilized according to different 
requirements of the variety of applications. Therefore, when a 
low-cost design is very important, serial multipliers are better 
because of having a lower cost. On the other hand, if a high 
speed design is intended, array or parallel multipliers are 
better because they have more speed.  

One of the popular parallel multiplier architectures is array 
multiplier. As stated before, the array multipliers include two 
parts, PPG and MOA as shown in Fig. 4. In the PPG part, only 
partial products are produced by a simple parallel circuit, and 
in the MOA part, the produced partial products will be added 
together. Despite the fact that various reversible array 
multipliers exist in the literature, few designs are also parity-
preserving. The first parity-preserving signed array multiplier 
is proposed in [6] based on the Baugh-Wooley method [20]. In 
this design, the Wallace tree structure is used for the MOA 
part. According to [6], a 5×5 signed multiplier requires 57 
reversible gates with the total QC of 401 in which the parity-
preserving gates including F2G, FRG, MIG, NFT, and F2PG 
are utilized. The undesirable property of this design is that it 
cannot simply be extended for larger designs. In fact, the 
MOA part should be designed and optimized for each 
multiplier size. 

In [5], a parity-preserving unsigned array multiplier is 
proposed utilizing F2Gs and FRGs to implement the PPG part, 
and only MIGs to construct half adders and full adders of 
MOA part. This multiplier requires a QC of 244 for a 4×4 
multiplier.  

 

 

Fig. 4 A 4×4 unsigned multiplier that can be implemented as an array 
multiplier with two parts 

IV. PROPOSED PPG CIRCUITS 

The first part or stage of an array multiplier is the PPG. 
Normally, after finishing the PPG, the next stage (MOA) in 
which the partial products should be added can be started. In 
an irreversible n×n array multiplier, n2 AND gates are required 
to produce all Pijs that are equal to xjyi in which x and y are n-
bit input operands, and i and j are the indices from 0 to n–1. 
Therefore, in the 4×4 reversible counterpart, reversible gates 
should produce all Pijs according to Fig. 4 despite the fact that 
there is not any separate AND gate in reversible logic.  

Signed array multipliers may require different partial 
products. The best signed array multipliers are based on the 
Baugh-Wooley method [20]. In fact, based on the Baugh-
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Wooley method, two different partial product arrangements 
can be used according to Figs. 5 and 6. In this paper, we call 
them BW1 and BW2, respectively, in which the second 
arrangement (Fig. 6) has lower costs. Therefore, proposing the 
PPGs in which all the items shown in Figs. 5 and 6 required 
for the MOA part are produced can be very advantageous 
because otherwise more gates should be used to produce the 
inverted operands, separately.  

In Fig. 5, some terms include an inverted operand. These 
terms can be produced by properly adjusting the inputs of 
FRGs. This way, the first proposed parity-preserving PPG 
circuit for a 4×4 array multiplier is shown in Fig. 7. Based on 
this figure, the first proposed PPG circuit has the QC of 100 
because it includes 16 FRGs and 10 F2Gs (16×5+10×2=100). 

According to Fig. 6, some terms of partial products should 
be inverted to be used in a signed array multiplier based on the 
BW2 method. The gate with the lowest cost that can produce 
an inverted product term is LMH. Thus, to produce the 
required terms shown in Fig. 6, a new arrangement of LMH 
gates and FRGs with appropriate input adjustments is 
suggested as the second proposed parity-preserving PPG 
circuit for a 4×4 array multiplier as shown in Fig. 8. In this 
figure, some LMH gates are adjusted with the constant inputs 
of zero and one for their third and fourth inputs to produce the 
inverted product terms, and other LMH gates are adjusted with 
two zero constant inputs to produce normal product terms. 
Moreover, FRGs are used as far as possible to produce the 
remaining product terms in the locations that there is no need 
to LMH gates. The QC of this PPG circuit is equal to 91 and is 
the lowest among the existing PPG circuits. 

To compare the proposed PPG circuits in this paper with the 
previous designs, Table I illustrates different characteristics 
and reversible logic criteria for the PPG designs. It is worth 
mentioning that the calculation of values for the criteria in 
each circuit is straightforward. In fact, the number of required 

gates, constant inputs and garbage outputs are obtained based 
on the figure drawn for each proposed circuit. The number of 
constant inputs in each figure is the number of gates' inputs 
whose values are either '0' or '1'. In addition, the number of 
garbage outputs is the number of gates' outputs that are not 
connected to the other gates or are not used as the outputs of 
the circuit. The values for other criteria are obtained by 
summing the values for all the gates. In Table I, the bold items 
show the best values in each column. According to this table, 
the second proposed PPG is the best for the signed 
multiplication in all criteria.  

 

 

Fig. 5 4×4 signed multiplication based on the first Baugh-Wooley 
method 

 

 

Fig. 6 4×4 signed multiplication based on the second Baugh-Wooley 
method 

 

 

Fig. 7 First proposed 4×4 PPG based on the first Baugh-Wooley method 
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TABLE I 
COMPARISON OF PPG PARTS OF DIFFERENT PARITY-PRESERVING ARRAY MULTIPLIERS 

4×4 Multiplier Base Algorithm Signed Gate Count Constant Inputs Garbage Outputs QC Hardware Complexity 

[6] BW2 Yes 26 36 23 100 58α+58β+22γ 

1st proposed PPG (Fig. 7) BW1 Yes 26 36 24 100 52α+64β+16γ 

2nd proposed PPG (Fig. 8) BW2 Yes 16 27 19 91 43α+42β+16γ 

 

 

Fig. 8 Second proposed 4×4 PPG based on the second Baugh-Wooley method 
 

One of the benefits of array multipliers is that they can 
simply be extended for larger designs based on the smaller 
designs. Thus, the number of different required gates and the 
QC of the proposed PPGs can be computed by using the 
following equations, for n-bit operands (n>=2) to be used in 
n×n array multipliers. 

 
ሺ݊	1st	݂݋	ݏ݁ݐܽܩ ൈ ݊ሻ	ܲܲܩ ൌ ݊ଶ ൈ ܩܴܨ ൅ ሺ݊ ൈ ۂ2/݊ہ ൅ ݊	mod	2 ൅

2ሻ ൈ  (2)                 ܩ2ܨ
 

ሺ݊	ݐݏ1	of	ܥܳ ൈ ݊ሻ	ܲܲܩ ൌ 5݊ଶ ൅ 2ሺ݊ ൈ ۂ2/݊ہ ൅ 		݊	mod	2ሻ ൅ 4       (3) 
 

ሺ݊	2݊݀	݂݋	ݏ݁ݐܽܩ ൈ ݊ሻ	ܲܲܩ ൌ ሺሺ݊ െ 1ሻଶ ൅ 2ሻ ൈ ܪܯܮ ൅
ሺ2݊ െ 3ሻ ൈ  (4)                           ܩܴܨ

 
ሺ݊	2݊݀	݂݋	ܥܳ ൈ ݊ሻ	ܲܲܩ ൌ 6݊ଶ െ 2݊ ൅ 3           (5) 

V.  PROPOSED MOA CIRCUITS 

The second part of an array multiplier is the MOA. Because 
of the nature of this part which is the addition operation, the 
main building blocks will be full adders and half adders. As 
stated before, the full adder and half adder with the lowest QC 
as the main criterion are ZPLG and ZCG, both introduced in 
[18] with the QC of 8 and 6, respectively. Regarding the other 
criteria, the numbers of constant inputs and garbage outputs 
are almost the same in different full adder and half adder 
designs.  

For signed multipliers based on the Baugh-Wooley method, 
different MOAs should be designed for BW1 and BW2 
because of different structures of Figs. 5 and 6. In fact, the 
new MOA circuits should add the partial products produced 

by the PPG circuits for BW1 and BW2. Therefore, the first 
parity-preserving MOA circuit for a 4×4 signed array 
multiplier is proposed in Fig. 9 which is beneficial for the 
BW1 method. In this figure, all the terms of partial products 
produced in the PPG part are added based on their weight in 
the addition process to produce the result of multiplication 
which is an eight-bit output P. In Fig. 9, when two operands 
should be added together ZCG is used as the half adder. 
Moreover, in Fig. 9, the output carries of full adders and half 
adders are passed to the next column diagonally as much as 
possible to reduce the overall delay. This circuit has the QC of 
114 because of having 12 ZPLGs and three ZCGs. In addition, 
the second proposed parity-preserving MOA circuit for a 4×4 
signed array multiplier is depicted in Fig. 10 which is useful 
for the BW2 method. In Fig. 10, the only F2G is used to 
perform an operation equivalent to the addition by one based 
on the lower-left '1' shown in Fig. 6. In fact, in Fig. 10, a ZCG 
as a half adder should add the output carry of lower-left ZPLG 
by one which requires six units more QC. In this special case, 
this addition operation is equivalent to inverting the output 
carry of lower-left ZPLG that can be performed by using a 
F2G after an appropriate adjustment of its inputs which results 
in a reduction of QC by four. 

To compare the proposed MOA circuits in this paper with 
the previous designs, Table II illustrates different 
characteristics and reversible logic criteria for all MOA 
designs. In this table, the first two rows are only applicable to 
unsigned multipliers, and the remaining three rows are the 
designs dedicated for signed multiplications based on the first 
or second Baugh-Wooley method. In addition, the bold items 
show the best values in each column. According to this table, 
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the second proposed MOA has the lowest QC among the 
designs beneficial for signed multiplication. 

 

 
TABLE II 

COMPARISON OF MOA PARTS OF DIFFERENT PARITY-PRESERVING ARRAY MULTIPLIERS 

4×4 Multiplier Base Algorithm Signed Gate Count Constant Inputs Garbage Outputs QC Hardware Complexity 

[5] Simple array No 20 24 32 140 60α+40β+20γ 

[17] Simple array No 36 24 32 116 84α+32β+20γ 

[6] BW2 Yes 12 25 33 147 63α+51β+21γ 

1st proposed MOA (Fig. 9) BW1 Yes 15 31 43 114 111α+42β+15γ 

2nd proposed MOA (Fig. 10) BW2 Yes 13 27 35 92 89α+33β+12γ 

 

 

Fig. 9 First proposed MOA for 4×4 signed array multiplier 
 

  

Fig. 10 Second proposed MOA for 4×4 signed array multiplier 
 

To extend the size of second proposed MOA circuit to be 
used in larger multipliers, the following equations can be used 
to predict the number of different required gates and total QC 
for n-bit operands.  

 
ሺ݊	2݊݀	݂݋	ݏ݁ݐܽܩ ൈ ݊ሻ	ܣܱܯ ൌ ሺ݊ െ 1ሻଶ ൈ ܩܮܼܲ ൅ ሺ݊ െ 1ሻ ൈ

ܩܥܼ ൅ 1 ൈ  (6)                 ܩ2ܨ
 

2݊݀ሺ݊	݂݋	ܥܳ ൈ ݊ሻ	ܣܱܯ ൌ 8݊ଶ െ 10݊ ൅ 4                 (7) 

VI. RESULTS AND DISCUSSION 

In this section, the proposed parity-preserving signed array 
multipliers will be illustrated by combining the appropriate 
proposed PPG circuits and MOA circuits. After constructing 
different multipliers, some comparisons will be performed 
between the proposed multipliers and previous designs. In the 
comparisons, similar to Tables I and II, five main criteria are 
used including gate count, number of constant inputs, number 
of garbage outputs, QC, and hardware complexity even though 
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the QC is the most important criterion.  
The proposed signed array multipliers are based on the 

previously proposed PPG and MOA circuits in this paper for 
signed array multiplication. This way, we propose two new 
parity-preserving signed array multipliers. For the 4×4 
multiplication, the first proposed multiplier is constructed by 
combining the first PPG (Fig. 7) and the first MOA (Fig. 9) 
proposed before based on the BW1 method. This multiplier 
has the QC of 214 that is the sum of 100 and 114. The second 
proposed signed multiplier is constructed by combining the 
second PPG (Fig. 8) and the second MOA (Fig. 10) based on 
the BW2 method. This combination leads to the best signed 
array multiplier with the QC of 183 which is the minimum 
value among all designs.  

The proposed parity-preserving signed array multipliers are 
characterized in Table III along with previous designs. In this 
table, the bold items show the best values in each column. 
According to this table, the second proposed multiplier is the 
best with respect to all design criteria except the hardware 
complexity where one of two designs, the design in [6] or the 
second proposed multiplier in this paper, can be judged as the 
best. Moreover, Table IV depicts the best proposed signed 
array multiplier in this paper compared to the only existing 
5×5 design from [6] that its MOA part is based on the Wallace 
tree structure. This table reveals the superiority of the 
proposed design that uses a simple array for its MOA, in 
comparison with the design in [6]. 

To illustrate the precise amounts of improvements attained 
by the best proposed signed multiplier, Fig. 11 depicts the 
percentages of reduction in four criterions for the second 
proposed design compared to the design in [6] for 4×4 and 
5×5 multiplier sizes. Based on this figure, all criteria have 

some enhancements in the second proposed multiplier. The 
best improvements are obtained for the QC as the most 
important criterion, that are equal to 25.9% and 25% for 4×4 
and 5×5 multipliers, respectively. Moreover, the 
improvements in the gate count are equal to 23.7% and 14% 
for 4×4 and 5×5 multipliers, respectively. 

To figure out the performance of the second proposed 
multiplier for larger input operands, Table V demonstrates the 
formulae for the major reversible logic criteria for n×n 
multipliers as the functions of operands' size n together with 
the results for two samples 8×8 and 16×16 multipliers. Based 
on this table, the number of constant inputs and the number of 
garbage outputs will be equal in each specific multiplier size. 

VII. CONCLUSION 

In this paper, two novel parity-preserving reversible signed 
array multipliers were proposed by designing some new PPG 
and MOA circuits required in array multipliers. To attain 
better designs, the new arrangements of existing parity-
preserving reversible gates were utilized as well as exploiting 
newer gates. The proposed signed array multipliers are based 
on two types of the Baugh-Wooley method. The best proposed 
signed array multiplier in this paper has achieved considerable 
improvement in the QC and gate count compared to previous 
designs. In addition to the basic 4×4 multipliers, the proposed 
multipliers have been investigated for n×n multipliers by 
exploiting some general formulations. The experimental 
results have revealed the prominence of the proposed 
multipliers with different sizes compared to previous designs 
respecting the reversible logic criteria. 

 
TABLE III 

COMPARISON OF DIFFERENT PARITY-PRESERVING SIGNED ARRAY MULTIPLIERS 

4×4 multiplier Base algorithm Gate count Constant inputs Garbage outputs QC Hardware complexity 

[5] Simple array, unsigned 48 64 64 244 116α+104β+36γ 

[17] Simple array, unsigned 52 49 49 205 125α+78β+36γ 

[6] BW2, signed 38 61 56 247 121α+109β+43γ 
1st proposed circuit (combination of 

Figs. 7 and 9) 
BW1, signed 41 67 67 214 163α+106β+31γ 

2nd proposed circuit (combination 
of Figs. 8 and 10) 

BW2, signed 29 54 54 183 132α+75β+28γ 

 
TABLE IV 

BEST PROPOSED SIGNED ARRAY MULTIPLIER COMPARED TO THE ONLY EXISTING 5×5 BAUGH-WOOLEY MULTIPLIER 

5×5 multiplier Gate count Constant inputs Garbage outputs QC Hardware complexity 

[6] 57 90 90 401 190α+180β+69γ 
2nd proposed circuit  

(combination of Figs. 8 and 10) 
49 86 86 297 218α+120β+45γ 

 
TABLE V 

EVALUATION OF THE BEST PROPOSED SIGNED ARRAY MULTIPLIER WITH DIFFERENT SIZES BASED ON ITS GENERAL FORMULAE 

Size of 4th proposed multiplier Gate count Constant inputs Garbage outputs QC 

n×n 
ሺሺ݊ െ 1ሻଶ ൅ 2ሻ ൈ ܪܯܮ ൅ ሺ2݊ െ 3ሻ ൈ  ܩܴܨ
൅ሺ݊ െ 1ሻଶ ൈ ܩܮܼܲ ൅ ሺ݊ െ 1ሻ ൈ ܩܥܼ ൅ 1 ൈ ܩ2ܨ

4nଶ െ 4n ൅ 6 4nଶ െ 4n ൅ 6 14nଶ െ 12n ൅ 7

8×8 121 230 230 807 

16×16 497 966 966 3399 
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Fig. 11 Improvements of the 5th proposed array multiplier compared 
to the design in [6] for different sizes 
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