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Basket Option Pricing under Jump Diffusion Models
Ali Safdari-Vaighani

Abstract—Pricing financial contracts on several underlying assets
received more and more interest as a demand for complex derivatives.
The option pricing under asset price involving jump diffusion
processes leads to the partial integral differential equation (PIDEs),
which is an extension of the Black-Scholes PDE with a new integral
term. The aim of this paper is to show how basket option prices
in the jump diffusion models, mainly on the Merton model, can
be computed using RBF based approximation methods. For a test
problem, the RBF-PU method is applied for numerical solution
of partial integral differential equation arising from the two-asset
European vanilla put options. The numerical result shows the
accuracy and efficiency of the presented method.

Keywords—Radial basis function, basket option, jump diffusion,
RBF-PUM.

I. INTRODUCTION

THE Black-Scholes PDE and its extensions are the

basic and the most well-known modeling for valuation

of options with one underlying asset as well as basket

options. The original Black-Scholes equation [1] is based

on dynamics of asset prices with pure diffusion models.

In most cases, pure diffusion models cannot interpret the

empirical observations that comes from stock markets. Under

actual market conditions, stock prices expose large and sudden

changes when reacting to good or bad news. Jump-diffusion

models extend the classical diffusion modeling framework by

adding jumps to the diffusion dynamics. Merton [2] introduced

the first jump diffusion process for modeling the behavior of

stock prices.

For several underlying assets, the corresponding

Black-Scholes model is a high-dimensional PDE equation,

which needs to be solved by numerical methods. Pettersson

et al. [3] present the RBFs for multi-dimensional European

option and both one and two dimensional American

options by Fasshauer et al. [4]. Recently, Safdari et al. [5]

introduced a collocation partition of unity with local RBF

approximations for American basket option pricing problem

under Black-Scholes PDE. In many cases, however, an

explicit closed-form valuation of options in jump diffusions

is not possible and one is restricted to numerical procedures.

Reference [6] developed a semi implicit approach for

American options using a traditional linear complementarity

solver for jump diffusion problems. Explicit time stepping

for integral term is applied by [7]. An implicit, finite

difference approach for single asset American and European

options under the Merton jump diffusion model was explored

in [8]-[10]. A RBF approximation method is applied for

option pricing with single asset in exponential Levy models

in [11].
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Two asset American claims under jump diffusion were

priced using a Markov chain approach in [12]. Clift and

Forsyth [13] introduced the finite difference method for

numerical solution of two asset jump diffusion models for

option valuation.

II. BASKET OPTION PRICING

To reproduce a more realistic behavior of the underlying

assets, we assume that the asset price Si, i = 1 . . . d follows

the risk-natural process

dSi

Si
= (μ− qi)dt+ σidWi + (eJi − 1)Sidq, (1)

where μ denotes a constant expected rate of return, σi and

qi are volatility and dividend of the underlying ith-asset,

respectively. Here, Wi is the standard Brownian motion where

ρij is correlation between Wi,Wj . In (1) dq is Poisson process

with the mean arrival rate λ > 0 and Ji is jump size of the

ith-asset.

Using the Ito’s formula for finite activity jump processes, the

contingent claim V (S, t) that depends on S = (S1, . . . , Sd) ∈
Ω̃ = R

d
+ can be derived by taking the expectation under the

risk natural process. The resulting PIDE is given by

∂V

∂t
= −1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
−

d∑
i=1

(r − qi)Si
∂V

∂Si

+ rV − λ

∫
Ω̃

[V (SeJ , t)− V (S, t)

−
d∑

i=1

Si(e
Ji − 1)

∂V

∂Si
(S, t)]g(J)dJ (S, t) ∈ Ω̃× [0, T ),

(2)

where the jump magnitudes J = (J1, . . . , Jd) have some

known probability density g(J). In merton model, the

density function for the jump magnitudes follow the normal

distribution with mean vector μ̃ and covariance matrix Σ as

g(J) = (2π)−d/2(detΣ)−1/2 exp

(
−1

2
(J − μ̃)tΣ−1(J − μ̃)

)
.

(3)

Note that we assume that there is a single Poisson process

which derives correlated jumps in all assets. This corresponds

to the single market stock process which affects both prices.

Let Si = exi and τ = T − t and by the change of variables,
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V (ex, T − τ) = U(x, τ) the equation becomes

∂U

∂τ
=

1

2

d∑
i=1

d∑
j=1

ρijσiσj
∂2U

∂xi∂xj
+

d∑
i=1

(r − qi − σ2
i

2
)
∂U

∂xi

− rU + λ

∫
Ω

[U(x+ J, τ)− U(x, τ)−
d∑

i=1

(eJi − 1)
∂U

∂xi
(x, τ)]g(J)dJ (x, τ) ∈ Ω× (0, T ],

(4)

By separating the integral part of equation and using the

property of distribution function g(J),
∫
Ω
g(J)dJ = 1 the

equation can be rewritten in the more tractable form:

∂U

∂τ
(x, τ) = DU(x, τ) + IU(x, τ) (x, τ) ∈ Ω× (0, T ],

(5)

where DU = 1
2

∑d
i=1

∑d
j=1 ρijσiσj

∂2U
∂xi∂xj

(x, τ)+
∑d

i=1(r−
qi − σ2

i

2 − κiλ)
∂U
∂xi

(x, τ)− (r + λ)U(x, τ) and

IU = λ
∫
Ω
U(x+ J, τ)g(J)dJ

A. Terminal and Boundary Conditions

At the maturity T or τ = 0 the typical option value simply

equals its payoff value g, i.e.

U(x, 0) = g(x), x ∈ Ω. (6)

The typical payoff value for basket put option is given by

g(x) = max(E −
d∑

i=1

αie
xi , 0) (7)

where E is the exercise price of the option and αi, i = 1, . . . , d
are given constants. The boundary of the computational

domain can be divided into two parts: The near-field boundary,

where one or more asset prices are zero, and the far-field

boundary, where one or more asset-prices tend to infinity.

For the near-field boundary, it can be noted that once Si

reaches zero, it will be worthless afterwards, i.e., the solution

remains at the boundary. We denote the d near-field boundaries

by Ωi = {S ∈ Ω|S �= 0, Si = 0}, i = 1, . . . , d. Then,

the boundary values at Ωi can be propagated by solving a

(d − 1)-dimensional PIDE problem. In this case, the payoff

function of reduced basket put option is

g(x) = max(E −
d∑

j=1,j �=i

αje
xj , 0) x ∈ Ωi, i = 1, . . . , d.

(8)

We denote the solutions of the reduced problems by hi and

use the boundary conditions

U(x, t) = hi(x, t), x ∈ Ωi, i = 1, . . . , d. (9)

For put options, the contract becomes worthless as the price

of any of the underlying assets tends to infinity. Therefore, we

employ the following far-field boundary conditions:

lim
xi→∞U(x, t) = 0, x ∈ Ω, i = 1, . . . , d. (10)

B. Computational Domain

We have to restrict the domain Ω := R
d of the space

variable in the integral term to the bounded domain. First we

take the linear transformation in integral term in (4)∫
Ω

U(x+ J, τ)g(J) dJ =

∫
Ω

U(J, τ)g(J − x) dJ. (11)

According to the asymptotic behavior of the price of option,

there exists the compartment bounded domain ΩJ ⊂ Ω such

that we can divide the integral term (11) into two parts∫
Ω

U(J, τ)g(J − x) dJ =

∫
ΩJ

U(J, τ)g(J − x) dJ

+

∫
Ω\ΩJ

U(J, τ)g(J − x) dJ (12)

such that the value of the second integral part in (12) is less

than a given tolerance. This procedure is described in [14]. The

truncated domain is small in practice because the probability

density function g(J−y) goes to zero very quickly. We define

R(τ, x,ΩJ) by

R(τ, x,ΩJ) =

∫
Ω\ΩJ

U(J, τ)g(J − x) dJ. (13)

As well, the residual R(τ, x,ΩJ) is asymptotically zero in

regions where the solution is asymptotically linear; linearity

is a common assumption for far-field boundary conditions in

finance [15]. We shall set the size of truncated domain ΩJ so

that the R(τ, x,ΩJ) is small enough. We have now replaced

the integral on an infinite domain by finite one. Furthermore,

it is possible to approximate the truncated integral by some

kind of Newton-Cotes integration method which explained in

next section.

For the numerical approximation propose, we can truncate

the domain corresponding to the PDE part on (4). Assume that

the computational bounded domain is ΩX which ΩJ ⊂ ΩX .

For the numerical implementation, we can consider ΩX as

a general computational domain and set IU = 0, ∀J ∈
ΩX\ΩJ which cases to eliminate the integral term. Typically,

the domain ΩX is sufficiently large compared to the ΩJ

which allows to control better the error from boundary

approximations [13].

III. RADIAL BASIS FUNCTION COLLOCATION SCHEMES

For scalar function values fj at scattered distinct node

locations xj ∈ R, j = 1, . . . , N , the standard RBF interpolant

takes the form

s(x) =
N∑
j=1

λjφ(‖x− xj‖), (14)

where φ is a real-valued function such as the inverse

multiquadric (IMQ) φ(r) = 1√
ε2r2+1

coefficients λj ∈ R

for j = 1, . . . , N , are determined by interpolation conditions

s(xi) = fi, i = 1, . . . , N . In matrix form, the coefficient

vector λ̄ = [λ1, . . . , λN ]T can be obtained by solving linear

system

Aλ̄ = f, (15)
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where Aij = φ(‖xi − xj‖), i, j = 1, . . . , N , and f =
[f1, . . . , fN ]T . If we define φ̄(x) = (φ(‖x−x1‖), . . . , φ(‖x−
xN‖)), when λ̄ is known, the RBF interpolant (14) can be

rewritten as

s(x) = φ̄(x)λ̄ = φ̄(x)A−1f. (16)

We notice that matrix A is invertible for distinct node points

where RBF function is positive definite such as IMQ.

For the approximation proposes, we need to apply

the linear operator L on (17) to evaluate the sL =
[Ls(x1), . . . ,Ls(xN )]T at the set of node points X =
{xi}Ni=1. This leads to

sL = ΦLA−1f. (17)

where ΦL = [Lφ(‖xi − xj‖)]i,j=1,...,N . The differentiation

matrix DL under operator L is given by DL = ΦLA−1.

Remark: The arising differentiation matrix is based on the

standard global RBF interpolation method which is dense

matrix. The differentiation matrices can be achieved based on

the local properties of the RBF interpolation such as partition

of unity RBF method in which the arising differentiation

matrices are sparse and have the well performance for the

high dimensional problems [16].

When we are dealing with the time-dependent PDE problem

with the solution f(x, t), the RBF approximation method takes

the form

s(x, t) = φ̄(x)A−1f(t), (18)

where f(t) = [f1(t), . . . , fN (t)]T , and fj(t) ≈ f(xj , t).

IV. RBF APPROXIMATION METHOD FOR MERTON OPTION

PRICING MODEL

Using the RBF approximation – and the collocation

PIDE (5) at the node points we get the linear system of ODEs

U ′
I(τ) = DUI(τ) + IUI(τ), (19)

where UI(τ) = [U1(τ), ..., UNI
(τ)]T . The DUI(τ) and

IUI(τ) correspond to the PDE part and Integral part,

respectively.

DUI(τ) =
1

2

d∑
i=1

d∑
j=1

ρijσiσjDij,IUI(τ)

+

d∑
i=1

(r − qi − σ2
i

2
)Di,IUI(τ)− rUI(τ) + F (τ)

(20)

where D.,I contains the columns of the differentiation matrix

corresponding to interior points, and

F (τ) =
1

2

d∑
i=1

d∑
j=1

ρijσiσjDij,bFb(τ)

+

d∑
i=1

(r − qi − σ2
i

2
)Di,bFb(τ) (21)

forces the boundary conditions, where D.,b contains the

columns of the differentiation matrix corresponding to

boundary points and Fb(τ) = [U(xNI+1
, τ), . . . , U(xN , τ)]T

contains the known boundary culmens. In simple form notation

20 can be rewritten as

DUI(τ) = DLUI(τ) + F (τ) (22)

where DL = 1
2

∑d
i=1

∑d
j=1 ρijσiσjDij,I +

∑d
i=1(r − qi −

σ2
i

2 )Di,I − rI and I is identity NI ×NI matrix.

A. Discretization of Integral Term

For having the accurate approximation of the integral, we

need the refinement in the integration region. A mapping

is formed between a vector X = (x1, . . . , xNI
) ∈ ΩX

over the nodes of the collocation points in the vector X̃ =
(x̃1, . . . , x̃Nr

) ∈ ΩJ on the refined nodes. The mapping

can be written as a Nr × NI projection matrix R so that

U(X̃, .) = RU(X, .).
Let X̃ be the vector with equidistance elements, and h

be the same distance of the nodes in each direction. To

approximate the integral term, we use the quadrature rule such

as trapezoidal quadrature rule based on the refined node X̃ . For

example in the two dimensional case, (d=2), the descretization

of the integral term on equation – in each collocation points

xi can be approximated as follow

IU(xi, τ) =

∫
ΩJ

U(J, τ)g(J − xi) dJ

≈ h2
Nr∑
j=1

wjU(x̃1j , x̃2j , τ)g(x̃1j − x1i, x̃2j − x2i)

(23)

where wj is 1 for points in the interior, 0.5 along the outer

edges and 0.25 in the corner points of integration domain. In

the matrix form the integral term can be written as

IUI(τ) = W R UI(τ) (24)

where the matrix W includes the trapezoid weights and density

function g,

Wi,j = [h2wjg(x̃1j−x1i, x̃2j−x2i)], i = 1, . . . , NI , j = 1, . . . , Nr.
(25)

by replacing (22) together (24) in (19), the ODEs system will

be rewritten as

U ′
I(τ) = (DL +W R)UI(τ) + F (τ), (26)

The arising ODEs system can be numerically solved by

common time stepping method or ode command of MATLAB

such as ode15s.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of the RBF

based approximation method for approximation of multi-asset

option pricing. The implementation of the RBF approximation

method and experiments have been divided into the two cases;

two-asset and three-asset option. For both cases, we take the

IMQ as a basis function, and wendland – for right function

in RBF-PUM case. We discretize the operator in space by

localization of the computational domain ΩX = [−3, 3]d.
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TABLE I
PARAMETER VALUES USED FOR TWO-ASSET CASE

Diffusion Jump payoff

parameter value parameter value parameter value

σ1 0.3 σ̃1 0.4 r 0.05
σ2 0.3 σ̃2 0.4 T 1
ρ 1 μ̃1 0.1 E 1

μ̃2 0.1 α1 0.5
ρ̃ 0 α2 0.5
λ 0.1

VI. TWO-ASSET OPTIONS

To ensure the accuracy of the RBF based methods for

the multi-asset option pricing, we test the algorithm for a

sample problem and compared with common Finite difference

method. We use the FDM to generate reference solution with

finer grids. The parameters for the jump diffusion model are

given in Table I.
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Fig. 1 Approximated solution of the basket option pricing based on Merton
model with two underlying assets
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Fig. 2 Convergence behavior for RBF based method and FD method.
Reference solution based of FD method with N = 180 gride in each axis is

used for compotation of solution
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