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Estimation of the Temperatures in an Asynchronous
Machine Using Extended Kalman Filter

Yi Huang, Clemens Guehmann

Abstract—In order to monitor the thermal behavior of an
asynchronous machine with squirrel cage rotor, a 9th-order extended
Kalman filter (EKF) algorithm is implemented to estimate the
temperatures of the stator windings, the rotor cage and the stator
core. The state-space equations of EKF are established based on
the electrical, mechanical and the simplified thermal models of an
asynchronous machine. The asynchronous machine with simplified
thermal model in Dymola is compiled as DymolaBlock, a physical
model in MATLAB/Simulink. The coolant air temperature, three-phase
voltages and currents are exported from the physical model and are
processed by EKF estimator as inputs. Compared to the temperatures
exported from the physical model of the machine, three parts of
temperatures can be estimated quite accurately by the EKF estimator.
The online EKF estimator is independent from the machine control
algorithm and can work under any speed and load condition if the
stator current is nonzero current system.

Keywords—Asynchronous machine, extended Kalman filter,
resistance, simulation, temperature estimation, thermal model.

I. INTRODUCTION

W IRELESS sensor network has so many important

applications such as the monitoring of the

environment, the industry and the tracking of things.

We focus on the algorithm implementation in one host

sensor node and the input signals acquired from distributed

sensor nodes. As a sensor node is low-cost, low-power,

weak calculation and small in memory size, the algorithm

should be simple and efficient so that it can be implemented

in a sensor node. The thermal behavior monitoring system

of an asynchronous machine is examined for the further

implementation on a sensor node.
Asynchronous machines are widely used due to their

low cost, robustness and low maintenance requirements.

The thermal behavior of an asynchronous machine largely

determines the maximum lifetime, the ability of over-load and

also the accuracy in high-performance controller [1]. Thermal

stress and exceeding of the temperature protection class may

be the reason for insulation deterioration as well as rotor faults

[2]. So the temperature monitoring of the stator winding, rotor

cage and stator core can be used for thermal fault detection

and predictive monitoring. It can help the machine to extend

the life span and contribute much to the high performance of

the machine [2].
The most common method is the construction of a

temperature measurement system using mounted sensors.

Yi Huang is with the Department Energy and Automation Technology,
Technische Universitaet Berlin, Berlin, 10623 Germany (e-mail:
yi.huang@campus.tu-berlin.de).

Clemens Guehmann is with the Department Energy and Automation
Technology, Technische Universitaet Berlin, Berlin, 10623 Germany (e-mail:
see http://www.mdt.tu-berlin.de/menue/mitarbeiter/leitung/).

Sensors can be fixed on the surface of the stator core and

embedded inside the stator winding. However, it is difficult

to acquire signals from the rotor while in operation. Local

temperature measurement, hot-spot measurement and bulk

measurement are described in [3]. Wireless sensor networks

can be used to acquire the rotor temperature, but the high cost

and the instability would be an obstacle for the production

[4], [5]. Two other types of indirect approaches are the

temperature calculation based on the thermal model only, and

the method based on the estimation of resistive parameters.

Thermal analysis based on lumped-parameter thermal network,

finite-element analysis, and computational fluid dynamics

are considered [6]. The design of a state-of-the-art rotor

temperature monitoring system for contact measurement was

proposed [7]. Based on the stator windings resistance variation

with temperature, a sensorless internal temperature monitoring

method for induction motor is introduced [1]. J.K.AI-Tayie

[8] proposed a method to estimate the rotor and stator

temperatures using the extended Kalman filter. However, only

the temperatures of rotor cage and stator winding can be

estimated. Moreover, it must be assumed that there is no rise

in the coolant air temperature.
The thermal modeling of the machine is a complex

multi-disciplinary problem, and it must also evaluate the

main internal losses of the machine [9]. The most frequent

estimation techniques rely on a calculation of impedance in

steady state [10], [11] or on an extended Kalman filter. The

estimation of the stator resistance Rs and rotor resistance Rr

have presented in [8] and [12], and none of them can estimate

the resistances simultaneously.
Combining the electrical and mechanical model with a

simplified thermal model, an online approach to estimate the

temperatures of stator windings, rotor cage and stator core

is proposed. The extended Kalman filter can process the

three-phase voltages, currents and the coolant air temperature.

This paper defines the state-space equations of the system

and how to implement the temperature monitoring system

using the extended Kalman filter step by step to estimate the

three temperatures of the machine directly. The state-space of

the system is presented in Section II. Section III illustrates

the implementation of EKF and the tuning of the covariance

matrix. In Section IV, the EKF estimator is performed in

MATLAB/Simulink and the simulation results are discussed.

Finally, the conclusions are given in the last section.

II. THE MODEL OF THE SYSTEM

EKF algorithm requires a state-space model of the whole

system which consists of the electrical and mechanical models
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of the asynchronous machine in the a reference frame, and also

the simplified thermal model of the machine.

A. The Model of the Asynchronous Machines
The twin-axis reference frame is used to build the electrical

model of the three-phase asynchronous machine. The voltage

equations in arbitrary reference frame are often written in the

form below:

vqs = Rsiqs + ωλds + λ′
qs (1)

vds = Rsids − ωλqs + λ′
ds (2)

vqr = Rriqr + (ω − ωr)λdr + λ′
qr (3)

vdr = Rridr − (ω − ωr)λqr + λ′
dr (4)

λqs = Lsiqs + Lm(iqs + i′qr) (5)

λds = Lsids + Lm(ids + i′dr) (6)

λqr = Lriqr + Lm(iqs + i′qr) (7)

λdr = Lridr + Lm(ids + i′dr) (8)

where vqs, vds are d-q stator voltages. vqr, vdr are d-q rotor

voltages. iqs, ids are d-q stator currents. iqr, idr are d-q rotor

currents. Rs, Rr are stator and rotor resistance. ω is the

reference frame speed and ωr is the rotor electric speed. λqs,

λds, λqr and λdr are stator and rotor flux linkages in d-q axis.

Ls, Lr are stator and rotor inductances and Lm is mutual

inductance.
In order to reduce the number of variables, stator current ids

and iqs, rotor current idr and iqr in twin-axis stator reference

frame is selected. The value of ω is zero, and σ = LsLr−L2
m.

The final equations can be rearranged into state-space format:

σi′ds = −RsLrids + L2
mωriqs +RrLmidr

+ LrLmωriqr + Lrvds (9)

σi′qs = −RsLriqs − L2
mωrids +RrLmiqr

+ LrLmωriqr + Lrvqs (10)

σi′dr = −RsLmids − LsLmωriqs −RrLsidr

− LsLrωriqr − Lmvds (11)

σi′qr = LsLmωrids +RsLmiqs + LsLrωridr

−RrLsiqr − Lmvqs (12)

The general mechanical model of the system comes from

the torque balance equation which can be expressed as:

Te = Ffωr + Jω′
r + Tl (13)

where Te is the electromagnetic torque and Tl is the load

torque. Ff is the friction constant and J is total inertia. The

total electromagnetic torque of the asynchronous machine Te

can be expressed by the stator and rotor current component in

twin-axis reference frame:

Te = pnLm(iqsidr − idsiqr) (14)

where pn is the number of pair pole. From (13), (14), the

state-space of the rotor speed is shown below:

ω′
r =

pnLm

J
(iqsidr − idsiqr)− Ffωr

J
− Tl

J
(15)

B. The Thermal Model of the Asynchronous Machines

The thermal model of the machine is constructed based on

the thermal equivalent network established in [13]. The heat of

the machine is generated from the power losses, which consists

of the losses of stator winding, losses of the stator core, losses

of the rotor cage, losses of the rotor core, friction losses and

stray load losses [14]. There is no core in the squirrel cage

rotor, so the losses of rotor core is taken as zero. In order to

simplify the thermal model, the friction losses and the stray

load losses are dissipated to the environment and not contribute

to the thermal transfer. The simplified thermal model equations

in [13] can be written as following equations:

T ′
sw =

−RswTsw

Csw
+

RswTsc

Csw
+

Psw

Csw
(16)

T ′
rc =

−RrcTrc

Crc
+

RrcTsc

Crc
+

Prc

Crc
(17)

T ′
sc =

−RswTsw

Csc
+

RrcTrc

Csc
+

RscTc

Csc

+
(Rsw +Rrc +Rsc)Tsc

Csc
+

Psc

Csc
(18)

where Tsw, Trc, Tsc and Tc are temperatures above ambient

of stator winding, rotor cage, stator core and coolant air

respectively. Rsw, Rrc and Rsc are thermal resistances. Csw,

Crc and Csc are thermal capacitances. Psw, Prc and Psc are

the losses respect to stator winding, rotor cage and stator core.

In the simplified thermal model, Psw, Prc are ohmic losses,

and Psc is the frequency-dependent iron losses, Rs, Rr are the

DC resistance, in ohms, between any two line terminals, ωm

is the mechanical speed of the rotor in rad/s, kiron is the iron

loss constant. The losses can be represented as:

Psw =
3

2
Rs(i

2
qs + i2ds) (19)

Prc =
3

2
Rr(i

2
qr + i2dr) (20)

Psc = kironω
2
m (21)

C. The Combined Model of the System

In order to combine the model of the asynchronous

machines and the thermal model into a series of

integrated state-space equations, the temperature dependent

characteristics of the resistance is used. Both Rs and Rr can

be replaced by the following equations:

Rs = RsRef (1 + αsTsw) (22)

Rr = RrRef (1 + αrTrc) (23)

where RsRef and RrRef are the resistances in the reference

temperature. αs and αr are temperature coefficients of stator

winding (copper) and rotor cage (aluminum).

From (9)-(12), (15), (16)-(18), the final state space system

can be acquired by substituting Psw, Prc, Psc expressed in

(19)-(20) into (16)-(18), and substituting Rs, Rr in (22), (23)

into (9)-(12), (16)-(18). Summarizing the previous equations,
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the system can be rewritten as a 9th-order nonlinear continuous

time-variant system in the state space model form:

x′(t) = A(x(t))x(t) + B(t)u(t) (24)

z(t) = Cx(t) + D(t)u(t) (25)

where:

x = [ids, iqs, idr, iqr, ωr, Tl, Tsw, Trc, Tsc]
T (26)

z = [ids, iqs]
T (27)

u = [vds, vqs, Tc]
T (28)

B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lr

δ 0 0
0 Lr

δ 0
Lm

δ 0 0
0 Lr

δ 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 Rsc

δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

C =

[
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

]
(30)

δ = LsLr − L2
m (31)

a(t) = (Rs(1 + αsTsw(t))) (32)

b(t) = (Rr(1 + αrTrc(t))) (33)

In the state equations, x(t) is the state vector, u(t) is the

control vector, the system matrix A(x(t)) defined in (48) is

variable with time, B(t) is the input matrix which is constant.

In the measurement equations, C(t) is the output matrix, D(t)
is the feedthrough matrix which is zero here. The load torque

T is considered constant parameter due to the slow variation

with time.

III. THE IMPLEMENTATION OF EXTENDED KALMAN

FILTER ALGORITHM

The extended kalman filter is a nonlinear version of the

Kalman filter which linearizes about an estimation of the

current mean and covariance. In general, both the process noise

and the measurement noise should be taken into account in the

nonlinear system model and measurement model.

xk = f(xk−1, uk−1) + wk−1 (34)

zk = h(xk) + vk (35)

It is necessary to assume that the process wk and the

measurement noise vk are random white Gaussian noise with

zero mean and their variance can be described by covariance

matrix Q and R respectively. They can be defined as

E[w(i)wT (j)] = Qδ(i, j) (36)

E[v(i)vT (j)] = Rδ(i, j) (37)

E[W (i)vT (j)] = 0 (38)

δ(i, j) is a Dirac Delta function variation

δ(i, j) =

{
1 i = j

0 i �= j
(39)

where Q is a 9x9 positive semi-defined matrix and R is

2x2 positive semi-defined matrix. Both of them are constant

matrix. The state space of the system is nonlinear.

A. Initialization of the State Vector and Covariance Matrix

As the discrete EKF is a recursive algorithm starting from

sampling time t = 0, the starting values of the state vector is

x̂(0) = E [x(0)] (40)

where the symbolˆindicates estimated value of a state vector.

And a 9x9 error covariance matrix is a diagonal matrix as

below:

P(0) = V ar [x(0)] (41)

B. The Prediction Stage of EKF

The prediction stage equations of EKF are shown in

(42) and (43). Equation (42) is used for updating the state

vector from previous sampling time k-1 to current time k.

Equation (43) is state of updating error covariance matrix.

x̂−
k = f(x̂k−1, uk−1, 0) (42)

P̂−
k = FkPk−1F

T
k +Q (43)

where Fk is the process Jacobians at step k

Fk =
∂f

∂x

∣∣∣∣
x=x̂k

(44)

1) The Discretization of the Model: The model above is

a continuous time system which can not be processed by

computer. Euler’s approximation is used to discrete the model,

so that the sampled data can be used in the EKF algorithm.

According to the definition of derivative, (24) can be rewritten

as:

x(k)− x(k − 1)

τ
= Adx(k − 1) + Bdu(k − 1) (45)

By simplifying the equation above, the new equation can

be expressed as:

x(k) = (1 + τAd)x(k − 1) + τBdu(k − 1) (46)

As A and B are the matrix, the discrete model is

x(k) = Adx(k − 1) + Bdu(k − 1) (47)

where Ad = E + τA and Bd = τB, E is 9x9 unit matrix,

Cd is equal to C, τ is the sampling time.
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A(x(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a(t)Lr

δ
L2

mωr(t)
δ

b(t)Lm

δ
LrLmωr(t)

δ 0 0 0 0 0
−L2

mωr(t)
δ

−a(t)Lr

δ
−LrLmωr(t)

δ
b(t)Lmωr(t)

δ 0 0 0 0 0
a(t)Lm

δ
−LsLmωr(t)

δ
−b(t)Ls

δ
−LsLrωr(t)

δ 0 0 0 0 0
LsLmωr(t)

δ
a(t)Lr

δ
LsLrωr(t)

δ
−b(t)Ls

δ 0 0 0 0 0
−pnLmiqr(t)

J
pnLmidr(t)

J 0 0 −B
J

−1
J 0 0 0

0 0 0 0 0 0 0 0 0
3a(t)ids(t)

2Csw

3b(t)iqs(t)
2Csw

0 0 0 0 Rsw

Csw
0 Rsw

Csw

0 0 3b(t)idr(t)
2Crc

3b(t)iqr(t)
2Crc

0 0 0 −Rrc

Crc

Rrc

Crc

0 0 0 0 kironωr(t)
4Csc

0 Rsw

Csc

Rrc

Csc

Rsw+Rrc+Rsc

Csc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

2) The Linearization of the Model: The linearization of the

non-linear model plays crucial role in the the implementation

of EKF. The linearization is based on the assumption, that

the state variables in (26) are constant in one step of the

computation. The linearized state equation can be rewritten

in a new form:

∂f

∂x
=

∂Ad(k)x(k − 1) + Bd(k)u(k − 1)

∂x
(49)

And the output equation is below:

∂h

∂x
=

∂h(x(k − 1))

∂x
(50)

The Jacobian matrix Fk is defined in (55), where the

coefficients are below:

f15 =
L2
miqs(k) + LrLmiqr(k)τ

δ
, f17 = −RsαsLrids(k)τ

δ

f18 =
RrαrLmidr(k)τ

δ
, f25 = −Lm(Lmids(k) + Lridr(k))τ

δ

f27 = −RsαsLriqs(k)τ

δ
, f28 =

RrαrLmiqr(k)τ

δ

f35 = −LmLsiqs(k) + LsLriqr(k)τ

δ
, f37 =

RsαsLmids(k)τ

δ

f38 = −RrαrL1idr(k)τ

δ
, f45 =

LmLsids(k) + LsLridr(k))τ

δ

f47 =
RsαsLmiqs(k)τ

δ
, f48 = −RrαrLsiqr(k)τ

δ

f77 = 1 +
3(Rsαs(ids(k)

2 + iqs(k)
2)−Rsw)τ

2Csw

f88 = 1 +
3(Rrαr(idr(k)

2 + iqr(k)
2)−Rrc)τ

2Crc

f99 = 1− (Rsw +Rrc +Rsc)τ

Csc

C. The Correction Stage of EKF

Kk = P−
k HT

k (HkP
−
k HT

k +R)−1 (51)

x̂k = x̂−
k +Kk(zk − h(x̂−

k , 0)) (52)

Pk+1 = (I −KkHk)P
−
k (53)

where Hk is the measurement Jacobian at step k

Hk =
∂h

∂x

∣∣∣∣
x=x̂k

(54)

IV. SIMULATION MODELS AND EXPERIMENT RESULTS

A. The Combined Simulation Models

The model of a squirrel cage asynchronous machine with

losses couples with the simplified thermal model using

Dymola. The squirrel cage asynchronous machine with losses

is explained in [14]-[16]. The model can simulate the transient

electrical and magnetic behavior as well as six parts of the

machine losses. By connecting an internal thermal port of the

machine to the thermal port of the simplified thermal model,

all the losses can be passed to the thermal circuit. With the

complete model, the temperatures of stator wingding, rotor

cage and the stator core can be calculated. The simplified

thermal mode is shown in Fig. 1, and both the simulation

model and the experiment are explained in [13].

All parameters of the asynchronous machine were identified

at a test bench. The complete model is shown in Fig. 2.

With the help of the Dymola-Simulink interface, the

complete model in Dymola can also run in a Simulink
environment [17]. Meanwhile EKF algorithm is implemented

as a S-Function in Matlab/Simulink, and connected with

the complete physical model. In the complete model,

the three-phase stator currents are the measurements, the

three-phase voltages and the coolant air temperature are the

control vector. They can be exported from DymolaBlock as

the input of the EKF. The estimated temperature from EKF can

be compared with the temperature calculated by the thermal

model. The online EKF estimator in Simulink is shown in

Fig. 3.

B. The Simulation Results by EKF Estimator

The parameters of the asynchronous machine and the

parameters of the thermal model are listed in Tables III-V

respectively. The implemented EKF algorithm is independent

from the control strategy and the running conditions of the

machine. The temperatures of stator winding, rotor cage and

stator core can be estimated in any operating condition.

Full-load test S1 and intermittent-load test S6 have performed

in Simulink and the sampling time is 500 μs. The initial

error covariance matrix, process noise covariance matrix and

measurement covariance matrix are obtained by trial and error

method:

P(0) = diag
[
5 5 5 5 5 5 0 0 0

]
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F(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− a(k)Lrτ
δ

L2
mωr(k)τ

δ
b(k)Lmτ

δ
LrLmωr(k)τ

δ f15 0 f17 f18 0
−L2

mωr(k)τ
δ 1− a(k)Lrτ

δ
−LrLmωr(k)τ

δ
b(k)Lmωr(k)τ

δ f25 0 f27 f28 0
a(k)Lmτ

δ
−LsLmωr(k)τ

δ 1− b(k)Lsτ
δ

−LsLrωr(k)τ
δ f35 0 f37 f38 0

LsLmωr(k)τ
δ

a(k)Lrτ
δ

LsLrωr(k)τ
δ 1− b(k)Lsτ

δ f45 0 f47 f48 0
−pnLmiqr(k)τ

J
pnLmidr(k)τ

J
pnLmiqs(k)τ

J
−pnLmids(k)τ

J 1− Bτ
J − τ

J 0 0 0
0 0 0 0 0 1 0 0 0

3a(k)ids(k)τ
Csw

3b(k)iqs(k)τ
Csw

0 0 0 0 f77 0 Rswτ
Csw

0 0 3b(k)idr(k)τ
Crc

3b(k)iqr(k)τ
Crc

0 0 0 f88
Rrcτ
Crc

0 0 0 0 kironωr(k)τ
2Csc

0 Rswτ
Csc

Rrcτ
Csc

f99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55)

Fig. 1 The Simplified Thermal Model

Q = diag
[
3 3 0.5 0.5 0.01 0.1 10−7 10−7 10−8

]

R =

[
0.1 0
0 0.1

]

Two experiments are performed. One is the continuous full

load S1 which means the machine runs at the rated condition

until the temperatures are stable. Fig. 4 shows the comparison

between the temperatures exported from the physical model in

Dymola and the temperatures estimate by EKF in Simulink.

The sampling time is 500 μs and the simulation period is

about four hours.

Apart from the deviation for every point, the normalized

root-mean-square error (NRMSR) eNRMS defined in (56) is

used to evaluate the accuracy of the estimator.

eNRMS =

√√√√ 1

N

N∑
i=0

(
ymea(i)− yest(i)

max(ymea)−min(ymea)
)2 (56)

The estimated temperatures follow the simulated reference

temperatures quite well. The maximum error and the NRMSE

value for each region under S1 condition are summarized in

Table I.

Another experiment is called S6 which is an intermittent

load with six minutes no-load followed by four minutes

full-load. The sampling time is also 500 μs. The results of the

temperatures match the simulated reference temperatures very

well. Fig. 5 shows the comparison between the temperature

simulated and the temperature estimate by EKF under an
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Fig. 2 The Complete Model

To File2

measurement.mat

To File1

estimation.mat

S Function

ekf_sfunction

Rate Transition3

Rate Transition2 Rate Transition1

Asynchronous machine and thermal model
DymolaBlock

is1
is2
is3

vs1
vs2
vs3
Tc

Tsw
Trc
Tsc

Fig. 3 EKF Estimator in Simulink

TABLE I
THE ERROR AND NRMSE OF THE ESTIMATED TEMPERATURES UNDER S1

Parameters Maximum Error NRMSE
Stator winding 1.6°C 2.11%

Rotor cage 3.1°C 2.91%
Stator core 1.2°C 2.05%

intermittent load S6. The maximum error and the NRMSE

value for each region under S6 condition are summarized in

Table II.

TABLE II
THE ERROR AND NRMSE OF THE ESTIMATED TEMPERATURES UNDER S6

Parameters Maximum Error NRMSE
Stator winding 1.6°C 1.88%

Rotor cage 2.1°C 3.01%
Stator core 1.8°C 1.86%

V. CONCLUSION

This paper proposed an on-line method to estimate the

temperatures of stator wingding, rotor cage and stator core

of an asynchronous machine using an extended Kalman filter.

By combining the model of the asynchronous machine in

twin-axis stator reference frame and the simplified thermal

model, the state-space equations have been defined and

implemented as a 9th-order extended Kalman filter. The

complete temperature simulation model based on [13] is

modeled in Dymola and runs well compared to the results

in [13]. The coolant air temperature, three-phase currents

and voltages are exported from the asynchronous machine

model in Dymola which are the inputs of EKF. Both the

Dymola model and EKF algorithm complied in an S-Function

can be simulated in MATLAB/SIMULINK. The estimated

temperatures follow the simulated reference temperatures very
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Fig. 4 Comparison of simulated and estimated temperatures under
continuous duty S1
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Fig. 5 Comparison of simulated and estimated temperatures under
intermittent duty S6

well under both S1 and S6 conditions. The advantages of the

algorithm are as follows:

• The estimated temperatures can be obtained by acquiring

the three phase stator voltage, current and the coolant air

temperature. The rotor speed and the torque can also be

estimated simultaneously.

• The estimator is independent from the operation

conditions. That means no matter what the rotor speed

is, and what the mechanical load is, as long as there are

currents through the stator winding, the temperature can

be estimated correctly.

APPENDIX

TABLE III
PARAMETERS OF ASYNCHRONOUS MACHINE

Parameters Symbols Values
Nominal output Pm 3 kW
Nominal voltage V 380 V

Nominal frequency f 50 Hz
Nominal torque T 20 N·m

Connection delta
Pole pair pn 2

Stator resistance Rs 1.9693 Ω
Rotor resistance Rr 1.8081 Ω
Main reactance Xm 52.025 Ω

Stator leakage reactance Xs 2.02 Ω
Rotor leakage reactance Xr 2.02 Ω

Rotor’s moment of inertia Jr 0.01654 kg.m2

Iron loss constant kiron 0.00664 W/(rad/s)2

TABLE IV
THERMAL CAPACITANCES OF SIMPLIFIED MODEL

Parameters Symbols Values
Stator winding capacitance Csw 3000 J/K

Rotor cage capacitance Crc 1366 J/K
Stator core capacitance Csc 7000 J/K

TABLE V
THERMAL RESISTANCES OF SIMPLIFIED MODEL

Parameters Symbols Values
Stator winding resistance Rsw 13.8 K/W

Rotor cage resistance Rrc 3.52 K/W
Stator core resistance Rsc 15.3 K/W
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