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Study of Rayleigh-Bénard-Brinkman Convection
Using LTNE Model and Coupled, Real

Ginzburg-Landau Equations
P. G. Siddheshwar, R. K. Vanishree, C. Kanchana

Abstract—A local nonlinear stability analysis using a eight-mode
expansion is performed in arriving at the coupled amplitude equations
for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence
of LTNE effects. Streamlines and isotherms are obtained in the
two-dimensional unsteady finite-amplitude convection regime. The
parameters’ influence on heat transport is found to be more
pronounced at small time than at long times. Results of the
Rayleigh-Bénard convection is obtained as a particular case of
the present study. Additional modes are shown not to significantly
influence the heat transport thus leading us to infer that five minimal
modes are sufficient to make a study of RBBC. The present problem
that uses rolls as a pattern of manifestation of instability is a needed
first step in the direction of making a very general non-local study of
two-dimensional unsteady convection. The results may be useful in
determining the preferred range of parameters’ values while making
rheometric measurements in fluids to ascertain fluid properties such
as viscosity. The results of LTE are obtained as a limiting case of
the results of LTNE obtained in the paper.

Keywords—Rayleigh-Bénard convection, heat transport, porous
media, generalized Lorenz model, coupled Ginzburg-Landau model.

I. INTRODUCTION

THE onset of thermoconvective instability in a horizontal

fluid saturated porous layer heated from below has been

extensively studied. This is due to the fact that it finds wide

variety of applications because of its interdisciplinary nature

ranging from geophysical research to biophysical applications

as well as petroleum and heat transfer engineering. The study

of natural convection in a porous medium has been understood

and well documented in the works of Vadasz [1], Crolet

[2], Kaviani [3], Straughan [4], Ingham and Pop [5], Vafai

[6] and Nield and Bejan [7]. In most of the situations it

is observed that temperature fields of solid and fluid phase

of the porous medium are assumed to be identical such a

situation is generally known as local thermal equilibrium

(LTE). However in many practical situations involving porous

material and also media in which there is a large temperature

difference between the fluid and the solid phases, it has been

realized that the assumption of LTE model is inadequate

for proper understanding of the heat transfer problems. In
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such circumstances the local thermal non-equilibrium (LTNE)

effects are to be taken into consideration in which case the

single energy equation has to be replaced by two, one for

each phase.

The LTNE effects on convective flows in a porous medium

have been studied by many authors. Banu and Rees [8]

have studied the criterion for onset of convection in a

Darcy porous medium using LTNE model. Free convection

in a square porous cavity using LTNE was considered by

Baytas and Pop [9]. Nield [10] has made a note on the

modelling of LTNE in a structured porous medium. The

onset of DarcyBrinkman convection in a porous layer using

a thermal nonequlibrium model for stress-free boundaries

was analysed by Postelnicu and Rees [11]. Malashetty et.

al.[12]-[13] studied the onset of convection in an anisotropic

porous layer and LapwoodBrinkman convection using a

thermal non-equilibrium model. Explicit conditions for LTNE

in porous media heat conduction were obtained by Vadasz

[14]. Rees and Pop [15] studied the LTNE in porous medium

convection. The effect of mechanical and thermal anisotropy

on the stability of gravity driven cinvection in a rotating

porous media in the presence of LTNE was analysed by

Govender and Vadasz [16]. Rees et. al. [17] have made an

analysis on the LTNE effects arising from the injection of a

hot fluid into a porous medium. The effect of a horizontal

pressure gradient on the onset of a Darcy-Bénard convection

in thermal non-equilibrium conditions was investigated by

Postelnicu [18]. Kuzentsov and Nield [19] studied the effect

of LTNE on the onset of convection in a porous medium

layer saturated by a nanofluid. Malashetty and Mahantesh

Swamy [20] used LTNE model to study the effect of rotation

on the onset of thermal convection in a sparsely packed

porous layer. Boundary and thermal non-equilibrium effects

on convective instability in an anisotropic porous layer was

investigated by Shivakumara et al. [21]. Barletta and Celli

[22] studied the local thermal non-equilibrium flow with

viscous dissipation in a plane horizontal porous layer. Effects

of thermal non-equilibrium and non-uniform temperature

gradients on the onset of convection in a heterogeneous

porous medium was investigated by Shivakumara et al. [23].

Lee et al. [24] have considered a LTNE to study the effect

of nonuniform temperature gradient on thermogravitational

convection in a porous layer. Convective transport in a

nanofluid saturated porous layer with thermal non-equilibrium

was analysed by Bhadauria and Agarwal [25]. Saravanan

and Sivakumar [26] studied the onset of thermovibrational
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filtration convection: departure from thermal equilibrium.

Local thermal non-equilibrium effects in the Darcy - Bénard

instability with isoflux boundary conditions was investigated

by Barlette and Rees [27]. Nield [28] made a note on LTNE

in porous media near boundaries and interfaces. The effect

of LTNE was considered by Patil and Rees [29] to study

the linear stability analysis of a horizontal boundary layer

formed by vertical throughflow in a porous medium. Celli et al.

[30] studied the LTNE effects in the Darcy-Bénard instability

in a porous layer heated from below by a uniform flux.

Thermorheological effect on thermal nonequilibrium porous

convection with heat generation was analysed by Saravanan

and Senthilnayaki [31]. Thermoconvective instability and

local thermal non-equilibrium in a porous layer with

isoflux-isothermal boundary conditions was studied by Celli

et al. [32]. Dehgan et al. [33] studied the perturbation analysis

of the LTNE condition in a fluid-saturated porous medium

bounded by an iso-thermal channel. LTNE effects in the

Horton-Rogers-Lapwood problem with a free surface was

analysed by Celli et al. [34].

In the present paper we study linear and weakly nonlinear

stability analyses of Rayleigh-Bénard-Brinkman convection

in the presence of LTNE effect using 5-mode and 8-mode

Lorenz models. We show 8-mode Lorenz model will produce

qualitatively similar result like 5-mode Lorenz model. Hence

its sufficient to use minimal modes for perform weakly

nonlinear analysis. Later the analytically intractable 5-mode

Lorenz model is transformed to analytically tractable first

order Ginzburg-Landau equation using multiscal method using

which we quantify heat transport. Thus the main objectives of

the present paper are the following:

1) Studying the effect of additional modes on local

nonlinear stability analysis,

2) Deriving Ginzburg-Landau model from Lorenz model,

3) Showing the influence of parameters on onset of

convection and heat transport and

4) Obtaining LTE as a limiting case of LTNE.

II. NOMENCLATURE

Latin symbols
A,B,C amplitudes
g acceleration due to gravity (0, 0,−g)
J jacobian
K permeability of the porous media
Nu Nusselt number
p dynamic pressure
Pr Prandtl number
q velocity vector
Ra Rayleigh number
t time
T temperature
T0 reference temperature
u horizontal velocity
w vertical velocity
x horizontal coordinate
z vertical coordinate
X non-dimensional horizontal coordinate
Z non-dimensional vertical coordinate

Greek symbols
α thermal diffusivity
β coefficient of thermal expansion
k thermometric conductivity
Λ Brinkman number
μf dynamic viscosity of fluid
μp dynamic viscosity of fluid in a porous medium
γ porosity-modified conductivity ratio
φ porosity of the porous medium
ψ dimensional stream function

σ2 Porous parameter
Ψ non-dimensional stream function
ρ fluid density
ρ0 reference fluid density
Θ non-dimensional temperature
Subscripts
b basic state
′ perturbed state
l liquid
s solid

III. MATHEMATICAL FORMULATION

The governing equations for studying two-dimensional,

unsteady Rayleigh-Brinkman-Bénard convection (RBBC) in

the case when there is local thermal non-equilibrium (LTNE)

between liquid and solid phases are:

∇.�q = 0, (1)

ρl0

[
1

φ

∂q

∂t
+

1

φ2
(�q · ∇)�q

]
= μ

′
l∇2�q − μl

K
�q + ρl�g −∇P, (2)

(ρCp)l
∂Tl

∂t
= φκl∇2Tl + h(Ts − Tl)− (ρcp)l(�q.∇)Tl, (3)

(ρCp)s
∂Ts

∂t
= (1− φ)κs∇2Ts − h(Ts − Tl), (4)

ρ(T ) = ρ(T0)(1− β(Tl − T0)). (5)

Considering velocity, temperature, density and pressure

fields in the quiescent basic state to be:

�q = �qb = (0, 0),

Tl(z) = Tlb(z), Ts(z) = Tsb(z),

ρ(z) = ρb(z), P (z) = Pb(z),

⎫⎪⎬
⎪⎭ , (6)

we obtain the quiescent state solution for the temperature

distributions in the form:

Tlb(z) = T0 +ΔT

(
1

2
− z

d

)
, (7)

Tsb(z) = T0 +ΔT

(
1

2
− z

d

)
. (8)

We now superimpose perturbation on the quiescent basic

state quantities and so we write:

�q = �qb + �q
′
, Tl(z) = Tlb + T

′
(z), Ts(z) = Tsb + T

′
(z),

ρ = ρb + ρ
′
, P = Pb + P

′
,

}
,

(9)

where the primes indicate a perturbed quantity. Eliminating

the pressure term in (2) and introducing the stream function,
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ψ, as follows

u =
∂ψ

∂z
, w = −∂ψ

∂x
. (10)

and making (1)-(5) dimensionless using

(X,Z) =
(x
d
,
z

d

)
, Ψ =

φψ

αl
, Θl =

Tl

ΔT
, Θs =

Ts

ΔT
, (11)

the dimensionless form of the vorticity and heat transport

equations can be obtained in the form

1

Pr

∂

∂τ
(∇2Ψ) = Λ∇4Ψ− σ2∇2Ψ−Ra

∂Θl

∂X
, (12)

∂Θl

∂τ
= − ∂Ψ

∂X
+∇2Θl +H(Θs−Θl)+

∂Ψ

∂X

∂Θl

∂Z
− ∂Ψ

∂Z

∂Θl

∂X
,

(13)
a1
γ

φ

(1− φ)

∂Θs

∂τ
= ∇2Θs + γH(Θl −Θs) = 0, (14)

where

Λ =
μ′

μ
, σ2 =

d2

K
,Ra =

ρl(ρcp)lβgd
3ΔT

φκμ
,

H =
hd2

φκl
, γ =

φκl

(1− φ)κs
.

The stationary convection is the preferred mode at onset. In

the following section we perform linear stability analysis to

study the condition for onset of convection.

IV. LINEAR STABILITY ANALYSIS

We make a linear stability analysis by considering minimal

double Fourier series expansion as follows:

Ψ = A sin(κcX) sin
(
πZ +

π

2

)
, (15)

Θl = B cos(κcX) sin
(
πZ +

π

2

)
, (16)

Θs = L cos(κcX) sin
(
πZ +

π

2

)
. (17)

Substituting (15)-(17) in linearized version of (12)-(14) and

taking the orthogonality condition with the eigenfunctions

associated with the considered minimal modes, we get⎡
⎣δ2(δ2Λ + σ2) −κcRa 0

κc −(H + δ2) H
0 γH −δ21

⎤
⎦
⎡
⎣AB
L

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ (18)

where δ2 = (κ2
c + π2) and δ21 = κ2

c + π2 + γH .

The critical Rayleigh number, Rac, is given by

Rac =
δ6

(
Λ + σ′)κ2

c

(
1 +

H

δ21

)
, (19)

where σ′ =
σ2

δ2
. In the next section we discuss the non-linear

stability analysis in order to find the amplitude equation of

Ginzburg-Landau and thereby estimate the heat transport.

V. LOCAL NONLINEAR STABILITY ANALYSIS USING FIVE

MODES (MINIMAL REPRESENTATION)

We make a local nonlinear stability analysis by considering

minimal double Fourier series expansion as follows:

Ψ =
−√

2δ2

πκ
A(τ) sin(κX) sin

(
πZ +

π

2

)
, (20)

Θl =

√
2

πrl
B(τ) cos(κX) sin

(
πZ +

π

2

)
− 1

πrl
C(τ) sin(2πZ + π), (21)

Θs =

√
2

π
L(τ) cos(κX) sin

(
πZ +

π

2

)
+
1

π
M(τ) sin(2πZ + π), (22)

where rl =
Raκ2

δ6
and the amplitudes A(τ), B(τ), C(τ), L(τ)

and M(τ) are to be determined.

Substituting (20)-(22) in (12)-(14) and taking the

orthogonality condition with the eigenfunctions associated

with the considered minimal modes, we get

1

Pr

dA

dτ1
= [−(Λ + σ′)A+B] , (23)

dB

dτ1
= [rlA− (H ′ + 1)B + rlH

′L−AC] , (24)

dC

dτ1
= [−(H ′ + b)C − rlH

′M +AB] , (25)

rla1
dL

dτ1
= [γH ′B − rl(1 + γH ′)L] , (26)

rla1
dM

dτ1
= [γH ′C − (b+H ′)M ] , (27)

where τ1 = δ2τ , a1 =
αl

αs
, H ′ =

H

δ2
and b =

4π2

δ2
.

We now use the following regular perturbation expansion

in (23)-(27):

⎡
⎢⎢⎢⎢⎢⎢⎣

A
B
C
L
M
rl

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦
+ ε

⎡
⎢⎢⎢⎢⎢⎢⎣

A1

B1

C1

L1

M1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
+ ε2

⎡
⎢⎢⎢⎢⎢⎢⎣

A2

B2

C2

L2

M2

r2

⎤
⎥⎥⎥⎥⎥⎥⎦
+ ε3

⎡
⎢⎢⎢⎢⎢⎢⎣

A3

B3

C3

L3

M3

0

⎤
⎥⎥⎥⎥⎥⎥⎦
+ · · · (28)

and we assume the time variations only at the small time scale

τ∗1 = ε2τ1.

Let us now use the following notation:

L =

⎡
⎢⎢⎢⎢⎣
L1 1 0 0 0
r0 L2 0 r0H

′ 0
0 0 L3 0 −r0H

′

0 γH ′ 0 L4 0
0 0 −γH ′ 0 L5

⎤
⎥⎥⎥⎥⎦ , (29)

Vi = [Ai Bi Ci Li Mi]
Tr

, (i = 1, 2, 3) (30)

where L1 = −(Λ + σ′), L2 = −(H ′ + 1), L3 = −(H ′ + b),
L4 = −r0(1 + γH ′) and L5 = −ro(H

′ + b).
Substituting (28) in (23)-(27) and on comparing the like

powers of ε on both the sides of the resulting equations, we

get the following equations at various orders:
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First-order system:

LV1 = 0, (31)

Second-order system:

LV2 = [R21, R22, R23, R24, R25]
Tr, (32)

Third-order system:

LV3 = [R31, R32, R33, R34, R35]
Tr, (33)

where

R21 = 0, R22 = A1C1, R23 = −A1B1, R24 = 0, R25 = 0,
(34)

R31 =
1

Pr

dA1

dτ∗1
,

R32 =
dB1

dτ∗1
− r2A1 − r2H

′L1 +A1C2 +A2C1,

R33 =
dC1

dτ∗1
− (A1B2 +A2B1),

R34 = a1r0
dL1

dτ∗1
− r2(1 + γH ′)L1,

R35 = a1r0
dM1

dτ∗1
+ r2(H

′ + b)M1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (35)

The solution of the first- and second-order systems subject

to appropriate initial condition are obtained as follows:

First-order solution:

V1 = [A1, (Λ + σ′)A1, 0,
γH ′(Λ + σ′)
r0(1 + γH ′)

A1, 0]
Tr, (36)

Second-order solution:

V2 =

[
A2, (Λ + σ′)A2,

(Λ + σ′)(b+H ′)
[(b+H ′)2 − γH ′2]

A2
1, (37)

γH ′(Λ + σ′)
r0(1 + γH ′)

A2
1,

−γH ′(Λ + σ′)
r0 [(b+H ′)2 − γH ′2]

A2
1

]Tr

, (38)

where A1 and A2 are arbitrary functions of τ∗1 . We are not

interested in finding the solution of the third order system.

However, for the purpose of determining the amplitude, A1,

it is sufficient to consider the Fredholm solvability condition

and this yields the Ginzburg-Landau equation in the form:

dA1

dτ∗1
= Q1A1 −Q2A

3
1, (39)

where

Q1 =
Pr(Λ + σ′)(1 + γH ′)2

P1
, (40)

Q2 =
Pr(Λ + σ′)2(H ′ + b)(1 + γH ′)2

P1 [(H ′ + b)2 − γH ′2]
, (41)

P1 = Pr(Λ + σ′2)2
[
a1γH

′2 + (1 + γH ′)2
]

+r0(1 + γH ′)2,

r2 =
Ra2κ

2
c

η6
,

We introduce an additional mode in each of the

representations of the stream function and the temperature in

succeeding section to verify whether the results from such a

study are qualitatively different from the results of the model

involving the most minimal mode.

VI. LOCAL NONLINEAR STABILITY ANALYSIS WITH

EIGHT-MODES

An eight-mode truncated Fourier series expansion is given

by:

Ψ =
−√

2δ2

πκ
A(τ) sin(κX) sin

(
πZ +

π

2

)
−
√
2δ2

πκ
A′(τ) cos(κX) sin

(
πZ +

π

2

)
, (42)

Θl =

√
2

πrl
B(τ) cos(κX) sin

(
πZ +

π

2

)

−
√
2

πrl
B′(τ) sin(κX) sin

(
πZ +

π

2

)
− 1

πrl
C(τ) sin(2πZ + π), (43)

Θs =

√
2

π
L(τ) cos(κX) sin

(
πZ +

π

2

)
−
√
2

π
L′(τ) sin(κX) sin

(
πZ +

π

2

)
+
1

π
M(τ) sin(2πZ + π), (44)

Substituting (42)-(44) in (12)-(14) and taking the

orthogonality condition with the eigenfunctions associated

with the considered modes, we get

1

Pr

dA

dτ1
= [−(Λ + σ′)A+B] , (45)

1

Pr

dA′

dτ1
= [−(Λ + σ′)A′ +B′] , (46)

dB

dτ1
= [rlA− (H ′ + 1)B + rlH

′L−AC] , (47)

dB′

dτ1
= [rlA

′ − (H ′ + 1)B′ + rlH
′L′ −A′C] , (48)

dC

dτ1
= [−(H ′ + b)C − rlH

′M +AB +A′B′] ,(49)

rla1
dL

dτ1
= [γH ′B − rl(1 + γH ′)L] , (50)

rla1
dL′

dτ1
= [γH ′B′ − rl(1 + γH ′)L′] , (51)

rla1
dM

dτ1
= [γH ′C − (b+H ′)M ] , (52)

Following the method adopted in Section (V) for getting
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the real, Ginzburg-Landau equation using the five mode

Lorenz model, we get the following coupled system of

Ginzburg-Landau equations in the form:

dA1

dτ∗1
= Q1A1 −Q2(A

3
1 −A2

1A
′
1), (53)

dA′
1

dτ∗1
= Q1A

′
1 −Q2(A

′3
1 −A′2

1 A1), (54)

where Q1 and Q2 are defined in (40) and (41). Equations

(53) and (54) form the coupled Ginzburg-Landau model

for nonlinear convection. Equations (53) and (54) can be

combined into a single equation given by:

dA
dτ∗1

= Q1A−Q2A|A|2, (55)

where A = A1 + iA′
1.

In phase-amplitude form, A, can be written as:

A = |A|eiϕ. (56)

Substituting (56) in (55), we get the amplitude equation:

d|A|
dτ∗1

= Q1|A| −Q2|A|3. (57)

In the next section we quantify the heat transport in terms of

the Nusselt number at the lower boundary for the stationary

mode of convection.

A. Estimation of Enhanced Heat Transport in Nanoliquids
at Lower Boundary

Nunl =
Heat transport by (conduction+convection)

Heat transport by conduction
. (58)

Using Fourier law for the conductive and convective fluxes,

we may write the expressions for the liquid an solid phases

in the form:

Nul = 1 +

[
−κl

∫ 2π
k

0

∂Θl

∂Z
dX

]
Z=− 1

2[
−κl

∫ 2π
k

0

dΘlb

dZ
dX

]
Z=− 1

2

, (59)

Nus = 1 +

[
−κs

∫ 2π
k

0

∂Θs

∂Z
dX

]
Z=−

1

2[
−κs

∫ 2π
k

0

dΘsb

bZ
dX

]
Z=−

1

2

, (60)

where Nul is Nusselt number of the liquid phase and Nus is

that of the solid phase.

The weighted-average Nusselt number, Nuw, for stationary

mode of convection evaluated at lower boundary Z = −1

2
for

a single wavelength is given by

Nuw = φNul + (1− φ)Nus. (61)

Substituting (6), (21) and (22) in (59) and (60) and

completing the integration, we get

Nul = 1 +
2

rl
ε2C2, (62)

Nus = 1− ε2M2. (63)

Nu = 1− ε2

π

[
M2 −

(
2C2π

rl
+M2

)
φ

]
(64)

With the necessary background for analysing the results

prepared in the previous sections, in what follows we discuss

the results obtained and draw a few conclusions.

VII. RESULTS AND DISCUSSION

Rayleigh-Bénard-Brinkman convection (RBBC) in the

presence of LTNE effects is studied analytically in the paper.

The stationary convection is the preferred mode at onset.

The expression for critical Rayleigh number is derived using

minimal Fourier series expansion. The influence of parameters

on onset of convection is explained through Rayleigh number.

Fig. 2 is a plot of Rayleigh number versus wave number

for different values of porous parameter, σ2. The figure shows

that as we increase σ2 the critical Rayleigh number increases

and this means porous medium delays the onset of convection.

Brinkman number, Λ, has an effect analogous to that of σ2.

The effect of porosity-modified thermal conductivity ratio,

γ, is explained in Fig. 4. The figure shows that as we increase

γ, the critical Rayleigh number decreases. After a certain range

of value of γ there is no great change in the value of the critical

Rayleigh number.

The result of LTE can be obtained as a limiting case of that

of LTNE by taking H → 0. Fig. 5 very clearly shows that LTE

underpredicts the onset of convection compared to LTNE.

The streamlines and the isotherms in the unsteady

finite-amplitude convective regime are shown in Figs. 6-9.

Streamline plots 6 and 7 are for time τ = 0.5 and τ =
1 respectively. From these plots we observe that as time

progresses the convective activity is deep into the center of

cell. Similar observation can also be made for isotherms (see

plots 8 and 9).

The influence of various parameters on heat transport is

explained through plots of Nusselt number. Fig. 10 is a plot

of Nusselt number versus time for different values of σ2. As

we increase σ2 we observe that Nusselt number decreases.

A similar effect is observed in the case of Brinkman number.

The effect of porosity modified conductivity ratio is to enhance

the heat transport. By taking small value of H the result of

LTE is obtained and comparison of the result of LTE and

LTNE is shown in Fig. 13. The figure reveals that LTE model

underpredicts heat transfer compare to that predicted by LTNE.

VIII. CONCLUSION

1) The analytically intractable Lorenz model can be

reduced to the tractable Ginzburg-Landau equation using

the multiscale method, thus circumventing the need to

do a numerical study of the problem.

2) The 5-mode and 8-mode Lorenz models estimate heat

transport identically. Hence the 5-mode Lorenz model is
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Fig. 1 Physical configuration

Fig. 2 Plot of Ral versus κ for different value of σ and for H = 10,
Λ = 1, γ = 20

a good enough truncated model for a weakly nonlinear

study of convection.

3) The effect of porous parameter and Brinkman number

is to delay the onset of convection.

4) The effect of porous modified conductivity ratio is to

advance the onset of convection.

5) The effect of porous parameter and Brinkman number

is to diminish heat transport.

6) The effect of porosity modified conductivity ratio is to

enhance the heat transport.

Fig. 3 Plot of Ral versus κ for different value of Λ and for H = 10,
σ2 = 10, γ = 20

Fig. 4 Plot of Ral versus κ for different value of γ and for H = 10,
σ2 = 10, Λ = 1

Fig. 5 Plot of thermal Rayleigh number, Ral, versus wave number, κ, for
different value of H and for σ2 = 10, Λ = 1, γ = 20

Fig. 6 Contour plot of Stream function for H = 10, σ2 = 10, Λ = 1,
Pr = 4, φ = 0.88, a1 = 1.4, A10 = 1 and τ = 0.5
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Fig. 7 Contour plot of Stream function for H = 10, σ2 = 10, Λ = 1,
Pr = 4, φ = 0.88, a1 = 1.4, A10 = 1 and τ = 1

Fig. 8 Isotherms of unsteady convection for H = 10, σ2 = 10, Λ = 1,
Pr = 4, φ = 0.88, a1 = 1.4, A10 = 1 and τ = 0.5

Fig. 9 Isotherms of unsteady convection for H = 10, σ2 = 10, Λ = 1,
Pr = 4, φ = 0.88, a1 = 1.4, A10 = 1 and τ = 1

Fig. 10 Plot of Nu versus rl for different value of σ and for H = 10,
γ = 20, Λ = 1, Pr = 4, φ = 0.88, a1 = 1.4, A10 = 1 and τ = 1

Fig. 11 Plot of Nu versus rl for different value of Λ and for H = 10,
γ = 20, σ2 = 10, Pr = 4, φ = 0.88, a1 = 1.4, A10 = 1 and τ = 1

Fig. 12 Plot of Nu versus rl for different value of γ and for H = 10,
σ2 = 10, Λ = 1, Pr = 4, φ = 0.88, a1 = 1.4, A10 = 1 and τ = 1

Fig. 13 Plot of Nusselt number, Nu, versus scaled Rayleigh number, rl, for
different value of H and for γ = 20, σ2 = 10, Λ = 1, Pr = 4, φ = 0.88,

a1 = 1.4, A10 = 1 and τ = 1
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