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Optimal Opportunistic Maintenance Policy for a
Two-Unit System
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Abstract—This paper presents a maintenance policy for a system
consisting of two units. Unit 1 is gradually deteriorating and is
subject to soft failure. Unit 2 has a general lifetime distribution
and is subject to hard failure. Condition of unit 1 of the system
is monitored periodically and it is considered as failed when its
deterioration level reaches or exceeds a critical level N . At the
failure time of unit 2 system is considered as failed, and unit 2
will be correctively replaced by the next inspection epoch. Unit 1
or 2 are preventively replaced when deterioration level of unit 1
or age of unit 2 exceeds the related preventive maintenance (PM)
levels. At the time of corrective or preventive replacement of unit
2, there is an opportunity to replace unit 1 if its deterioration
level reaches the opportunistic maintenance (OM) level. If unit
2 fails in an inspection interval, system stops operating although
unit 1 has not failed. A mathematical model is derived to find
the preventive and opportunistic replacement levels for unit 1 and
preventive replacement age for unit 2, that minimize the long run
expected average cost per unit time. The problem is formulated and
solved in the semi-Markov decision process (SMDP) framework.
Numerical example is provided to illustrate the performance of the
proposed model and the comparison of the proposed model with an
optimal policy without opportunistic maintenance level for unit 1 is
carried out.

Keywords—Condition-based maintenance, opportunistic
maintenance, preventive maintenance, two-unit system.

I. INTRODUCTION

MAINTENANCE policies can be classified into two

categories: Corrective and preventive maintenance.

Corrective maintenance (CM) is performed after failure of the

system and preventive maintenance (PM) is performed before

the system fails [1]. Most systems are subject to deterioration

and preventive maintenance of these systems can reduce the

occurrence of failures and the resulting high cost. Preventive

maintenance strategies are defined as time-based and

condition-based preventive maintenance [2]. Condition-based

maintenance suggests the required maintenance actions

based on the information obtained from inspection data.

Lam and Yeh [3], determined an optimal preventive

threshold to minimize the expected long run cost rate for

a Markovian deteriorating system under continuous and

sequential inspection.

The deterioration process is not the only cause of failure and

systems may fail also due to shocks. A system with failures

caused by deterioration process and shocks was considered

in [4], [5]. Huynh et al. proposed a maintenance model

for a system considering dependent shock and deterioration

processes [6].
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Many research papers have been published dealing with

maintenance models for single unit systems. In a single-unit

system, the entire system is considered as one component.

Maintenance models for single unit systems can be applied

to multi-unit systems if there is no dependency between

units [7]. Dependencies among units are categorized as:

Economic, stochastic and structural dependencies. Examples

of the systems with economic dependency among units are:

Aircrafts, power generators, chemical plants. Shi and Zeng

[8] studied a multi-unit system with economic and stochastic

dependency, and optimal group structure and opportunistic

maintenance zone were determined to minimize the long-run

expected average cost.

Castanier et al. [9] proposed a condition based maintenance

policy for a two- unit deteriorating system, where each

unit is subject to gradual deterioration and is monitored at

non-periodic inspection times. Zhu et al. [10] proposed a

condition-based maintenance model for a multi-component

system subject to continuous stochastic deterioration. They

determined the optimal preventive maintenance limits for

components and optimal joint maintenance interval by

minimizing the long-run expected average cost rate. A

replacement model for a two-unit system with failure rate

interaction was introduced in [11]. Laggoune [12] proposed

a preventive maintenance approach for a multi-component

series system subjected to random failures, where the cost

rate is minimized under general lifetime distribution. Wang

[13] introduced a geometric process repair model to develop

maintenance policy for a series repairable system consisting

of two non-identical components and one repairman. A

replacement policy is considered based on the number of

failures of components 1 and 2.

This paper studies maintenance policy for a system

consisting of two units with economic dependency. Unit 1

is subject to deterioration and unit 2 has a general life

time distribution. The objective is to determine an optimal

preventive and opportunistic maintenance levels for unit 1 and

optimal preventive maintenance level for unit 2, minimizing

the total long run expected average cost per unit time. We

formulate and solve this problem using SMDP modeling

framework.

In [14], authors assumed preventive and opportunistic

maintenance levels for both units, but in this paper we consider

preventive and opportunistic maintenance levels for unit 1

and preventive maintenance level for unit 2 and compare

this policy with the policy which does not take into account

opportunistic maintenance for unit 1.

Numerical example is presented to illustrate the optimal

maintenance policy. We also compare the results with
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an optimal maintenance policy which does not consider

opportunistic replacement for unit 1.

II. MODEL DESCRIPTION

Consider a system consisting of 2 units. Unit 1 is gradually

deteriorating and unit 2 has a general lifetime distribution. We

assume that the deterioration level of unit 1 is hidden and can

be known only by inspections performed at discrete equidistant

time epochs (kΔ).
Let {Xt}t≥0 be a continuous time Markov process

describing the deterioration process of unit 1 with a finite

state space Ω = {0, 1, ..., N}. State 0 represents a new unit,

and state N , which is absorbing, represents failure state of

unit 1. The intermediate states 1, 2, 3, ..., N − 1 represent the

increasing degree of deterioration.

Let S = {(x,m)|x ∈ Ω,m ∈ {0,Δ, ..., LΔ}} be the state

space of the whole system at inspection times where x is the

deterioration level of unit 1, and m represents the age of unit

2 with maximum useful age of LΔ.

To model monotonic system deterioration, we assume that

the state process of unit 1 is non-decreasing with probability

1. The instantaneous transition rates qij , i, j ∈ Ω, are defined

by:

qij = limu→0
P (Xt+u = j|Xt = i)

u
< +∞, i �= j

and qii = −
∑
j �=i

qij (1)

The transition probability matrix, Pij(t) = P (Xs+t =
j|Xs = i) is obtained by solving the Kolmogorov backward

differential equations [15].

Unit 2 has a general lifetime density function denoted

by f2(t) and ξ2 represents its failure time. We assume that

inspections are perfect and inspection and replacement times

are negligible.

If at an inspection time, deterioration level of unit 1 is

in {N1, N1 + 1, ..., N − 1] or exceeds N , it is preventively

or correctively replaced, respectively. Unit 2 is correctively

replaced by the next inspection time if it fails in an inspection

interval. It is preventively replaced at the end of its useful

life (age M = LΔ). Unit 2 is also preventively replaced

when its age reaches or exceeds preventive maintenance level

M1 ≤ M . If unit 2 is replaced at an inspection epoch,

there is an opportunity to replace unit 1, if its deterioration

level reaches or exceeds an opportunistic maintenance level

N2 < N1.

Our objective is to find the values of N1, N2,M1,

minimizing the long run expected average cost per unit time.

We will describe the system states for this particular system

and derive the formulas for the cost components and the

transition probabilities.

III. FORMULATION AND SOLUTION OF THE PROBLEM IN

THE SMDP FRAMEWORK

In this section, we formulate and solve the maintenance

optimization problem in the SMDP framework.

A. State Definition

1) State (0, 0): Both units are as good as new.

2) State (x,m): Both units are operating, x represents

deterioration level of unit 1 and m is the age of unit

2.

3) State (x, 0): Unit 1 is working with deterioration level

x below N2 and unit 2 is replaced due to failure.

For the cost minimization problem, the SMDP is determined

by the following quantities [15]:

• Pi,j = the probability that the system will be in state

j ∈ S at the next decision epoch given the current state

is i ∈ S.

• τi = the expected sojourn time until the next decision

epoch given the current state is i ∈ S.

• Ci = the expected cost incurred until the next decision

epoch given the current state is i ∈ S.

We note that each of these components depends also

on the action taken in the current state i. Once transition

probabilities, costs and sojourn times for each state are defined,

the long-run expected average cost can be obtained for selected

parameters M1, N1, N2 by solving the following system of

linear equations [15]:

Vm = Cm − g(M1, N1, N2) · τm +
∑
k∈S

Pm,k · Vk (2)

Vj = 0 for an arbitrarily selected single state j ∈ S

The optimal preventive and opportunistic maintenance

levels (M∗
1 , N

∗
1 , N

∗
2 ) and the corresponding minimum

long-run expected average cost per unit time can be found

by iteratively solving the system of linear equations in (2).

B. Derivation of the Transition Probabilities

• If there is no replacement at the current inspection time:

1) Transition from state (x,m), to state (x′,m + Δ)
occurs when unit 2 does not fail in the next

inspection interval and the next deterioration level

of unit 1 is x′. This transition probability is equal

to:

P(x,m),(x′,m+Δ) =

P (XnΔ=x′, ξ2>m+Δ|ξ2>m,X(n−1)Δ=x) =

P (XnΔ=x′|X(n−1)Δ=x)×P (ξ2>m+Δ|ξ2>m)

= P(x,x′)(Δ) ·R2(m+Δ)

R2(m)
(3)

2) Transition from state (x,m), to state (x′, 0), occurs

when unit 2 fails and unit 1 deterioration level

x′ is below N2, and the corresponding transition

probability is given by:
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P(x,m),(x′,0) =

P (XnΔ = x′, ξ2<m+Δ|ξ2>m,X(n−1)Δ=x) =

P (XnΔ=x′|X(n−1)Δ = x)×P (ξ2<m+Δ|ξ2>m)

= P(x,x′)(Δ) ·(1− R2(m+Δ)

R2(m)
) (4)

3) Transition from state (x,m), to state (0, 0), occurs

when both units are replaced. Unit 2 is correctively

replaced due to failure and unit 1 next deterioration

level exceeds N2. The transition probability is equal

to:

P(x,m),(0,0) =

P (XnΔ∈{N2, N2 + 1, ..., N},
ξ2<m+Δ|ξ2>m,X(n−1)Δ=x)

=

N∑
x′=N2

P(x,x′)(Δ) ·(1− R2(m+Δ)

R2(m)
) (5)

• Both units are replaced when the age of unit 2 exceeds

M1 and the deterioration level of unit 1 exceeds N2 at the

current inspection time. Then, there are three possibilities

which can happen till the next inspection time:

P(x,m),(x′,Δ)= P(0,x′)(Δ) ·R2(Δ) (6)

P(x,m),(x′,0)= P(0,x′)(Δ) ·(1−R2(Δ)), for x′<N2 (7)

P(x,m),(0,0)=

N∑
x′=N2

P(0,x′)(Δ) ·(1−R2(Δ)) (8)

• Only unit 1 is replaced at the current inspection time

when deterioration level of unit 1 exceeds N1 and the

age of unit 2 is less than M1. Then, there are three

possibilities which can happen till the next inspection

time:

P(x,m),(x′,m+Δ)= P(0,x′)(Δ) ·R2(m+Δ)

R2(m)
(9)

P(x,m),(x′,0)=P(0,x′)(Δ)·(1−R2(m+Δ)

R2(m)
), for x′<N2 (10)

P(x,m),(0,0)=
N∑

x′=N2

P(0,x′)(Δ) ·(1− R2(m+Δ)

R2(m)
) (11)

• Only unit 2 is replaced at the current inspection time

when the age of unit 2 exceeds M1 and deterioration level

of unit 1 is less than N2. Then there are three possibilities

which can happen till the next inspection time:

P(x,m),(x′,Δ)= P(x,x′)(Δ) ·R2(Δ) (12)

P(x,m),(x′,0)=P(x,x′)(Δ)·(1−R2(Δ)), for x′<N2 (13)

P(x,m),(0,0)=
N∑

x′=N2

P(x,x′)(Δ) ·(1−R2(Δ)) (14)

C. Expected Cost and Sojourn Time

The following cost components are considered in the model:

CI : Inspection cost

CFi: Failure replacement cost of unit i, i ∈{1, 2}.

CPi: Preventive replacement cost of unit i, i∈{1, 2}.

CO1: Opportunistic replacement cost of unit 1.

CK : Set-up cost incurred every time when one or two

replacements are performed

• Expected cost for state (x,m), when there is no

replacement at the current inspection time is equal to:

E(Cost|ξ2>m,X(n−1)Δ = x) = (15)

E(Cost|m< ξ2≤m+Δ, X(n−1)Δ=x)

×P (ξ2≤m+Δ|ξ2 >m,X(n−1)Δ=x)

+E(Cost|ξ2>m+Δ, X(n−1)Δ = x)

×P (ξ2 > m+Δ|ξ2 > m,X(n−1)Δ = x)

= CI+[(CF1 + CF2 + CK)Px,N (Δ)

+(CP1 + CF2 + CK)

N−1∑
x′=N1

Px,x′(Δ)

+(CO1 + CF2 + CK)

N1−1∑
x′=N2

Px,x′(Δ)

+(CF2+CK)

N2−1∑
x′=x

Px,x′(Δ)]

×(1− (R2(m+Δ))

R2(m)
)

• Expected cost for state (x,m), when both units are

replaced preventively (deterioration level of unit 1 is in

the set {N1, N1 + 1, ..., N − 1} and the age of unit 2

reaches or exceeds M1) at the current inspection time is

equal to:

E(Cost|ξ2>m,X(n−1)Δ = x) (16)

= E(Cost|ξ2≤Δ, X0= 0)P (ξ2≤Δ|X0=0)

+E(Cost|ξ2>Δ, X0 = 0)P (ξ2 > Δ|X0 = 0)

= CI + CP1 + CP2 + CK

+{(CF1 + CF2 + CK)P0,N (Δ)((1−R2(Δ))

+(CP1 + CF2 + CK)

N−1∑
x′=N1

P0,x′(Δ)(1−R2(Δ))

+(CO1 + CF2 + CK)

N1−1∑
x′=N2

P0,x′(Δ)(1−R2(Δ))

+(CF2 + CK)

N2−1∑
x′=x

P0,x′(Δ)(1−R2(Δ))
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To simplify expressions for the cost components we

define CZ as follows:

CZ={(CF1+CF2+CK)P0,N (Δ) (17)

+(CP1+CF2+CK)
N−1∑
x′=N1

P0,x′(Δ)

+(CO1+CF2+CK)

N1−1∑
x′=N2

P0,x′(Δ)

+(CF2+CK)

N2−1∑
x′=x

P0,x′(Δ)}×(1−R2(Δ))

Then, the expected cost E(Cost|ξ2 >m,X(n−1)Δ = x)
can be written as:

CI + CP1 + CP2 + CK + CZ (18)

• Expected cost for state (x,m) when unit 2 is preventively

replaced and unit 1 is opportunistically replaced (age of

unit 2 exceeds M1 and deterioration level of unit 1 is in

{N2, N2 + 1, ..., N1 − 1}) at the current inspection time

is equal to:

E(Cost) = CI + CO1 + CP2 + CK + CZ (19)

• Expected cost for state (x,m) when unit 2 is preventively

replaced and unit 1 is correctively replaced (age of unit

2 exceeds M1 and deterioration level of unit 1 reaches

N ) at the current inspection time is equal to:

E(Cost) = CI + CF1 + CP2 + CK + CZ (20)

• Expected cost for state (N,m) when unit 1 is correctively

replaced because its deterioration level reaches N and

unit 2 is not replaced because its age is below M1 is

equal to:

E(Cost|ξ2>m,X(n−1)Δ=N) = (21)

CI+CF1+CK + (CF1+CF2+CK)P0,N (Δ)

×(1− (R2(m+Δ))

R2(m)
)

+(CP1+CF2+CK)

N−1∑
x′=N1

P0,x′(Δ)

×(1− (R2(m+Δ))

R2(m)
)

+(CO1+CF2+CK)

N1−1∑
x′=N2

P0,x′(Δ)

×(1− (R2(m+Δ))

R2(m)
)

+(CF2+CK)

N2−1∑
x′=x

P0,x′(Δ)

×(1− (R2(m+Δ))

R2(m)
)

• Expected cost for state (x,m) when unit 1 is preventively
replaced because its deterioration level exceeds N1 and
unit 2 is not replaced because its age is below M1 is
equal to:

E(Cost) = CI + CP1 + CK (22)

+(CF1 + CF2 + CK)P0,N (Δ)

×(1− (R2((m+ 1)Δ))

R2(mΔ)
)

+(CP1 + CF2 + CK)

N−1∑
x′=N1

P0,x′(Δ)

×(1− (R2((m+ 1)Δ))

R2(mΔ)
)

+(CO1 + CF2 + CK)

N1−1∑
x′=N2

P0,x′(Δ)

×(1− (R2((m+ 1)Δ))

R2(mΔ)
)

+(CF2 + CK)

N2−1∑
x′=x

P0,x′(Δ)

×(1− (R2((m+ 1)Δ))

R2(mΔ)
)

• Expected cost for state (x,m) when unit 2 is preventively
replaced because its age exceeds M1 and unit 1 is not
replaced because its deterioration level is below N2:

E(Cost) = CI + CP2 + CK + (23)

(CF1 + CF2 + CK)Px,N (Δ)(1−R2(Δ))

+(CP1+CF2+CK)

N−1∑
x′=N1

Px,x′(Δ)(1−R2(Δ))

+(CO1+CF2+CK)

N1−1∑
x′=N2

Px,x′(Δ)(1−R2(Δ))

+(CF2 + CK)

N2−1∑
x′=x

Px,x′(Δ)(1−R2(Δ))

We assume that replacement time is negligible and the

expected sojourn time for any state is equal to Δ.

D. Numerical Example
In this section we illustrate the presented model and the

maintenance policy with a numerical example. We assume that
unit 1 deterioration follows a continuous-time homogeneous
Markov chain (Xt : t ∈ R+) with state space, Ω =
{0, 1, .., 8}. State 0 indicates that the unit is new and state
8 indicates the failure state. We consider the following
probability matrix P :

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.35 0.21 0.16 0.12 0.07 0.05 0.03 0.01
0 0.47 0.19 0.12 0.1 0.06 0.04 0.02
0 0 0.53 0.17 0.12 0.1 0.03 0.05
0 0 0 0.6 0.15 0.10 0.05 0.1
0 0 0 0 0.5 0.2 0.15 0.15
0 0 0 0 0 0.4 0.3 0.3
0 0 0 0 0 0 0.4 0.6
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(24)

The lifetime distribution of unit 2 follows Gamma distribution
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with parameters k = 2 and θ = 10 with the probability density

function of the form:

f2(x) =
1

Γ(k)θk
xk−1e

−x
θ ; k > 0, θ > 0 (25)

The following parameters are considered for the proposed

model:

CI = 10, CF1 = 400, CP1 = 80, CO1 = 70,

CF2 = 350, CP2 = 80, CK = 100, Δ = 5, M = 100

Considering these parameters, we compute the

optimal preventive and opportunistic maintenance levels

(N∗
1 , N

∗
2 ,M

∗
1 ) in the SMDP framework, minimizing the

long-run expected average cost per unit time. We applied the

model and used (2) to obtain the optimal results shown in

Table I. Each run took 1.278 seconds on an Intel Core (TM)

i5 CPU with 2.27 GHz.

TABLE I
OPTIMAL CONTROL LIMITS AND THE AVERAGE COST

PM unit1 OM unit1 PM unit2 Average
Optimal (N1) (N2) (M1) Cost
Values 6 4 45 31.9662

The optimal policy is to replace unit 1 preventively when its

deterioration level reaches or exceeds N1 = 6 and replace unit

2 when its age exceeds M1 = 45. At the time of replacement

of unit 2, there is an opportunity to replace unit 1. Unit 1 is

opportunistically replaced when its deterioration level reaches

or exceeds N2 = 4.

To investigate the effect of the opportunistic replacement

limit of unit 1 on the average cost for the defined system, we

compare the results with the optimal policy which does not

consider the opportunistic replacement for unit 1. The resulting

minimum long-run expected average cost and the optimum

levels are given in Table II.

TABLE II
MINIMUM LONG RUN AVERAGE COST PER UNIT TIME AND THE

OPTIMAL REPLACEMENT LEVELS

Maintenance policy Average cost N1 N2 M1

New Policy 31.9662 6 4 45
Policy without OM 32.5879 6 − 70

We can see from Table II that the presented maintenance

policy with opportunistic replacement performs better

than the optimal maintenance policy without opportunistic

replacement.

IV. CONCLUSION

In this paper, we have developed a model to determine the

optimal maintenance policy for a two unit system, where unit

1 is subject to condition monitoring and only age information

of unit 2 is available. Unit 1 deterioration is described by

a continuous-time Markov process and it is considered as a

failed unit when its deterioration level exceeds level N at

an inspection time. Failure of unit 2 is observable and if it

fails in an inspection interval, it is correctively replaced by the

next inspection epoch. Unit 1 is preventively replaced when

its deterioration level exceeds N1 and unit 2 is preventively

replaced when its age exceeds M1. At the time of replacement

of unit 2, there is an opportunity to replace unit 1 if its

deterioration level reaches or exceeds N2.

SMDP framework is applied to find the optimal preventive

and opportunistic replacement limits for unit 1 and preventive

replacement age limit for unit 2, that minimize the long run

expected average cost per unit time. A numerical example is

provided to illustrate the proposed maintenance policy and

a comparison is given with an optimal policy which does

not consider opportunistic replacement level for unit 1. The

results show that the model with opportunistic replacement

for unit 1 when economic dependency exists among the units

outperforms the model without opportunistic replacement.
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