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Abstract—Classically, an energy detector is implemented in time 

domain (TD). However, frequency domain (FD) based energy 
detector has demonstrated an improved performance. This paper 
presents a comparison between the two approaches as to analyze their 
pros and cons. A detailed performance analysis of the classical TD 
energy-detector and the periodogram based detector is performed. 
Exact and approximate mathematical expressions for probability of 
false alarm (Pf) and probability of detection (Pd) are derived for both 
approaches. The derived expressions naturally lead to an analytical as 
well as intuitive reasoning for the improved performance of (Pf) and 
(Pd) in different scenarios. Our analysis suggests the dependence 
improvement on buffer sizes. Pf is improved in FD, whereas Pd is 
enhanced in TD based energy detectors. Finally, Monte Carlo 
simulations results demonstrate the analysis reached by the derived 
expressions.  

 
Keywords—Cognitive radio, energy detector, periodogram, 

spectrum sensing. 

I. INTRODUCTION 

OGNITIVE Radio (CR) is a transceiver which senses the 
spectrum and utilizes the unused portions of the spectrum 

efficiently. It monitors the frequency bands, and whenever a 
vacant slot is detected, it is assigned to the unlicensed 
(secondary) user, without interfering with the authorized 
(primary) user [1], [2]. Multiple spectrum sensing techniques 
have been proposed, including energy detection (ED) [3], 
matched filtering detection (MF) [4], cyclostationary detection 
(CSD) [5], eigenvalue-based sensing [6], covariance-based 
sensing [7], etc. Three main spectrum sensing techniques 
vigorously used to determine spectrum holes are: MF, CSD, 
and ED. MF uses a known pattern to correlate the signals. This 
approach maximizes the received Signal to Noise ratio (SNR) 
and thus it is the optimum sensing method but it requires a-
priori information about the signal waveforms, which at times 
is not available [8]-[10]. CSD exploits some periodic 
characteristics of the desired signal to perform detection. 
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Noise power and source signal information is required by 
CSD. It works well over low SNR regime but requires 
complex calculations [5], [11]. 

ED method identifies the presence or absence of a signal 
based on energy estimation. In this detection technique, only 
noise power information is required. It is not efficient at low 
SNR, but is the simplest method to implement [8], [12]. ED is 
usually implemented in TD. Recently, some works 
demonstrated improved performance of ED by the use of 
periodogram technique [1], [13]. Although the improved 
performance for periodogram based ED is claimed by these 
authors, yet an analytical or intuitive reasoning for this 
enhanced performance is not available in literature [1], [13]. 
This work aims to fill this gap by derivations of exact and 
approximate expressions for ௙ܲ and ௗܲ, supported by extensive 
simulations using various performance parameters like SNR, 
buffer size and threshold to quantify the performance gap 
between TD and FD based energy detectors.  

The rest of this paper is organized as follows. System model 
is described in Section II. Then, Section III presents the exact 
calculations. Next, Section IV gives the approximate 
calculations for both domains. Theoretical results verifications 
through Monte Carlo simulations are given in Section V. 
Finally, Section VI concludes the paper. 

II. SYSTEM MODEL 

Let y (n) be the sampled received signal at time ‘n’. 
Samples at different time are supposed to be independent and 
identically distributed (i.i.d). The received signal is 
represented by the two hypotheses, indicating presence and 
absence of primary user: 

 

ሺ݊ሻݕ							 ൌ ൜
଴ܪ																	ሺ݊ሻݓ
ሺ݊ሻݏ ൅ ଵܪ		ሺ݊ሻݓ

 (1) 


where w(n) ~ Cࣨ(0,	ߪ ଶ

௪ ) is an AWGN process, and s(n) is an 
i.i.d primary user’s signal. Binary hypothesis in (1) is used to 
determine	 ௙ܲ, ௗܲ 	and Probability of missed detection ( ௠ܲ) [1]: 
 

௙ܲ ൌ ݊݋݅ݏ݅ܿ݁ܦሾܾ݋ݎܲ ൌ  ଴ሿ            (2)ܪ|ଵܪ
 

௠ܲ ൌ ݊݋݅ݏ݅ܿ݁ܦሾܾ݋ݎܲ ൌ  ଵሿ           (3)ܪ|଴ܪ
 

ௗܲ ൌ ݊݋݅ݏ݅ܿ݁ܦሾܾ݋ݎܲ ൌ  ଵሿ            (4)ܪ|ଵܪ
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III. ED PERFORMANCE ANALYSIS VIA EXACT CLOSED FORM 

EXPRESSIONS 

In the exact analysis, probability density function (PDF) and 
cumulative density function (CDF) expressions for central and 
non-central chi-square distribution [14], are used to derive 
closed form expressions for 	 ௙ܲ	and ௗܲ	. Derivation for TD and 
FD based energy detectors are as under: 

A. Energy Detector in TD 

In TD, the decision statistic of ED is expressed as 
  

ܻ ൌ ∑ ሺ݊ሻ|²ேݕ|
௡ୀଵ                  (5) 

 
where y(n) are the samples of received signal as given in (1). Y 
has a non-central chi-square distribution with N degrees of 
freedom (DoF), under ܪଵ . Otherwise, it has a central chi-
square distribution with N DoF. ௙ܲ	and ௗܲ	, already available 
[15], [16], are given as  
 

௙ܲ ൌ
୻	ሺ

ొ
మ
	,
ಋ
మ
ሻ

୻ሺ
ొ
మ
ሻ

                     (6) 

 

ௗܲ ൌ ܳே/ଶሺ√2ߣ		,  ሻ              (7)ߛ√
 
where Γሺ. ሻ is gamma function, Γሺa, bሻ is incomplete gamma 
function, ‘N’ is number of samples, and ‘ߛ’ is sensing 
threshold [17]. ܳே/ଶሺܽ, ܾሻ is the generalized Marcum Q-

function with λ ൌ ∑ ൬
ఓమ೔
ఙమ೔
൰ே

௜ୀଵ  [18]. 

B. Energy Detector in FD 

Here, the exact analysis is extended over FD and a 
periodogram based approach is presented. The decision 
statistic for this case is given as: 

 

ܵሺ݂ሻ ൌ
ଵ

ே
ห∑ ௝௪௞௄ିଵି݌ݔሺ݇ሻ݁ݕ

௞ୀ଴ ห² ൌ
ଵ

ே
|ܻሺ݂ሻ|²      (8) 

 
The decision statistic S(f) has exponential distribution and 

can be considered as chi-squared distributed with two DoF. 
Under ܪ଴, S(f) has central chi-square distribution with two 
DoF. Else, it has non-central chi-square distribution with two 
DoF. CDF and PDF expressions given in [19] are used to 
derive new expressions for ௙ܲ	 and ௗܲ	. 

 

௫ܲሺݔሻ ൌ ׬	
ଵ

ଶఙమ		
݌ݔ݁		

షೣ
మ഑మ		d

ఊ
଴ ൌ ߛ 1	 െ ݌ݔ݁

షം
మ഑మ  (9) 

   

௙ܲ ൌ ݌ݔ݁
షം
మ഑మ                     (10) 

 
where ߛ	is the sensing threshold and ߪଶdenotes the noise 
variance. A new, ௗܲ	 expression is derived using non-central 
chi-square distribution with two DoF as: 
      

     ௫ܲሺݔሻ ൌ ׬
ଵ

ଶఙమ
݌ݔ݁	

షሺೞమశ೤ሻ
మ഑మ 	ݕሺඥ	଴ܫ	

௦

ఙమ
ሻ

௬
଴  (11)  ݕ݀

 

       ௗܲ ൌ 1 െ ܲ݉ ൌ ܳଵሺ√2ߣ		,  ሻ          (12)ߛ√

Marcum Q function is dependent on the modified Bessel 
function of first kind 	ܫெିଵ	which in turn depends on the 
inverse gamma function having parameter N. Here, M=N/2 
and N=DoF. In TD, N independent random variables in (5), 
show a DoF of N. Whereas in FD, exponential distribution in 
(8) presents a DoF of two. As the DoF increases in (7), the 
resultant Bessel function decreases, hence improving 
probability of detection. So, 'N' DoF in TD gives higher 
probability of detecting a primary signal as compared to two 
DoF for FD.  

IV. ED PERFORMANCE ANALYSIS VIA APPROXIMATE CLOSED 

FORM EXPRESSIONS 

In conventional TD ED, test statistic in (5) assumes the sum 
of independent random variables. The test statistics can be 
approximated by invoking central limit theorem (CLT) when 
buffer size (N) is large [20].  

A. Energy Detector in TD 

The TD ED uses the same decision statistic as in (5). For 
the approximate analysis, Q-functions already available in 
[21], are used to calculate ௙ܲ	and ௗܲ	 as: 
 

௙ܲ ൌ ܳሺఊି	ఓ௢
ఙ଴

ሻ                 (13) 

 

ௗܲ ൌ ܳሺఊି	ఓଵ
ఙଵ

ሻ                (14) 

 
where ߤo and ߪo are the mean and standard deviation for ܪ଴, 
and 1ߤ and 1ߪ are the mean and standard deviation for ܪଵ. The 
mean and standard deviation expressions are easily deduced 
using the properties of normal distribution [22] as:  
 

଴ߤ ൌ ܰሺߤ ଶ
௪ ൅ ߪ ଶ

௪ሻ                (15) 
  

଴ߪ ൌ √2ܰሺ2ߤ ଶ
௪ ߪ	

ଶ
௪ ൅ ߪ ସ

௪)             (16) 
 

ଵߤ ൌ ܰሾ	ߪ ଶ
௦ 		൅ ߪ		 ଶ

௪ ൅	ሺ	ߤ௦ ൅	ߤ௪ሻ
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ଵߪ ൌ √2ܰሾ2ሺ	ߤ௦ ൅	ߤ௪ሻଶ൫	ߪ
ଶ
௦ 		൅ ߪ		 ଶ

௪൯ ൅ ሺ	ߪ ଶ
௦ 		൅ ߪ	 ଶ

௪ሻ²ሿ (18) 
 

Assuming ߤw = ߤs = 0 for AWGN, ௙ܲ	 and ௗܲ 	 given in (13), 
(14) are evaluated using (15)-(18) as: 

 

௙ܲ ൌ ܳ ൬
ఊି	୒஢మೢ
√ଶே஢మೢ

൰           (19) 

 

ௗܲ ൌ ܳ ቆ
ఊି	୒൫஢మೢା஢

మ
ೞ൯

√ଶே		൫஢మೢା஢
మ
ೞ		൯

మቇ              (20) 

 

where ߪ ଶ
௪ is the noise variance, and ߪ ଶ

௦ denotes the signal 
variance. 

B. Energy Detector in FD 

TD calculations are extended for FD and new expressions 
for ௙ܲ	and ௗܲ	are derived in this subsection. In FD, the ED is 
implemented using power spectral density (PSD) estimation. 
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The decision statistic in FD is same as in (8). Binary test 
hypothesis in (1) is used to determine	 ௙ܲ	and ௗܲ	. New 
expressions for mean and variance, under ܪ଴	and ܪଵ are 
calculated as: 

 

଴ߤ ൌ ܲሺ݁௝௪ሻ ൌ ଵ

ே
ܧ ቄห∑ ௝௪௞ேିଵି݌ݔሺ݇ሻ݁ݓ

௞ୀ଴ ห
ଶ
ቅ ൌ σ ଶ

௪  (21) 

  
଴ߪ ൌ ሾܲሺ݁௝௪ଵሻܲሺ݁௝௪ଶሻሿݒ݋ܥ ൌ ߪ ସ

௪	  
 

ଵߤ ൌ ଵܲሺ݁௝௪ሻ ൌ
ଵ

ே
∑ሼหܧ ሺݓሺ݇ሻ൅ݏሺ݇ሻሻ݁ି݌ݔ௝௪௞ேିଵ

௞ୀ଴ ห²ሽ (22) 

  
ଵߤ ൌ ଵܲሺ݁௝௪ሻ ൌ σ ଶ

௪ ൅ σ ଶ
௦                (23)  

  

ଵߪ   ൌ ሾݒ݋ܥ ଵܲሺ݁௝௪ଵሻ ଵܲሺ݁௝௪ଶሻሿ ൌ ሺσ ଶ
௪ ൅ σ ଶ

௦		ሻ²   (24) 
  

௙ܲ 	 and ௗܲ 	are derived using (21-24) as: 
 

௙ܲ ൌ ܳ ൬
ఊି	஢మೢ
஢మೢ

൰              (25) 

 

ௗܲ ൌ ܳ ൬
ఊି	൫஢మೢା஢

మ
ೞ൯

	൫஢మೢା஢
మ
ೞ		൯

൰         (26) 

V. SIMULATION RESULTS 

The derived closed form expressions, both for exact and 
approximate analysis, are verified through Monte Carlo 
Simulations. A BPSK signal is passed over an AWGN 
channel. Neyman-Pearson criterion is used to determine the 
threshold [8]. Theoretical and simulated results can be 
evaluated for any given value of SNR and noise variance. 
However, for convenience, SNR=3 dB and σ ଶ

௪ ൌ 1	dB	 are 
frequently used, and results are estimated as following: 

A. Probability of False Alarm for Variable N 

Fig. 1 shows improved ௙ܲ	when FD is considered. Exact and 
approximate expressions in (10) and (25) show that FD does 
not depend on buffer size N. The buffer size affects the noise 
variance. If N is increased or decreased, FD results are not 
affected. However, as N increases in TD, noise variance is 
enhanced, and performance starts to deteriorate in TD. Hence, 
FD outperforms TD in terms of ௙ܲ	, as FD is independent of 
buffer length. 

B. Probability of Detection for Variable Buffer Size 

Fig. 2 shows the theoretical and simulated results for ௗܲ	. 
When buffer size is increased in TD, signal variance gets 
improved. It is evident from (12) and (26) that FD does not 
depend on buffer length. As the length is increased, signal 
variance remains unaffected. It is observed that ௗܲ	 improves 
as the number of samples increases. Higher the buffer size, 
better the ௗܲ	. Hence, TD performs better than FD in terms of 

ௗܲ	. 

C. ROC Analysis  

Approximate and exact results are evaluated for both TD 
and FD as shown in Figs. 3 and 4. 

 

Fig. 1 ௙ܲ vs. Threshold for Variable N 
 

 

Fig. 2 ௗܲ vs. Threshold for Variable N 
 
It is observed that as N increases, TD gives better ௠ܲ than 

FD. TD is dependent on N as stated in (7) and (20), ௠ܲ 
improves as buffer length increases and signal variance rises. 
The chance of detection gets enhanced as the number of 
samples increases. The theoretical and simulated results for 
both analyses are in accordance. Hence, ௠ܲ improves in TD, 
by using Neyman-Pearson detector. 

D. Probability of Missed Detection for Variable SNR 

Figs. 5 and 6 show the performance of ௠ܲ	over SNR regime 
for approximate and exact analysis respectively. 

It is evident from (7) and (20) that ௗܲ for TD dependents on 
the buffer size N. Exact and approximate analysis show that 

௠ܲ improves as buffer size is increased. On the other hand, FD 
does not depend on N as given in (12) and (26). SNR 
improves with increasing N because the signal variance gets 
enhanced. Hence, TD performs better than FD. 
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Fig. 3 ௠ܲ vs. ௙ܲ 	for approximate analysis 
 

 

Fig. 4 ௠ܲ vs. ௙ܲ	for exact analysis 
 

 

Fig. 5 ௠ܲ vs. SNR for approximate analysis 

 

Fig. 6 ௠ܲ vs. SNR for exact analysis 

E. Probability of False Alarm and Detection For Time 
Averaging  

Periodogram based detection performs averaging in FD, 
whereas the TD decision statistic does not perform averaging 
of energy samples as given in (5) and (8). Instead of using the 
simple energy decision statistic for TD, a new averaged TD 
energy detector is proposed. The decision statistic is given as 

 

ܻ ൌ
ଵ

ே
	∑ ሺ݊ሻ|²ேݕ|

௡ୀଵ              (27) 
 
The mean and variance of time averaged decision statistic is 

derived, and ௙ܲ	and ௗܲ	are obtained using (6), (7) as 
 

௙ܲ ൌ ܳ ൬
ఊି	஢మೢ
√ଶ஢మೢ

൰                  (28) 

 

ௗܲ ൌ ܳ ቆ
ఊି	൫஢మೢା஢

మ
ೞ൯

√ଶ		൫஢మೢା஢
మ
ೞ		൯

మቇ            (29) 

 
The ௙ܲ	and ௗܲ	 expressions are evaluated against variable 

noise variance and SNR values. Fig. 7 shows that ௙ܲ	 improves 
as noise variance is reduced. Noise variance is low for FD as 
evident from (25). However, noise variance gets enhanced in 
case of time averaged ED as given in (28). Higher noise 
variance deteriorates the performance of ௙ܲ	. Hence, lower the 
noise variance, better the ௙ܲ	. FD ED performs better than 
averaged TD detector. 

It is evident from Fig. 8 that, higher the SNR, better the ௗܲ	. 
Noise variance is reduced by increasing SNR in TD, as shown 
in (26). However, in FD, noise variance gets enhanced by 
increasing SNR, and ௗܲ		deteriorates as given in (29). Hence, 
TD gives better	 ௗܲ	.  

The theoretical and simulated results discussed in Figs. 1-8 
are in accordance. It is evident from the analytical and 
simulated analysis that ௙ܲ gets improved in FD. Whereas, ௗܲ	 
is enhanced in TD.  
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Fig. 7 ௙ܲ vs. Threshold for time averaging 
 

 

Fig. 8 ௗܲ  vs. Threshold for time averaging 

VI. CONCLUSION 

An analytical or intuitive reasoning behind improved 
performance of FD and TD based energy detectors is provided 
in this paper. Mathematical analysis and simulations are 
performed for both TD and FD energy detectors over AWGN 
channel. It is observed that FD gives better ௙ܲ when buffer 
size is increased. TD gives improved ௗܲ	 when observation 
length is enhanced, Neyman-Pearson detector is used, and 
SNR is varied. It is also observed that time averaged ED does 
not bring any improvement over the classical TD ED. Further 
analysis in fading channels will be carried out as future work 
to ascertain the results.  
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