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Abstract—Machine vision system provides automatic inspection 

to reduce manufacturing costs considerably. However, only a few 
principles have been found to optimize machine vision system and 
help it function more accurately in industrial practice. Mostly, there 
were complicated and impractical design techniques to improve the 
accuracy of machine vision system. This paper discusses 
implementing the Six Sigma Define, Measure, Analyze, Improve, and 
Control (DMAIC) approach to optimize the setup parameters of 
machine vision system when it is used as a direct measurement 
technique. This research follows a case study showing how Six 
Sigma DMAIC methodology has been put into use. 
 

Keywords—DMAIC, machine vision system, process capability, 
Taguchi parameter design. 

I. INTRODUCTION 

ACHINE vision system plays an important role in 
modern industrial practice for two reasons. The first one 

is the short analysis speed (cycle time) of the manufacturing 
process, which makes it easier to meet customers’ 
requirements [1]. Another one is on-line measurement. With 
the growing demand for industrial automation in 
manufacturing, on-line measurement contributes to 
overcoming subjectivity, fatigue, slowness, and cost 
associated with human inspection in the manufacturing 
environment [2]. 

The two advantages mentioned above imply that machine 
vision is versatile enough to inspect different parts. Actually, 
machine vision system has been widely used in manufacturing 
for the past decades. According to Jones [3] and Kumar et al. 
[1], machine vision system has two main application areas in 
industry: automatic inspection and robot guidance. Of these 
two main application areas, automatic inspection is the most 
important [3]. Derganc et al. [4] describe a machine vision 
system for inspecting bearings. Dhanasekar and Ramamoorthy 
[5] attempt to evaluate the surface roughness of uniformly 
moving machined surfaces using machine vision technique. 
With the development of the manufacturing system, automatic 
inspection is considered to be in more details. It includes not 
only inspection tasks by the inspector, but also a measurement 
of dimensions, counting, bar-code reading and so on [3]. In the 
classification of automatic inspection, dimension measurement 
is the most important application because it plays a vital role 
in improving products’ quality, which is the key element to 
satisfying customer demands in the modern industrial and 
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manufacturing field [6]. Sun et al. [7] use machine vision 
system to inspect the electric contact defects through 
measuring its dimensions. 

Regardless of its importance in quality control management, 
a constraint to the accuracy of machine vision system caused it 
to develop slowly throughout the past 10 years [8]. Pfeifer and 
Wiegers [9] present the image optimization method to handle 
the adjustment of illumination parameters. The method 
presented focuses on 2D-inspection tasks using machine 
vision with incident illumination directly onto reflective metal 
surfaces. Although this method addresses the inaccuracy issue 
when machine vision system is used as tool wear monitoring, 
it is not useful when machine vision system acts as a direct 
measurement technique. In their study, Golnabi and Asadpour 
[10] present that one of the most important design parameters 
in developing a machine vision system is the optimal type of 
lighting, such as fiber optics, tungsten lamps, fluorescent, and 
light - emitting diodes. Nevertheless, changing light source is 
not a proper approach when a machine vision system acts as 
on-line inspection. There are not many solutions for how to 
handle the problem of optimizing the accuracy of machine 
vision system in past research. According to the study of 
Lahajnar et al. [11], the most important optimizing issues of a 
machine vision technique system are hardware and software 
setup. Even though each machine vision system has its own 
standard setup parameters, they are not exactly fixed. To some 
extent, they depend on the environment and measurement 
parts. Due to the possible optimizing setup parameters relying 
on the users’ setup procedure, Seulin et al. [12] use numerous 
attempts on lighting features and relative positions between 
the camera, the lighting, and the object. Because it is not 
systematic, this trial and error method is complicated and 
difficult to implement. In order to overcome these drawbacks, 
this research focused on the implementation of Six Sigma 
DMAIC, which is a systematic methodology, to reduce 
variances of dimension measurements resulting from different 
setup parameters of machine vision system. 

II. APPLICATION OF SIX SIGMA DMAIC APPROACH AND 

TAGUCHI METHOD 

This section explains methodologies to be adopted in this 
study. Fig. 1 illustrates the activities of DMAIC (Define 
opportunities, Measure performance, Analyze potential 
causes, Improve performance, and Control performance) 
approach in Six Sigma. DMAIC is the five-step approach that 
makes up the Six Sigma toolkit, and its sole objective is to 
drive costly variation away from manufacturing and business 
processes. Six Sigma is a continuous improvement process, 
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focusing on the customer requirements, process alignment, 
and analytical rigor [13]. In many cases, root causes are 
difficult to find. Systematic implementation of DMAIC makes 
sure that the root causes of defects are found and then 
eliminated by concentrating on the outputs that customers 
need, so DMAIC becomes one of the most important quality 
methodologies. Thus, this research has implemented DMAIC 
based on the Six Sigma approach in order to optimize the 
accuracy of machine vision system. 

 

 

Fig. 1 Steps and emphasis on DMAIC methodology 
 

The DMAIC approach is widely used in recent research. 
Yeh et al. [14] use DMAIC to construct the evaluation 
framework for assessing the performance of supply chain 
management. Rohini et al. [15] propose the DMAIC Six 
Sigma approach to improving the process in the Operation 
Theatre of a corporate multi-specialty hospital. Since the 
DMAIC approach is adopted as a systematic method in many 
researches, it is used in this study. In the improve phase of 
DMAIC, the Taguchi method is an important methodology in 
design of experiment. It is defined as a set of measures called 
signal-to-noise (S/N) ratios that combine the mean and 
standard deviation into one measure in analyzing data from a 
robust design [16]. The complete procedure of the Taguchi 
design method can be divided into system design, parameter 
design, and tolerance design [17]. The steps in the Taguchi 
method’s parameter design are selecting the proper orthogonal 
array (OA) according to the numbers of controllable factors 
(parameters), running experiments based on the OA, analyzing 
data, identifying the optimum condition, and conducting 
confirmation runs with the optimal levels of all the parameters 
[18]. 

Even though the Six Sigma DMAIC approach and Taguchi 
method were widely and systematically used in previous 
researches, they have not been adopted to optimize setup 
parameters of machine vision system. Currently, the methods 
of optimizing the setup parameters of machine vision system 
are mainly the physics/mechanical method and optimizing 
images now [10]. It would be more organized and systematic 
to use the Six Sigma DMAIC and Taguchi methodologies to 
optimize the setup parameters of machine vision system. 

III. CASE STUDY 

This case study describes a systematic way of evaluating 
and optimizing machine vision system. Fig. 2 presents the 
machine vision system used in this study. It mainly consists of 
a camera, monitor, red light emitter, power supply, and target. 
With this equipment, the operator can easily measure a part by 
just pressing one button. However, machine vision setup is an 
important process that could lead to inaccurate dimension 
outputs. In this case, a three-person team was formed, 
consisting of individuals who had a good understanding of the 
Six Sigma concept, and a shared understanding of the problem 
and the project. The three-person team attempted to optimize 
machine vision setup parameters since it is one of the most 
important issues impacting the accuracy of machine vision. 
The first phase for the team was to define what was important 
in the machine vision system. Secondly, they measured the 
machine’s current condition in measure phase. And thirdly, 
they analyzed the problem in analysis phase. The fourth phase 
was to improve by developing solutions, and the last phase 
was to control the performance. The scope of the study starts 
with defining opportunities. 

 

 

Fig. 2 Machine vision system setup 

A. DMAIC Phase 1 – Define Opportunities 

Define opportunities is the first of five phases in the Six 
Sigma improvement process. In this phase, the team laid the 
foundation for the improvement effort the business is now 
pursuing. History has shown that a well-defined project with 
appropriate scope and objectives is a critical factor in the 
success of any improvement effort. A key output of this phase 
is determining the main issues of machine vision system that 
cause customers’ dissatisfaction. In this phase, the most 
important objective is to identify customer needs. Critical to 
Quality (CTQ) conveys the quality of a product of service 
derived from the voice of the customer. In industrial practice, 
according to a machine vision system’s usage in quality 
control management and the difficulty of improving the 
accuracy of its program, its setup parameters greatly affect the 
dimension accuracy. Therefore, the Critical to Quality 
characteristic of interest for this study was the difference 
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between the parts’ known dimensions and the measurements 
from machine vision system. This study considered that the 
dimensions from a CMM are true dimensions of parts. It aims 
at minimizing the difference between machine vision and 
CMM dimensions. 

 

 

Fig. 3 Dimension of the gears in the experiment 
 

In order to figure out the current accuracy of machine vision 
system, the project measured seven different gears’ inner 
diameters in the same size. The gear used in the project is 
shown in Fig. 3. The true inner diameter dimensions of the 
seven gears were replaced by the dimensions from CMM. This 
study used the Six Sigma DMAIC approach to reduce the 
dimension variance that occurs from machine vision and 
CMM. Accuracy is used to denote the difference. The 

accuracy (denoted as ) of machine vision system is defined 
in (1): 

 
                             (1) 

 
 - Accuracy;  - Measurement from CMM as control 

dimensions, in millimeter;  - Measurement from machine 
vision system, in millimeter;  - Experimental runs;  - Part’s 
number;  - Number of operator. 

In the present problem, the dimension of the gear is shown 
in Fig. 3. Changing the parameters setting to reduce the 
variance between the dimensions from the CMM and machine 
vision system optimizes the accuracy of machine vision. In 
this phase, three team members were responsible for collecting 
data, starting from A Gauge Repeatability and Reproducibility 
(GRR), which are used to measure the current accuracy of 
machine vision system. A GRR study is normally used to 
validate and justify a capable measurement system. The 
measurement system is acceptable when the variability due to 
the measurement system is between 10% and 30% [19]. Based 
on the characteristics of the GRR study, the current condition 
of machine vision system was analyzed. Three operators and 
seven parts were involved in the study. A total of 63 
observations on accuracy were collected for this study. The 
accuracy of the 63 observations and the analysis results from 
the GRR study are shown in Tables I and II, respectively. 

 
TABLE I  

OBSERVATION DATA OF ACCURACY (IN MM) 

Operator1 Operator2 Operator3 

1 2 3 1 2 3 1 2 3 

-0.081 -0.094 -0.088 -0.007 0.109 -0.019 -0.057 -0.047 -0.047 

0.006 0.017 0.027 -0.002 -0.015 -0.071 -0.052 -0.066 -0.044 

-0.054 -0.094 -0.099 -0.100 -0.054 -0.101 -0.015 -0.011 0.004 

-0.074 0.032 -0.086 -0.041 0.115 0.146 -0.08 -0.062 -0.051 

-0.017 -0.029 -0.019 -0.098 -0.071 -0.087 -0.026 -0.071 0.087 

-0.058 -0.089 -0.059 0.086 -0.005 -0.068 0.057 0.062 0.042 

-0.023 -0.032 0.029 -0.024 -0.09 -0.062 -0.058 -0.083 -0.088 

 
TABLE II 

RESULTS OF GRR STUDY 
Equipment 
Variation  

Appraiser 
Variation  

R & R %EV %AV %R&R 

0.348 0.077 0.357 69.62% 15.50% 71.32% 

 
During this stage, various process parameters were 

measured quantitatively and qualitatively. The Equipment 
Variation percentage (%EV) is up to 69.62%; however, the 
Appraiser Variation percentage (%AV) equals 15.5%. A big 
gap of %EV and %AV indicates that most of the error comes 
from the equipment variance. The high number of %EV 
contributes to a high %R&R, which equals 71.32%. It means 
that the measurement system is currently unacceptable. 
Moreover, the results from GRR file emphasize that the 
equipment setup from machine vision system is the source of 
inaccuracy. The analysis in define phase proves that extra 
setup procedures are needed in the current machine vision 

system. 

B. DMAIC Phase 2 – Measure Performance 

Measure Performance is the second phase of the Six Sigma 
Improvement Process, which builds on the outputs of the 
Define Opportunities phase. In this phase, the process Critical 
Customer Requirements (CCRs) are formalized with 
operational definitions to ensure the proper parameters are 
being measured from a variety of perspectives in order to 
determine how well the process is performing and what is 
happening inside the process to make it perform the way it is.  
 In this phase, the team identified the measures needed to 
evaluate how the process under review was performing. These 
measures directed the data collection that provided the team 
with actual performance data on the process.  

Supplier-Input-Process-Output-Customer (SIPOC) provides 
process mapping that is extremely helpful in identifying 
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processes that require improvement. The team developed an 
SIPOC chart, which presents a clear picture of setup process 
and analyzes main issues related to customers’ requirements. 
Based on the SIPOC chart, basic setup steps are summarized.  
Step1. Setup hardware: Hardware setup includes setup 

monitor, setup camera, setup remote, and setup power 
supply. 

Step2. Setup software: Software setup includes setup camera 
register, setup image, registration, setup measurement. 

Step3. Setup background: Background setup includes choose 
background color, place part in the right place. 

Step4. Get results: Set calibration, read results. 
After knowing the setup process and identifying the 

customer’s requirements, the next step is to identify failure 
modes and measure the influence of controllable process 

parameters. The most appropriate tool in this stage is Failure 
Mode and Effects Analysis (FMEA). FMEA is a systematic 
tool for identifying effects or consequences of a potential 
product or process failure, ranking failures and developing 
methods to eliminate the chance of a failure occurring. After 
these potential reasons were discovered, their effects on the 
quality function were tested.  

FMEA table in Fig. 4 shows the top five ranked potential 
failure modes. They are incorrect amount of lighting, 
vibration, incorrect height, incorrect color, and incorrect 
scaling input. FMEA is completed in the Measure phase of 
DMAIC and can provide recommended actions to minimize 
risks to the customer. In the next phase, the effects of potential 
failure modes were tested, and the proper solutions were 
determined. 

 

 

Fig. 4 FMEA with top five potential failure modes 
 

C. DMAIC Phase 3 – Analysis Opportunity 

In this section, Analysis Opportunity, the project applied a 
fishbone diagram, a hypothesis for analyzing data and drawing 
data-based conclusions about why the process is performing as 
it is. These findings may lead the team toward additional data 
collection or allow the team to jump into the root cause 
analysis tools that play such an important role in effective 
problem solving. The outputs of this section were verified root 
causes that were eventually reduced or eliminated by the 
team’s solutions. In the analysis phase, a fishbone diagram is 
used to verify all possible potential causes for inaccurate 
measurements from machine vision system. Then, controllable 
and non-controllable factors are derived from the diagram. 

Fig. 5 shows the fishbone diagram drawn from the observed 
process conditions. The Taguchi design of experiment was 
used to validate the effect of the root causes of the output. 
From the given figure, four controllable factors with three 
levels and two non-controllable factors with two levels are 
identified from the fishbone diagram. 

The four controllable factors include camera heights, 
background color, environment light, and gage block. In the 
controllable factors, the study used three different camera 
heights to measure parts. Camera height is defined as the 

distance from the surface of the background to the bottom of 
the camera. Three distances are shown in Fig. 6, which are 
200 mm, 240 mm, and 325 mm. In order to determine the 
optimum camera height, the three distances include two 
maximum heights that this system can get in the setup 
experiments. Additionally, the camera was leveled in every 
experiment. 

Another important controllable factor is environment light. 
This study used a closed box to isolate the light and a top open 
box to receive a beam of light. It is illustrated in Fig. 7. 

The third controllable factor is gage block. The results from 
machine vision system can only read in pixels so that 
calibration setup would make a big difference to the output 
readings. The team decided to use gage blocks in the 
calibration setup procedure. In order to get an inch or 
millimeter reading, more common units of measurement, an 
image must be registered with a certain part to tell the system 
how many pixels are equal to the unit of measurement desired. 
To set up the calibration in this project, the team used gage 
block to minimize measurement error, which is universally 
accepted as a precise metrology. Furthermore, black, blue, and 
red background colors were used in the experiment. For non-
controllable factors, different operators, and vibration versus 
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non-vibration were tested in the study. All the factors’ 
hypotheses of the experiment are the following: 
 Camera height: H0: 200= 240= 325, H1: 200≠ 240≠ 325 
 Environment (Light): H0: open= closed box= top open, H1: 

open≠ closed box≠ top open 

 Background color: black= red= blue, H1: black≠ 
red≠ blue 

 Gage block: 0.2”= 0.3”= 0.35”, H1: 0.2”≠ 0.3”≠ 0.35” 

 Operator: operator1= operator2, H1: operator1≠ operator2 
 Vibration:  vibration = no vibration, H1:  vibration ≠ no vibration

 

 

Fig. 5 Fishbone diagram 
 

 

Fig. 6 Camera height controllable factor 
 

 

Fig. 7 Environment Light Controllable Factor Setup 

D. DMAIC Phase 4 – Improve the Current Process 

The basis of this phase is the creation of process solutions 
that reduce or eliminate the root causes identified in Analyze 
Opportunity. Developing solutions requires analysis; the team 

used a wide spectrum of tools and techniques, including 
creative thinking, financial analysis, and change management 
principles. Ideas and options developed during early stages of 
this phase were scrutinized for their effectiveness. In the 
improve phase, the team developed criteria to evaluate the 
extent to which each of the candidate solutions may impact the 
controllable and non-controllable factors that were defined in 
the analyze phase. 

Traditional factorial design is commonly used in industry 
and scientific studies, practically, this method could involve in 
quantitative experiments with even limited variables [20]. 
However, Taguchi method allows the analysis of many 
different parameters without a high amount of 
experimentations. For example, a process with five variables, 
each with two levels would require 32 experiments. But, only 
eight experiments would be needed in Taguchi orthogonal 
arrays. It combines the experiment of design theory and the 
quality loss function concept. Both Taguchi’s OA (which 
provides a set of well-balanced experiments with less number 
of experimental runs) and Taguchi’s S/N ratio (which provides 
logarithmic functions of desired output) serve as objective 
functions in the optimization process [21]. The S/N ratio 
depends on the quality characteristics of the product/process to 
be optimized. The optimal settings are the parameters that 
always have highest S/N ratios. There are three criteria to 
evaluate the experiment data. They are nominal the better 
(NB), lower the better (LB), and higher the better (HB). Based 
on the quality criteria (NB, LB, HB), the S/N ratio should 
always be maximized in parameters setting.  

In order to find the optimal setting parameters of machine 
vision from among the parameters that were identified in the 
analyze phase, the Taguchi design of experiment is executed 
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in the improve phase. The setting parameters that have the 
highest S/N ratio and nominal accuracy are selected as 
optimum parameters. All the controllable parameters are 
categorized into three levels, and the non-controllable 
parameters are categorized into two levels. They are presented 

in Figs. 6 and 7, respectively. This project used Taguchi L9 
OA for conducting the experiment. The experimental 
sequence was randomized during the experiment. Taguchi L9 
design is as follows in Table III, and the relevant results are 
showed in Table IV. 

 
TABLE III 

DESIGN LAYOUT FOR THE EXPERIMENT USING TAGUCHI L9 ORTHOGONAL ARRAY 

     Operator1 Operator2 

Run 
A 

Light 
B 

Height 
C 

Color 
D 

Gage block 
Vib 4 

samples 
No Vib 4 
samples 

Vib 4 
samples 

No Vib 4 
samples 

1 1(Open) 3(325) 3(Blue) 3(0.35") y111-y114 y115-y118 y121-y124 y125-y128 

2 2(Box) 3(325) 1(Black) 2(0.3") y211- y214 y215- y218 y221-y224 y225- y228 

3 2(Box) 2(240) 3(Blue) 1(0.2") y311- y314 y315-y318 y321- y324 y325- y228 

4 3(Top Open) 2(240) 2(Red) 3(0.35") y411- y414 y415- y418 y421- y424 y425- y428 

5 2(Box) 1(200) 2(Red) 3(0.35") y511- y514 y515- y518 y521- y524 y525- y528 

6 3(Top Open) 1(200) 3(Blue) 2(0.3") y611- y614 y615- y618 y621- y624 y625- y628 

7 1(Open) 2(240) 2(Red) 2(0.3") y711- y714 y715- y718 y721- y724 y725- y728 

8 1(Open) 1(200) 1(Black) 1(0.2") y811- y814 y815- y818 y821- y824 y825- y828 

9 3(Top Open) 3(325) 1(Black) 1(0.2") y911- y914 y915- y918 y921- y924 y925- y928 

 
TABLE IV 

COMPLETED OA WITH EXPERIMENT DATA 

Operator 1 Operator 2 
Vib No Vib Vib No Vib 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1.776 1.820 1.803 1.735 1.767 1.824 1.802 1.699 1.712 1.794 1.768 1.727 1.721 1.802 1.774 1.731 

0.644 0.590 0.545 0.519 0.654 0.587 0.547 0.517 0.596 0.604 0.629 0.608 0.597 0.608 0.626 0.622 

-0.243 -0.201 -0.148 -0.147 -0.238 -0.197 -0.152 -0.141 -0.188 -0.178 -0.182 -0.214 -0.196 -0.184 -0.209 -0.195 

-0.204 -0.205 -0.176 -0.197 -0.198 -0.199 -0.202 -0.207 -0.150 -0.190 -0.148 -0.162 -0.136 -0.179 -0.153 -0.172 

-0.626 -0.622 -0.634 -0.61 -0.613 -0.618 -0.640 -0.635 -0.685 -0.638 -0.595 -0.580 -0.678 -0.645 -0.600 -0.597 

-0.250 0.807 -0.268 -0.036 -0.239 0.808 -0.266 -0.043 -0.245 -0.263 -0.252 -0.211 -0.244 -0.269 -0.248 -0.202 

-0.711 -0.754 -0.655 -0.583 -0.731 -0.770 -0.648 -0.577 -0.743 -0.714 -0.718 -0.712 -0.729 -0.734 -0.727 -0.716 

-0.226 -0.253 -0.129 -0.272 -0.218 -0.247 -0.126 -0.262 -0.268 -0.254 -0.270 -0.250 -0.271 -0.251 -0.273 -0.248 

-0.160 -0.147 -0.141 -0.136 -0.137 0.167 -0.119 -0.130 -0.142 -0.143 -0.131 -0.140 -0.157 -0.114 -0.119 -0.005 

 

 

Fig. 8 Accuracy and S/N ratio of environment (light), camera height, background color, and calibration (gage block) 
 

To determine the effect of each variable on the output, the 
Taguchi S/N ratio method is utilized. In S/N ratio method, 
since the quality criteria used were nominal the better, the S/N 

ratio formula used for analysis was (2). 
 

 10log	                                   (2) 
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 - S/N ratio;  - Number of measurements (4 here);  - Mean 
of measurements;  - Standard deviation. 

 
TABLE V 

TWO-SAMPLE T-TEST FOR VIBRATION AND OPERATOR 

T-test for vibration 

Average Variance 

Vib No vib Vib No vib 

0.022 0.029 0.521 0.522 

SE DF t-value t α (0.01) 

0.120 142 0.055 2.611 

T-test for operator 

Average Variance 

Operator 1 Operator 2 Operator 1 Operator 2 

0.046 0.004 0.527 0.516 

SE DF t-value t α (0.01) 

0.120 142 0.3488 2.611 

 
Table VI shows the accuracy response and S/N ratio 

response tables. Also, from the data of the Taguchi design of 
experiment, a two-sample t-test is conducted to conclude the 
significant impact of operator and vibration. Tests are shown 
in Table V. 

Since the T-values of the T-tests for vibration and operator 
in Table V are both less than the t-α (0.01) value, the 
conclusion drawn was that vibration and operator do not have 
an effect on accuracy. 

An interaction plot is a tool to recognize the optimum level 
setting in each factor after experiments. The interaction plots 
of four factors, A, B, C, and D, are drawn from the accuracy 
response and S/N ratio response tables. They are presented in 
Fig. 8. In this study, since accuracy is nominal the better and 
S/N Ratio is always the larger the better, the optimum settings 
are easy to figure out through interaction plots. The accuracies 
of optimum settings are underlined in Table VI. 
 

TABLE VI 
ACCURACY RESPONSE AND S/N RATIO RESPONSE TABLE 

Accuracy response 
Level A B C D 

     

1 0.275 -0.318 0.082 -0.179 

2 -0.074 -0.357 -0.502 -0.066 

3 -0.126 0.750 0.496 0.320 

S/N Ratio 

1 23.0 9.7 13.3 10.9 

2 21.9 18.4 22.1 11.0 

3 2.7 19.5 12.2 25.8 

 
As presented in Fig. 8, the interaction plots consider 

nominal the better quality criteria with the S/N ratio always 
higher the better. Fig. 8 shows the resulting two optimal 
parameter settings from the accuracy response and S/N Ratio 
tables. The optima parameter settings are as follows: 

Optimal parameter setting 1: closed box, 200 mm camera 
height, Black background color and 0.3” gage block 

Optimal parameter setting 2: closed box, 325 mm camera 
height, red background color and 0.35” gage block 

The prediction accuracy is -0.451 mm in optimal parameter 

setting 1 and 0.418 mm in optimal parameter setting 2. Since 
the project has two parameter settings, two confirmation runs 
were conducted. Two confirmation runs with 10 datasets 
displayed in Tables VII and VIII respectively. 

From Tables VII and VIII, the accuracy from optimal 
parameter setting 1 has less  average number results 
(higher accuracy) than optimal parameter setting 2. In this 
case, optimal parameter setting 1 was utilized to observe the 
significant factors that influence the accuracy in the following 
tests. Even though the optimal parameter settings were 
obtained, it is necessary to analyze which parameter is the 
most significant one in order to improve the machine vision 
system’s accuracy during the setup procedure. In statistics, 
analysis of variance (ANOVA) is a collection of statistical 
models and their associated procedures in which the observed 
variance of a particular variable is partitioned into components 
attributed to different sources of variation. In its simplest 
form, ANOVA provides a statistical test of whether or not the 
means of several groups are equal, and therefore, generalizes 
t-test to more than two groups [22]. So, ANOVA was 
performed here to analyze the most significant of six existing 
parameters. ANOVA which was carried out on the S/N ratio 
values is presented in Table IX. 

 
TABLE VII 

FIRST CONFIRMATION RUN WITH OPTIMA PARAMETER SETTING 1 (IN MM) 

Accuracy (yijk) from No. 1-10 

1 2 3 4 5 

-0.197 -0.228 -0.200 -0.259 -0.186 

6 7 8 9 10 

-0.225 -0.175 -0.197 -0.161 -0.190 

 
TABLE VIII 

SECOND CONFIRMATION RUN WITH OPTIMA PARAMETER SETTING 2 (IN MM) 

Accuracy (yijk) from No. 1-10 

1 2 3 4 5 

-0.653 -0.701 -0.618 -0.737 -0.613 

6 7 8 9 10 

-0.626 -0.553 -0.570 -0.672 -0.721 

 
Since the P values of controllable factors are less than 0.01, 

they are all significant to the output shown in Table IX. 
Because the P values of the non-controllable factors (Block 
vibration and Operator) are greater than 0.01, they are not 
significant to the accuracy. Moreover, since the highest 
sequential sums of squares appear 9.462 in factor of height, 
camera height impacts the accuracy of the dimensions from 
machine vision system and the true dimensions more 
significantly than other factors. 

After observing the accuracy of various heights as in Table 
X, the accuracy is proportional to the camera height to a 
certain degree. 

After analyzing Table X, camera height was changed to the 
lowest setting possible in this experiment, which is 150 mm. A 
new confirmation run was conducted with these parameter 
settings: Closed box, black background color, 150 mm camera 
height and 0.3” gage block. The new accuracy is presented in 
Table XI. 
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TABLE IX 
ANOVA TABLE FOR S/N RATIOS 

Source 
Degree 

of 
freedom 

Sequential 
sums of 
squares 

Adjust 
square 
sum 

Adjust 
Mean 
Square 

P value F value 

Light 2 1.143 1.143 0.571 0.000 158.31 

Height 2 9.462 2.119 1.059 0.000 293.54 

Color 2 4.249 5.727 2.863 0.000 793.36 

Gage block 2 3.119 3.120 1.559 0.000 432.13 

Vibration 1 0.0004 0.0004 0.016 0.746 4.39 

Operator 1 0.016 0.016 0.0004 0.046 0.11 

Error 25 0.090 0.090 0.004   

 
TABLE X 

MEASUREMENT ACCURACY IN DIFFERENT HEIGHT 

Height Accuracy 

200 mm -0.318 

240 mm -0.357 

325 mm -0.750 

 
TABLE XI  

CONFIRMATION RUN WITH PARAMETER SETTING OF CLOSED BOX, BLACK 

BACKGROUND COLOR, 150 MM CAMERA HEIGHT AND 0.3” GAGE BLOCK (IN 

MM) 

Accuracy (yijk) from No. 1-10 

1 2 3 4 5 

0.010 -0.011 0.004 0.004 0.003 

6 7 8 9 10 

0.036 0.02 0.045 0.015 0.007 

 
After the confirmation run with the new optimum 

parameters, the experiment gained a new accuracy confidence 
interval, which is (-0.00020, 0.0268) mm. The new accuracy 
confidence interval includes 0, which is the accuracy project 
sought in the experiment. It means that, after optimizing its 
parameters, the machine vision system can be accurate enough 
to measure precise parts. Through improving machine vision 
system, this study provides systematic procedures to 
implement Six Sigma effectively. 

E. DMAIC Phase 5 – Control Performance 

The purpose of the control phase is to maintain the 
improvements made by the improve phase. Maintaining the 
results from the above phase is difficult due to many variable 
factors. It is necessary to set up some standard operating 
procedures for operators to sustain these improvements. 
Control charts are a powerful tool to ensure improvements. X-
bar and R charts were introduced for monitoring the process 
along with a control plan to deal with special causes of 
variation. Training is provided for the operator working with 
the process so that they can record control charts to check the 
stability of the new machine vision system. X-bar and R chart 
templates based on this experiment’s setup parameters are 
shown in Fig. 9.  

Instructions for using SPC chart: 
Step1. To be consistent with the baseline data, every two 

hours the operator takes five samples randomly, 

beginning at 8:00 A.M., and calculates and records the 
dimension variances between CMM and machine 
vision system (yijk). There are five subsets because 
there are five samples. For each subset, there are four 
data because the operator takes samples four times 
every day. The difference between CMM and MV 
reading is accuracy (value of X in the form). The 
operator notes them in the form in Fig. 9. 

Step2.  Similarly, note the accuracy measurements daily at 
10:00 A.M., 12:00 P.M., and 2:00 P.M. 

Step3. Calculate the mean and range of each subset. Once 
these values are calculated, the average (x-bar) and 
range (R) are calculated. These values are simply the 
means of each subset’s mean and range. Note down in 
the form of Fig. 9. 

Step4. Plot average numbers in X-bar char, range numbers in 
R chart. Observe whether these plots run inside the 
control limits (UCL, LCL). If they run outside the 
control limits, stop the process and check what is going 
wrong. 

IV. CONCLUSION 

This case study demonstrated a systematic methodology of 
DMAIC and Taguchi design of experiment to optimize the 
setup parameters of machine vision system. A team was 
formed to improve the poor current setup condition of 
machine vision system. It analyzed the impact of four different 
controllable factors and two non-controllable factors. As a 
result, the confidence interval improved from (-0.1786, -
0.2250) mm to (-0.0002, 0.0268) mm. The conclusions of the 
case study can be stated as follows: 
1. The case study used DMAIC and Taguchi design of 

experiment results in the accuracy of the measurements 
from machine vision system improved to be within (-
0.0002, 0.0268) mm. It shows that the machine vision 
system is as accurate as possible after six sigma DMAIC 
optimization process. 

2. The GRR study revealed important results while 
collecting a certain amount of data. It indicates that the 
main reason causing an inaccurate machine vision system 
is equipment accuracy, which is related to machine 
parameter setup procedures. 

3. The use of DMAIC methodology showed the power of a 
systematic methodology for finding out the root causes 
and addressing a challenging problem. It effectively 
improved the current system. In addition, the Taguchi 
method is a useful strategy to optimize systems through 
reducing variables. 

The results of this project suggest that implementing the 
DMAIC approach and the Taguchi method can provide an 
optimal option to enable managers to reorient parameter 
settings of production processes. 
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Fig. 9 Process Control Chart 
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